

Kaon rare decay experiments

Shiro Suzuki (Saga univ.) The 10th Yonsei-Saga Joint seminar Jan. 17, 2014

Flavor Physics in the LHC era

- LHC provides first direct TeV scale physics
- Gauge symmetry : well tested
- Higgs sector : direct observation of Higgs particle at 125GeV !
- ▶ New era started. New physics spectrum is expected.
- Many ideas for beyond SM need to be distinguished.
- Need to probe flavor structure of BSM models
- > Flavor physics and indirect searches gain importance.
- \succ Esp. SM suppressed processes in B, K, $\tau,\,\mu$ will be promising.

Kaon system

- composite system containing s-quark
- Historically, its decay has brought us key discoveries on particle phys.

Such as ;

- $\tau \theta$ puzzle \rightarrow P violation
- Suppression of FCNC
 - GIM mechanism \rightarrow charm
- CP violation in K decay
 Kobayashi-Maskawa scheme
 Three generations of quark

Those are basis of the SM

Kaon rare decay

> SM suppressed process is a promising research ground of BSM

- Iook for deviations from the SM by precise measurements with high intensity beam.
- Possible to reach higher mass scale
- Topics of this talk : Rare decay $K \rightarrow \pi \nu \nu$
 - Golden mode in Kaon physics
 - FCNC process via loop diagram
- Will concentrate on going or coming experiments
 - $K_L \rightarrow \pi^0 \nu \nu$; KOTO (JPARC)
 - K⁺ $\rightarrow \pi^+ \nu \nu$; NA62 (CERN), ORKA (FNAL)

Decay branching fraction

Scale factor/ ction (Γ_i/Γ) Confidence level											
		Leptonic and semileptonic modes									
$) \times 10^{-5}$	247										
)% S=1.2	236										
)% S=2.1	228										
s) % S=1.8	215										
)% S=1.2	205										
2) % S=1.1	133										
)% S=1.3	125										
)% S=2.1 4)% S=1.8)% S=1.2 2)% S=1.1)% S=1.3										

 $\pi^+ v \overline{v}$ (1.7±1.1)×10⁻¹⁰ BNL E787/949 --7events

Decay branching fraction (cont.)

KL DECAY MODES	F	Fraction (Γ _i /Γ)	Сог	Scale factor/ nfidence level	р (MeV/c)						
Semileptonic modes											
$\pi^{\pm} e^{\mp} \nu_e$ Called K^0_{e3} .	[<i>n</i>]	(40.55 ±0.11) %	S=1.7	229						
$\pi^{\pm}\mu^{\mp}\nu_{\mu}$ Called $K^{0}_{\mu3}$.	[<i>n</i>]	(27.04 ±0.07) %	S=1.1	216						

Hadronic modes, including Charge conjugation × Parity Violating (CPV) modes

$3\pi^{0}$			(19.52 ± 0.12)%	S=1.6	139
$\pi^+\pi^-\pi^0$			(12.54 ± 0.05)%		133
$\pi^+\pi^-$	CPV	[<i>p</i>]	(1.966 ± 0.010) $ imes$ 10^{-3}	S=1.5	206
$\pi^{0}\pi^{0}$	CPV		(8.65 ± 0.06) $ imes 10^{-4}$	S=1.8	209

$$\pi^{0} v \overline{v}$$
 < 2.6×10⁻⁸ 90% C.L. KEK E391a
(SM prediction 2.6×10⁻¹¹)

FCNC decay is suppressed

FCNC by GIM with charm

In KM scheme

• unitarity triangle for $s \rightarrow d$ chain (u,c,t as intermediate states)

► However, in general $(s \rightarrow d) \propto V_{ud} f(m_u) V_{us}^* + V_{cd} f(m_c) V_{cs}^* + V_{td} f(m_t) V_{ts}^*$ $f(m_a)$: these maydepend on *a*. Lim-Inami(1981) → $m_u \ll m_c \ll m_t \Rightarrow (s \rightarrow d)$ is not exactly zero.

