Search for double charm production and *T_{cc}* at Belle

Oksu Seon

osseon@hepl.phys.nagoya-u.ac.jp

Nagoya University

Introduction

Exotic hadrons

• Are hadrons all mesons and baryons? - No!

Remained puzzle..

• How can we put the puzzle together? - gather more pieces!

Adapted from S. Olsen's talk

X(3872)

- cc̄ or cc̄uū?
- discovered in 2003 at Belle by
 - $B \to K(J/\psi \pi^+ \pi^-)$ mode
 - (S.-K. Choi, S.Olsen et al. Belle PRL 91, 262001)
- confirmed by many other experiments

Is the X(3872) the conventional ψ_{c2} ?

Is the X(3872) the conventional ψ_{c2} ?

Adapted from T. Browder's talk

Does the $X_{(3872)} \rightarrow \gamma \chi_{c1}$?

 $\begin{array}{c} B \rightarrow KX_{3872} \\ \rightarrow \gamma \chi_{c1}? \end{array}$

(The extra peak at 3823 is the conventional triplet D-wave charmonium state)

No X(3872) signal is seen

$$\frac{BF(\psi_{c2} \to \gamma \chi_{c1})}{BF(\psi_{c2} \to \pi^+ \pi^- J/\psi)} < 0.25$$

V. Bhardwaj et al. (Belle) PRL 111, 032001 (2013)

Adapted from T. Browder's talk

Adapted from T. Browder's talk

Is the X(3872) the convenstional ψ_{c2} ?

D⁰-D^{*0} "molecule"

$Z_b(10610)^{\pm} \& Z_b(10650)^{\pm}$

" Υ (5S)" more interesting than other Υ states

Exotic resonance Y_b near Y(5S) analogue of Y(4260) resonance !

Belle found twin charged states $Z_b(10610)^+$ and $Z_b(10650)^+$ having masses just above B*B and B*B* thresholds. Belle, PRL108, 122001 (2012)

Adapted from V. Bhardwaj's talk

Oksu Seon (Nagoya Univ)

$Z_b(10610)^{\pm} \& Z_b(10650)^{\pm}$

Adapted from V. Bhardwaj's talk

$Z_b(10610)^{\pm} \& Z_b(10650)^{\pm}$

Adapted from V. Bhardwaj's talk

Oksu Seon (Nagoya Univ)

$T^+_{cc}(cc\bar{u}\bar{d})$

- $T_{cc}(1^+)$
- Clearly not a meson, must contains 4 quarks!

Which configuration?

• expected to be a bound state: B.E. \approx 71MeV [1]

$$H_{\rm int} = C_{\rm H} \sum_{i < j} s_i \cdot s_j \frac{1}{m_i m_j}, \qquad C_{\rm H} = v_0 \vec{\lambda_i} \cdot \vec{\lambda_j} \langle \delta(r_{ij}) \rangle$$

[1] http://arxiv.org/abs/1209.6207v1

$T_{cc}(cc\bar{u}\bar{d})$ production in e^+e^- collider

Two configurations,

• $\sigma(T_{cc}) = O(0) \sim O(2)$ fb at Belle depends on $P_{T_{cc}}$ and θ [1] • U.L (σ) \leq 129 fb for $T_{cc}^1[\bar{3}_c]$ and 43 for $T_{cc}^1[6_c]$

[1] http://arxiv.org/abs/1209.6207v1

how to search T_{cc} at Belle

• Decay channels depends on *T_{cc}* mass [1]

Decays of T_{cc}

Recoil side

[1] Lee, Su Houng, Shigehiro Yasui, Wei Liu, and Che Ming Ko. Eur. Phys. J. C, 54 (2008): 259-265.

Belle experiment

KEKB

- e^+e^- collider of 10.58 GeV (CM) for $\Upsilon(4S)$ resonance
- Asymmetric energy: 8 GeV (e⁻) and 3.5 GeV (e⁺)
- World's highest luminosity of $\mathcal{L} = 2.11 \times 10^{34} cm^2 s^1$ (2009).

Integrated luminosity

• Data taking ended in 2010, and was reprocessed with better tracking by 2011.

