Indirect detection of dark matter

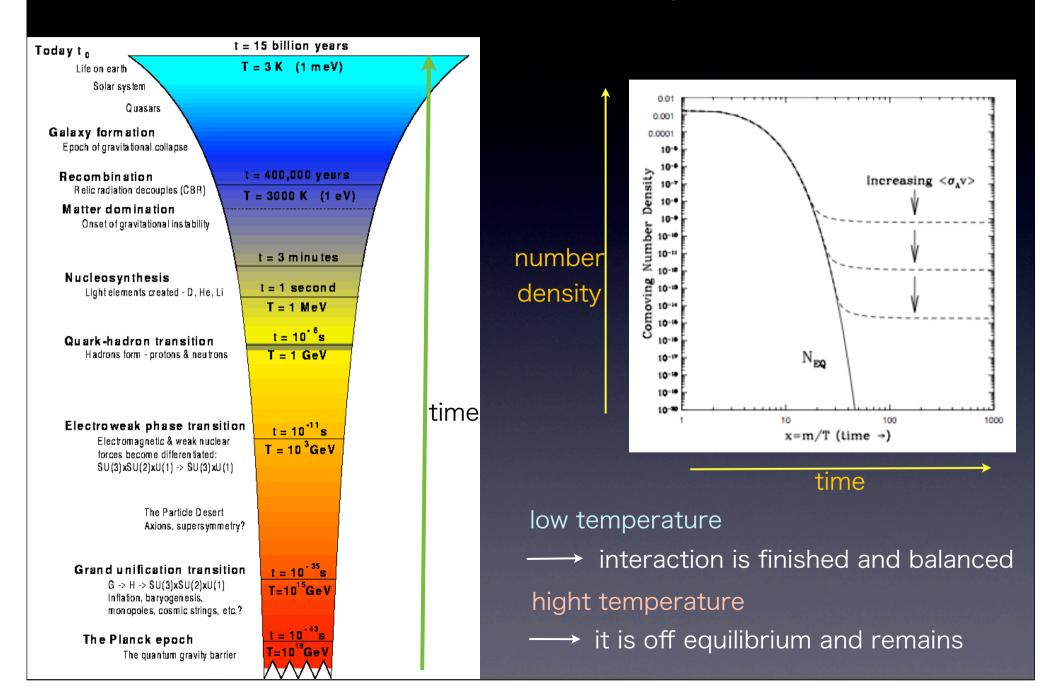
12572003 Hiromitsu Okumura

Contents

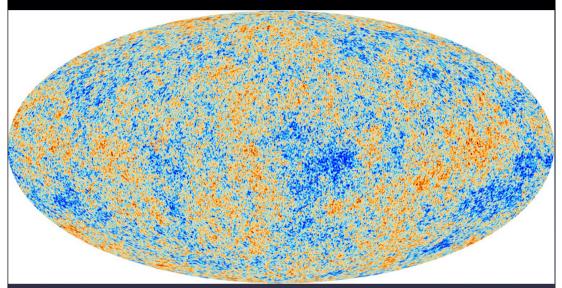
What's dark matter (DM) ?

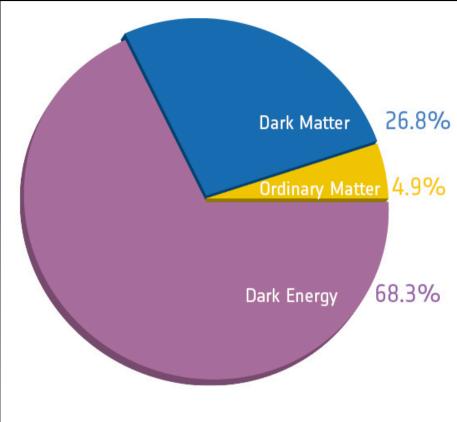
Evidence of DM

Candidates of DM


Indirect detection of DM

What's dark matter (DM)?