→ Very sensitive to the higher order contribution.

$$K \rightarrow \pi \nu \overline{\nu} \text{ decays in the SM}$$

$$S \rightarrow d \text{ transition via loop diagram}$$

$$K_{0}^{L} : \text{ Top quark dominates}$$
Superposition of K^{0} and \overline{K}^{0}

$$A(K_{L}^{0} \rightarrow \pi^{0} \nu \overline{\nu}) \cong \frac{1}{\sqrt{2}} \left\{ A(K^{0} \rightarrow \pi^{0} \nu \overline{\nu}) - A(\overline{K}^{0} \rightarrow \pi^{0} \nu \overline{\nu}) \right\}$$
extracts imaginary part of the amplitude
$$K^{+} : \text{ Both top and charm contribute}$$

$$V_{KM} = \left(\frac{V_{ud} \quad V_{us} \quad V_{ub}}{V_{td} \quad V_{ts} \quad V_{tb}} \right) \dots S \rightarrow C \rightarrow d \text{ real}$$

$$= \left(\frac{1 - \lambda^{2}/2}{\lambda^{3} A(1 - \rho - i\eta)} \frac{\lambda^{2} A}{\lambda^{2} A} \right) + o(\lambda^{4})$$

$$V_{KM} = V_{KM} = \left(\frac{1 - \lambda^{2}/2}{\lambda^{3} A(1 - \rho - i\eta)} \frac{\lambda^{2} A}{\lambda^{2} A} \right) + o(\lambda^{4})$$

$$K \rightarrow \pi \nu \overline{\nu} \text{ decays in the SM (cont.)}$$

$$Br(K_{L} \rightarrow \pi^{0} \nu \overline{\nu}) = \kappa_{L} \left(\frac{\text{Im}(V_{ts}^{*} V_{td})}{\lambda^{5}} X_{t} \right)^{2} \propto \overline{\eta}^{2}$$

$$Br_{SM} = (2.43 \pm 0.39 \pm 0.06) \times 10^{-11} \text{ Exp. KEK E391a} \text{ Br} < 2.6 \times 10^{-8} \text{ CP violating}$$

$$Br(K^{+} \rightarrow \pi^{+} \nu \overline{\nu}) = \kappa_{+} (1 + \Delta_{EM})$$

$$\times \left| \frac{V_{ts}^{*} V_{td}}{\lambda^{5}} \cdot X_{t} + \frac{\text{Re} V_{cs}^{*} V_{cd}}{\lambda} \cdot (P_{c} + \delta P_{c,u}) \right|^{2} \propto \overline{\eta}^{2} + (\overline{\rho}_{c} - \overline{\rho})^{2}$$

$$Br_{SM} = (7.81 \pm 0.75 \pm 0.29) \times 10^{-11} \text{ Exp. BNL E787/949} \text{ Br} = (1.73^{+1.15}_{-1.05}) \times 10^{-10} \text{ CP violation} K_{\ell 3}$$

$$(\kappa_{L} \rightarrow \pi^{-} e^{+} \nu_{e}, \kappa^{+} \rightarrow \pi^{0} e^{+} \nu_{e} \text{ etc.})$$
Theoretical uncertainty is small Golden modes of K physics
$$X_{L} : \text{ top quark contribution} K_{\ell 3} \text{ (soft \& long distace)}$$

 $K_L \rightarrow \pi^0 v v$ is a CPV process

• vv via Z* CP+, L = I to make J = 0

 \rightarrow final state CP + , but initial state (K_L) CP -

$$\begin{array}{l} A(K_{L} \rightarrow \pi^{0} v \overline{v}) \\ = \frac{1}{\sqrt{1 + \varepsilon^{2}}} \Big[A(K_{2} \rightarrow \pi^{0} v \overline{v}) + \varepsilon A_{1}(K_{1} \rightarrow \pi^{0} v \overline{v}) \Big] \\ = \frac{1}{\sqrt{1 + \varepsilon^{2}}} \Big[(1 + \varepsilon) A(K^{0} \rightarrow \pi^{0} v \overline{v}) - (1 - \varepsilon) A(\overline{K}^{0} \rightarrow \pi^{0} v \overline{v}) \Big] \\ \propto V_{td}^{*} V_{ts} - V_{ts}^{*} V_{td} \approx 2i\eta \end{array}$$
 Sensitive to CKM matrix element

$$\begin{array}{l} \text{Im}(V_{td}) = \eta \\ \text{Theoretically} \\ \text{clean} < 2\% \end{array}$$