Belle detector

Belle collaboration

~400 members, 67 institutes, 16 countries

T_{cc} analysis

Belle data types

- $B\overline{B}$, $\Upsilon(4S)$ resonance : 711 fb⁻¹
- $\bullet\,$ off-resonance (continuum) no $B\bar{B}$ combination : ~100 fb^{-1}
- other $\Upsilon(nS)$ resonances $\sim 150~fb^{-1}$

MC type

- Background MC according to sources of data
 - $B\overline{B}$, $\Upsilon(4S)$, resonance : only using 56 fb⁻¹
 - continuum
 - other Υ(nS) resonances
- and signal MC
 - $e^+e^-
 ightarrow \gamma^*
 ightarrow$?
 - Check from the highest mass range : higher than D*D threshold
 - Simplify the model : recoil side decays to $\bar{D}^0 D^-$

•
$$e^+e^- \rightarrow \gamma^* \rightarrow T^+_{cc}(T^+_{cc} \rightarrow D^{*0}D^+)\bar{D}^0D^-$$

where $D^{*0} \rightarrow D^0\pi^+$, $D^0 \rightarrow K^-\pi^+$, and $D^+ \rightarrow K^-\pi^+\pi^+$

Recoil mass

Using two charmed mesons, we calculate

$$M_{
m recoil} = \sqrt{(P_{beam} - P_{D^0} - P_{D^-})^2}$$

- Background sources :
 - mostly random combinations
 - possible peaking background from $e^+e^- \to B\bar{B} \colon B\bar{B}$ mixing could make peak
 - The problem is high background level \rightarrow hard to see the signal

•
$$N_{\text{sig}} = \epsilon \times \mathcal{L} \times \sigma(T_{cc}) \times \mathcal{B}(D^0) \times \mathcal{B}(D^+)$$

Background suppression

- Signal has 4D production (M_{4D} ~ 8 GeV): spherical event shape
- $e^+e^-
 ightarrow qar{q}$: jet-like
- R2 : event shape parameter in range of (0,1) R2 = H_2/H_0 where $H_I = \sum_{i,j} \frac{|p_i||p_j|}{E_{ij}^2} P_I(\cos \theta_{ij})$

Recoil mass study

Background suppression - Con't

- Figure of merit = $N_{sig}/\sqrt{N_{bkg}}$ where $N_{sig} = \varepsilon \times \mathcal{L} \times \sigma(T_{cc}) \times \mathcal{B}(D^0) \times \mathcal{B}(D^+)$
- Maximum value at $R2 < 0.14 \& P_{DD}^* > 1.6$
- Ignore cut on P^{*}_{DD}

FOM (= eff x Lum x 100 (fb) x Σ BR(D) / $\sqrt{N_{bko}}$)

0.5

0.3

20

Events / 10.0 (MeV/c²)

Invariant mass

• T_{cc} is reconstructed by $D^{*0}(
ightarrow D^0\pi^0)D^+$

•
$$M_{T_{cc}} = \sqrt{(E_{D^{*0}} + E_{D^+})^2 - |\vec{P}_{D^{*0}} + \vec{P}_{D^+}|^2}$$

- background sources :
 - mostly random combinations
 - possible peaking background from $e^+e^- \rightarrow B\bar{B} \colon B\bar{B}$ mixing could make peak
 - The problem is high background level \rightarrow hard D^{*0} to see the signal

Background suppression

- Signal has 4D production (M_{4D} ~ 8 GeV): spherical event shape
- $e^+e^-
 ightarrow q\bar{q}$: jet-like
- R2 : event shape parameter in range of (0,1) R2 : $|P_i||P_i| = 0$ (2000)

$$R2=H_2/H_0$$
 where $H_l=\Sigma_{i,j}rac{|\mathcal{D}_l||\mathcal{D}_j|}{\mathrm{E}^2_{\mathrm{vis}}}P_l(\cos heta_{ij})$

*P*_{T_{cc}} : momentum of *D***D* system in *e*⁺*e*⁻
 CM frame

Background suppression - Con't

- Figure of merit = N_{sig}/N_{bkg} where $N_{sig} = \epsilon \times \mathcal{L} \times \sigma(T_{cc}) \times \mathcal{B}(D^0) \times \mathcal{B}(D^+)$
- Maximum value at R2 < 0.32 & P^{*}_{DD} > 3.0
- Too aggressive cut, but if we follow,

Momentum distribution of T_{cc}

- Cross-section of *T_{cc}* depends on it's momentum [1]
- If we can separate it's distribution, we could know it's configuration

- Also momentum is used to suppress background event, previously,
- We our signal MC is made by phase space model can we believe this?