DM feature


- non-baryonic
- electrically neutral
- stable
- weakly interacting
- produced in the early universe
- particle beyond the standard model

Thermal history

Evidence: CMB

Planck satellite

measurement of CMB fluctuation (Cosmic Microwave Background)

the analysis of CMB anisotropies enable accurate testing of cosmological models and puts stringent constrains on cosmological parameter.

Evidence: Rotation curve of galaxy

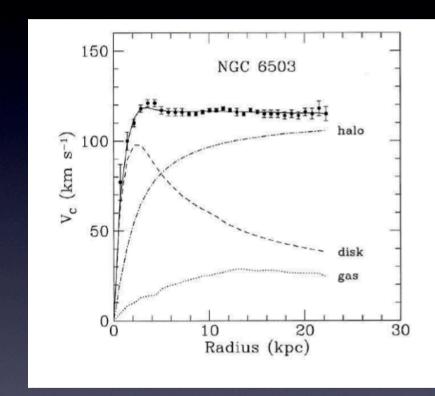
The balance of centrifugal force and gravitation gives

$$v(r) = \sqrt{\frac{GM(r)}{r}}$$

arphi :velocity G :gravitational constant

 γ :radius from galactic center

 ${\cal M}$:total mass in radius r from galactic center


$$v(r) \propto r^{-1/2}$$

On the other hand, observation

$$v(r) = const$$

The distribution

$$M(r) \propto r$$

Dark Matter

density $\rho(r)$

$$M(r) = 4\pi \int \rho(r)r^2 dr$$

$$\propto r$$

$$\rho(r) \propto \frac{1}{r^2}$$

Smooth density profile

- density spike (innermost region)
- $\cdot \propto \frac{1}{r^2}$ (outer region)
- Example :NFW profile

$$\rho^{NFW} = (0.4 \pm 0.1 GeV cm^{-3}) \left(\frac{8.5 kpc}{r}\right) \left[\frac{1 + (8.5 kpc/20 kpc)}{1 + (r/20 kpc)}\right]^{2}$$

Candidates

Two popular candidates

neutralino(SUSY)

Kaluza-Klein particle

Other candidates

- Axion
- Gravitino etc.

Detection of DM

 Detection of annihilation products from DM sources indirect detection

Nuclear recoils in underground experiments

 DM production in collider experiments direct detection

Indirect detection

Observation of photon produced from DM annihilations

The flux of radiation is proportional to the annihilation rate, Γ_A

$$\Gamma_A \propto \sigma v n^2 = \sigma v \frac{\rho_{DM}^2}{m_{DM}^2}$$

Sources

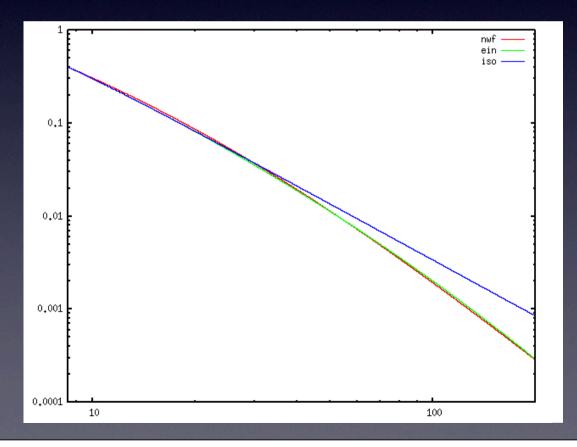
 σv :annihilation cross section multiplied by velocity n :DM number density ho_{DM} :DM density m_{DM} :DM mass

the galactic center(GC), the sun, the earth, etc.