- Measurement is independent from B physics – cross check
- FCNC : suppressed in the SM

| 12

> Any new amplitude expected to give large effect

$K \rightarrow \pi vv$: BSM phys. adds extra phase

+

THDM: two-HIggs-doublet model MSSM: minimal-supersymmetric SM mUED: minimal universal extra dimension LHT : littlest Higgs model with T parity

| 13

Effect of Physics beyond SM

- Enumeration of BSM candidates ... mentioned by Buras et al
 - Little Higgs Model with T-parity
 - RS model based on a warped extra dimension
 - MSSM
 - THDM
 - Extra Z penguin
 - 4-th generation
 - …and others
- Most of these models give possibility of enhancing $Br(K^+ \rightarrow \pi^+ \nu \nu)$ and/or $Br(K^0 \rightarrow \pi^0 \nu \nu)$ by factor of 3 to 10 (or more) w.r.t. SM value

Little Higgs model with T-parity

|6

RS model

Calculation by Buras et al.

- proposed to solve hierarchy problem between Planck / weak scale
- KK fermions and bosons
 Flavor changing Z coupling

Also strong correlation between $K_L \rightarrow \pi^0 v \overline{v}$ and $K_L \rightarrow \pi^0 e^+ e^- / \mu^+ \mu^-$

Experiments on $K \rightarrow \pi v \overline{v}$

Upper limit of $K_L \rightarrow \pi^0 \nu \nu$ KEK-PS E391a

Signature of $K_L \rightarrow \pi^0 \nu \nu$ decay : 2γ + nothing

 Detecting nγ (n=1,2,4..) and nothing else → CsI calorimeter and Hermetic veto system with high eff.
 BG source : K_L→π⁰π⁰ if 2γ missed (BR ~10⁻³)

 \leftrightarrow K_L $\rightarrow \pi^0 \nu \nu$ BR_{SM} = 2.8 × 10⁻¹¹ reduction of 10⁻⁸ !!

Pencil beam

• Reconstruct γ assuming π^0 decays on the beam axis

Kinematics of $K_L \rightarrow \pi^0 \nu \nu$

Signal reconstruction

- Assume : 2γ come from π^0 on beam axis \rightarrow calculate Z_{ytx}
- Calculate P_t of π^0
- (Z_{vtx}, P_t) defines signal region

E391a results (full sample)

• Z_{vtx} vs $P_T(\pi^0)$ defines good signal box for $\pi^0 vv$

- Single event sensitivity $(1.11 \pm 0.02 \pm 0.10) \times 10^{-8}$
- 0 event remained in the box

Evolution of the upper limit of $K_L \rightarrow \pi^0 v v$

Grossman-Nir bound

PLB 398 (1997) 163

$$\begin{aligned} r_{is} &\times \frac{\Gamma(K_L \to \pi^0 \nu \bar{\nu})}{\Gamma(K^+ \to \pi^+ \nu \bar{\nu})} &= sin^2 \theta \\ & \text{isospin} \\ & \text{breaking} \\ & \text{correction} \quad \frac{BR(K_L \to \pi^0 \nu \bar{\nu})}{BR(K^+ \to \pi^+ \nu \bar{\nu})} < \frac{\tau_{K_L}}{\tau_{K^+}} \times \frac{1}{r_{is}} = 4.371... \simeq 4.4 \\ & BR(K_L \to \pi^0 \nu \bar{\nu}) < 4.4 \times UL_{90\%}(K^+ \to \pi^+ \nu \bar{\nu}) \end{aligned}$$

• Current exp. Bound

$$Br(K^+ \rightarrow \pi^+ \nu \overline{\nu}) = 1.73^{+1.15}_{-1.05} \times 10^{-10}$$
 BNL E949
 $< 3.1 \times 10^{-10} \Rightarrow \text{GN limit } 1.4 \times 10^{-9}$
 $Br(K_L^0 \rightarrow \pi^0 \nu \overline{\nu}) < 2.6 \times 10^{-8}$ KEK E391a Morii et al.,
PRD 81,072004 (2010)
--- current exp. limit is ~20 times larger than GN limit