[1] http://arxiv.org/abs/1209.6207v1

Pausing T_{cc} study

• What if we add additional π on our signal MC?

- Strongly depends on recoil side final states.
- T_{cc} from $cc\bar{c}\bar{c}$ production \Rightarrow check general $cc\bar{c}\bar{c}$ momentum distribution - are many π generated?
- $\sigma(cc\bar{c}\bar{c})$ will give us a guideline for T_{cc} study, too.

Double charm production study

Double charmonium production

- Belle and BABAR studied $J/\psi + c\bar{c}$ and $J/\psi + H_c$ channels.
- Measured σ is contrary to the non-relativistic QCD and perturbative QCD predictions.
- Predictions:
 - $\sigma(e^+e^- \rightarrow J/\psi c \overline{c}) \sim 0.1 pb$ [1]
 - $\sigma(e^+e^- \rightarrow J/\psi c \bar{c})/\sigma(e^+e^- \rightarrow J/\psi g g) \sim 10\%$ [2]
 - NLO corrections of $\sigma(e^+e^- \,{\rightarrow}\, J/\psi gg) \approx 0.5$ pb [3]
- Experiments:
 - BaBar (2005) :

 $\sigma(J/\psi c\bar{c}) \sim 0.44$ pb where

- $c\overline{c} = \eta_c(1S)$, χ_{c0} and $\eta_c(2S)$
- Belle (2009) :

$$\sigma(J/\psi c ar c) = 0.74 \pm 0.08 \ ^{+0.09}_{-0.08} \ {
m pb}$$

[1] V. V. Kiselev, A. K. Likhoded, and M. V. Shevlyagin, Phys. Lett. B 332, 411 (1994)

- [2] Berezhnoy, A V, and A K Likhoded. Phys. Atom. Nucl. 70 (2007): 478-484.
- [3] Y.-Q. Ma, Y.-J. Zhang, and K.-T. Chao, arXiv:0812.5106.

Double charm production

- No result from B factory
- LHCb, pp collider, reported in 2012
 - $J/\psi + H_c$ and double open charmed hadron (DD) production.
- $\sigma(J/\psi + H_c)$ and $\sigma(DD) \sim$ calculation based on Double Parton Scattering (DPS)
 - $\sigma(J/\psi D^0) = 161.0 \pm 3.7 \pm 12.2$ nb (146 nb)
 - $\sigma(D^0D^+) = 690 \pm 40 \pm 70$ nb (2.0 μ b)

 $J/\psi h_c$: a) $J/\psi D^0$, b) $J/\psi D^+$, c) $J/\psi D^+_s$ and $J/\psi \Lambda_c^+$

DD: a) D^0D^0 , b) D^0D^+ , c) $D^0D^+_s$ and d) $D^0\Lambda_c^+$

How to search the double charm production at Belle

- Open charm decay: 4 D mesons
- E ~ 10.58 GeV (CM): enough energy to generate 4 D mesons
- $\sigma(e^+e^- \rightarrow c\bar{c}c\bar{c}) = 372$ fb at $\sqrt{s} = 10.6$ GeV
- $\sigma(J/\psi c \bar{c}) = 0.74 \pm 0.08 \ ^{+0.09}_{-0.08}$ pb, Belle(2009)
- Goal : To get the cross-section and the momentum distribution of 4 open charm decay at Belle

МС Туре

Background MC according to sources of data

- $B\overline{B}$, $\Upsilon(4S)$, resonance
- continuum : only using 89 fb⁻¹ (collected at $\sqrt{s} = 10.52$ GeV), to avoid $B\bar{B}$ mixing background come into.
- other Υ(nS) resonances
- and signal MC
 - $e^+e^-
 ightarrow \gamma^*
 ightarrow$ final states including Ds
 - Simplest final state: $D^0D^+\bar{D}^0D^-$, $D^0 \to K\pi$, $D^+ \to K\pi\pi$ and $\bar{D}^0\&D^-$ decay generically