Indirect detection from cosmic ray

photon(gamma-ray)

neutrino


electron and positron

Gamma-ray from the galactic center

In the Milky Way(MW), with the Fermi Gamma-Ray Space Telescope

The smooth DM density distribution in the MW

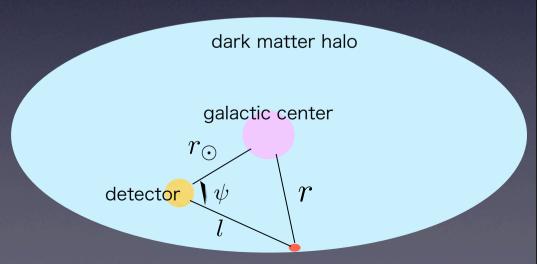
The gamma-ray number flux intensity due to the Galactic Halo DM self annihilation, $I_{\gamma}^G(E_0)$

$$I_{\gamma}^{G}(E_{0}) = \frac{dN_{\gamma}}{dAdtd\Omega dE_{0}} = \frac{\sigma v}{8\pi} \frac{r_{\odot}\rho_{\odot}^{2}}{m_{DM}^{2}} J(\psi) \frac{dN_{\gamma}}{dE_{0}}$$

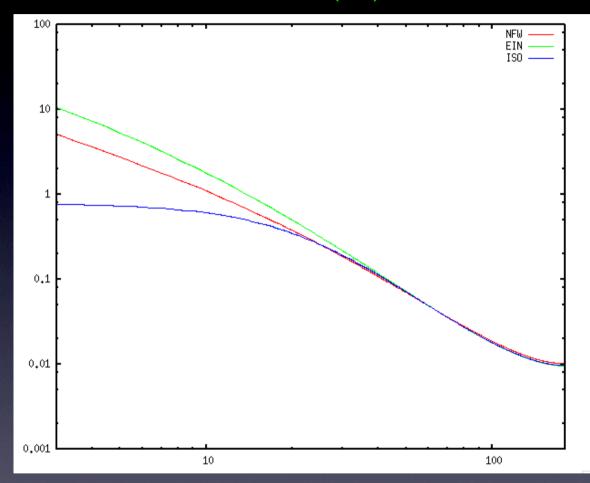
 $rac{dN_{\gamma}}{dE_{0}}$:the photon energy spectrum per annihilation

 E_0 : the observed photon energy

 $r_{\odot}=8.5kpc$:the solar distance to the GC


 $ho_{\odot}=0.4\pm0.1 GeV cm^{-3}$ the DM density in the solar ne

:the DM density in the solar neighborhood


$$J(\psi) = \frac{1}{r_{\odot}\rho^2 \odot} \int_0^{l_{max}} \rho_{DM}^2(r(\psi, l)) dl$$

$$r(\psi, l) = \sqrt{r_{\odot}^2 - 2lr_{\odot}\cos\psi + l^2}$$

$$l_{max} = (\sqrt{R^2 - r_{\odot}^2 \sin^2 \psi} + r_{\odot} \cos \psi)$$

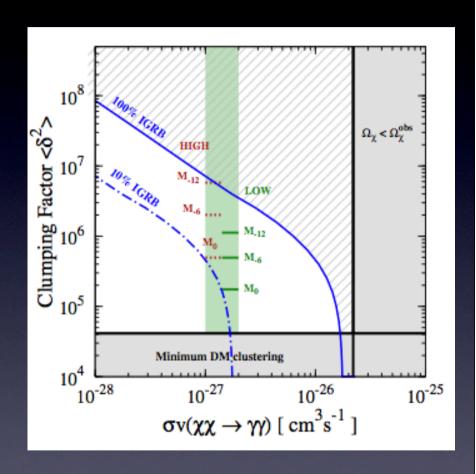
J-factor $J(\psi)$

y axis: $J(\psi)$

x axis: ψ

 $0^{\circ} \le \psi \le 180^{\circ}$

J-factor becomes maximum in GC and becomes small as it goes away from GC


Recent measurement

IGRB (isotropic Gamma Ray Background)

IGRB includes isotropic galactic and extragalactic components.

in extragalactic, we use clumping factor $<\delta^2>$ instead of J-factor.

$$<\delta^2> = \frac{<\rho_{DM}^2>}{\bar{\rho}_{DM}^2}$$

Because IGRB does not have the peak thought to be the thing of the dark matter, it can constrain mass and cross section of the dark matter.

Summary

• It is sure that DM exists from various experiments.

•Observation of DM includes direct detection and indirect detection(cosmic ray).

Cosmic ray measurement can probe DM.