Evolution of the upper limit of $K_L \rightarrow \pi^0 v v$

Detector upgrade E391a→KOTO

- Csl calorimeter with KTeV crystal
 - ▶ Longer 30cm \rightarrow 50cm (27X₀), Finer granularity 7x7 \rightarrow 2.5x2.5cm²
 - \Rightarrow Better energy and positional resolution
- New Veto and beam hole counters
 - CC with Csl crystal, Charged Veto with thinner scintillator
 - \Rightarrow Suppress halo neutron background

Csl calorimeter

Main Barrel Veto

Charged Veto in front of Csl

Upstream veto counters

Neutron Collar Counter (NCC) newly constructed

Placed inside the FB FB+NCC slid into MB \downarrow

Front Barrel (FB) From E391a re-assembled

Vacuum vessel

Nomura, PIC 2013

Nomura, PIC 2013

calibration signal at the engineering run

calibration signal at the engineering run

1st Physics run

- Scheduled in May June 2013 (25kW)
- Expected to reach the Grossman-Nir limit
- BUT... a radiation accident on May 23 at hadron hall terminated the run at ~1/5 of planned statistics (already equivalent to E391a).
- Analysis of these data is on going.

KOTO milestone

- Dec. 2012 : Engineering run with full detector
- May 2013 : Physics run! ... till the acccident

Reinforce safety measures

• Autumn or winter 2014 : Hope to restart physics run, 10^{-11} and cross the GN limit. 10^{18}

Upgrade barrel Veto

In 3-4 years : reach to SM sensitivity

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ measurement to come

NA62 (CERN)

- "Decay in flight" experiment
- Aims to collect ~100events
- ► CERN NA3I \rightarrow NA48 \rightarrow NA62

(neutral K ε'/ε rare decays \rightarrow K⁺ rare decays)

Construction & engineering run

• ORKA (FNAL)

- Stopped K⁺ experiment using FNAL main injector
- Aims to collect ~1000events
- ▶ BNL E787 \rightarrow E949(record holder) \rightarrow FNAL ORKA
- Scientific approval / R&D on going

NA62 kinematics and BG

NA62 detector

F. Harn @ Kaon 13

 \Rightarrow 4.5 × 10¹² K⁺ decays/year in fiducial region

NA62 K⁺ in, π^+ out PID

NA62 detector Trackers F. Harn @ Kaon 13 7-10 MHz of Muon Rate 750 MHz primary in the Detectors Hadron beam at 75GeV/c 6% are Kaons CEDAR GTK • • C Target **50 MHz** 750 MHz K⁺ rate rate RICH LKr MUV **Decay Region 65m** Straw Tracker For π^+ For π^+ Thin Si pixel detectors Straw tubes $\Delta \theta \sim 0.016$ mrad. Δx ~ I40μm ∆t ~ 200ps

NA62 detector Veto counters F. Harn @ Kaon 13

ORKA kinematics and BG

ORKA detector

ORKA

Sensitivity

- > 210 SM events/year with FNAL main injector
- Improvements over BNL E949
 - ► K beam flux ×10 (improvement of 2ry beam line)
 - Acceptance ×II (PID, DAQ,...)
- 5% measurement in 5 years
 - Statistic + systematic
- Detector R&D on going
 - Leadglass+scint. Cal
 - GEM tracker

Summary

- BSM physics should be studied in the various approach, and rare Kaon decay is a promising research target.
- $K \rightarrow \pi v v$ rare decay experiment has made progress with step by step approach. That will reach the immediate milestone (GN bound) in a year.
- Precision data on the $K \rightarrow \pi v v$ process for a serious test of the SM will be available in 4 ~ 5 years.
 - $K_L \rightarrow \pi^0 \nu \nu$ by KOTO (JPARC)

► K⁺ $\rightarrow \pi^+ \nu \nu$ by NA62 (CERN), ORKA (FNAL)