Sources of peaking background

- Doubly Cabibbo suppressed (DCS) events Cabibbo favored modes $\mathcal{B}(D^0 \to \overline{K^-\pi^+}) = 3.88 \times 10^{-2} \text{ and } \mathcal{B}(D^+ \to \overline{K^-\pi^+\pi^+}) = 9.13 \times 10^{-2}$ Cabibbo suppressed modes $\mathcal{B}(D^0 \to \overline{K^+\pi^-}) = 1.47 \times 10^{-4} \text{ and } \mathcal{B}(D^+ \to \overline{K^+\pi^-\pi^-}) = 5.27 \times 10^{-4}$
- $B\overline{B}$ mixing with various $B \rightarrow D$ and $B \rightarrow \overline{D}$ decays

2D fitting

- Extract yield, $N_{D^0D^+}$, by two-dimensional binned maximum-likelihood fits on M_{D^0} and M_{D^+} plane.
- 2 Gaussian function for signal shape (S_{D^0} and S_{D^+})
- 1^{st} order polynomial function for background shape (\mathcal{B}_{D^0} and \mathcal{B}_{D^0}).
- four components, D^0D^+ event $(S_{D^0} \times S_{D^+})$, D^0 with fake D^+ $(S_{D^0} \times B_{D^+})$, D^+ with fake D^0 $(B_{D^0} \times S_{D^+})$, and random background events $(B_{D^0} \times B_{D^+})$.

signal MC

2D fitting - Con't

- Peaking background event is enough large compare to signal
- We are plaining to extract N_{peaking} from the data
- Aware that MC need to be scaled through control sample study

Cross-section of double charm production and interpretation

type of bkg MC	<i>N_{D⁰D⁺}</i>	
including peaking bkg	24.8	\pm 113.1
peaking bkg only	62.4	\pm 14.1
double charm event in MC	-37.6	\pm 114.0

$$\begin{split} N_{D^0D^+} &= \mathcal{L} \times \sigma(e^+e^- \to cc + X) \times \sigma(e^+e^- \to DD + X) / \sigma(e^+e^- \to cc + X) \\ &\times \epsilon_{\text{sig}} \times \mathcal{B}(D^0 \to K^-\pi^+) \times \mathcal{B}(D^+ \to K^-\pi^+\pi^+) \\ &= 89.1 \text{fb}^{-1} \times \sigma(e^+e^- \to cc + X) \times 6/16[1] \\ &\times 0.199507 \times 0.0388 \times 0.0913. \end{split}$$

If we have ~340 of $N_{D^0D^+}$ (~ 3× of $N_{D^0D^+}$ error using background MC in Table), we can estimate $\sigma(e^+e^- \rightarrow cc + X)$ 13 pb which are equivalent to 3σ of significancy.

[1] Daekyoung Kang et al., Phys. Rev. D 71, 071501 (2005)

Summay

- T_{cc} study ($e^+e^- \rightarrow T_{cc}\bar{D}\bar{D}$)
 - both M_{Rec} and $M_{T_{cc}}$ distribution checked
 - Too low signal = Too high background level
 - Need to improve background suppression or signal extraction method
 - Is P^* can be used to suppress background? \rightarrow 4 open charm decay
- 4 open charm decay ($e^+e^- \rightarrow DD\bar{D}\bar{D}$)
 - To get momentum distribution of double charm decay through 4 open charm final state
 - and cross-section of itself
 - $\bullet~$ Using 89 ${\rm fb}^{-1}~$ MC of off-resonance, 99% upper limit is higher than theoretical expectation
- Presently,
 - both study have difficulties to suppress background events
 - \rightarrow we are searching for a way to control background
 - and signal efficiency is also not good
 - \rightarrow for this we will add more channels and do simultaneous fitting
 - Using more data also can improve result: $\sim 1 \text{ ab}^{-1}$ data stored in Belle.