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apologies

o freely taking from other people’s lecture slides, w/o properly
citing the references

® just a rough list (from which I composed this lecture) is given
< not paying attention to any mathematical rigor at all

< moreover, it will be simply impossible to cover “everything”
within 70 minutes...

® 5o, [ end up covering just a little fraction of the story...
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< Basic elements
® some vocabulary
® Probability axioms
® some probability distributions
< Two approaches: Freq. vs. Bayesian
< Hypothesis testing
o Parameter estimation

 Others




Basic elements




some vocabulary

~ random variables, PDF, CDF

o expectation values

< mean, median, mode

 standard deviation, variance, covariance matrix

« correlation coefficients




Random variables and probability density functions

A random variable 1s a numerical characteristic assigned to an
clement of the sample space; can be discrete or continuous.

Suppose outcome of experiment 1s continuous value X
P(x found in [z, 2z + dx]) = f(x) dx
—> f(x) = probability density function (pdf) PDF

/ - f(zx)dr =1 Xmust be somewhere
— OO

Or for discrete outcome X;with e.g. /=1, 2, ... we have
P(x;) = p; probability mass function

Y P(z;) =1 Xmust take on one of its possible values
)

Statistical Methods in Particle Physics



Cumulative distribution function CDF

Probability to have outcome less than or equal to X 1s

X
/ f(z) dz' = F(x) cumulative distribution function
O

PDF

OF (x)
ox

Alternatively define pdf with f(x) =

Statistical Methods in Particle Physics



exp/est/test u,o estimators Hpy, H; gof

Expectation: operator on ™ of a random variable

discrete case: weighting by the probability

E(g) =) P(X)-g(X)
Q2

continuous case: integrating with p.d.f. as a weight

E(g) = /Q aX (X)g(X)

linear operator:

Ela-g(X)+ b-h(X)] = a- E[g(X)] + b- E[h(X)]

We will rely on the linearity in what follows.

Bruce Yabsley Statistics for Belle: Tools and techniques



exp/est/test u,o estimators Hpy, H; gof

Expectations: mean, variance, covariance ...

mean or expected value for the p.d.f. or density f(X):

=X =(X) :/Qde(X)X = F(X)

variance for the p.d.f. (doesn't always exist!):

o’ = V(X) = E[(X — u)?]
= E :Xz — 2,uX—|—,u2}
= E(X?) — 1%, which is more often written
= E(X?) — [E(X)]’

= [ 400 FEO(X = 7

Note the mean and variance are specific to the density f(X).
X itself is a random variable: what we focus on,
and think of as the underlying-true-situation, is f(X)

Bruce Yabsley Statistics for Belle: Tools and techniques



sample mean & sample variance

e n measurements {x;} where x; follows N(u, o)

e sample mean

= %Z <f>

With more measurements, the estimation of the mean will become more
accurate.

sample variance

Sample variance approaches o for large n.




exp/est/test u,o estimators Hpy, H; gof

Expectations: mean, variance, covariance ...

in multiple dimensions,

E[g(X, V)] = / /Q 4(X)A(Y) F(X, Y)g(X, Y)

the mean is as before,

ux = E(X) = / /Q AX)A(Y) (X, Y)X

likewise the variance,

& = E[(X=uP] = [ [ d00d() FOX V)X = )7
can now define the covariance,

cov(X,Y)=E[(X — ux)(Y — uy)]
= E(XY)— E(X)E(Y)

Bruce Yabsley Statistics for Belle: Tools and techniques



exp/est/test u,o estimators Hpy, H; gof

Expectations: mean, variance, covariance ...

more intuitive is the correlation coefficient given by

cov(X,Y)

X.Y) =
p(X,Y) ppp

» This is bounded by one: —1 < p(X, Y) < +1

» For independent variables X, Y: p(X,Y) =0

» But p(X,Y) =0 # X,Y independent (e.g. Y = X? case);
remember independence is very difficult to arrange

We have said nothing about Gaussians so far;

we have said nothing about minimization so far
— it is a property of a particular density f(X, Y)
if the density is straightforward (unlike Y = X2 I1)
there are great simplifications . ..

Bruce Yabsley Statistics for Belle: Tools and techniques



exp/est/test u,o estimators Hpy, H; gof

Expectations: covariance ... and fitting

> if f(X1, X2, X3, ...) is a multidimensional Gaussian,
then cov(X;, X;) gives the tilt of the ellipsoid in (Xj, X;)

» for N — oo, ML or Welghted least- -squares fits return
parameter estimates 6 = (6’1, b, O3, . ..) distributed as a
Gaussian about the true values 6 underlying the data
— frequentist interp”: whole expt is a single random throw

> the covariances cov(6;, §;) form the covariance matrix
or error matrix; the fitter estimates it
» HESSE: from the second derivatives at (6;, 6;)
» MINOS: from the shape of —2In L about the minimum

0;

B 2 COV(@,‘, éj)
2 2
O-j — Oi 61‘

20ij0i0;

2 D
of — 0;
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Correlation (cont.)
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Error propagation on f(x,y)

g2 — ﬁ g Vaz  Vay of/0x )
/ Oz Oy Ve Vyy 0f/0y
(Q) What if x and y are independent?

(HW) Obtain the error on f (x,y) =C x y




Statistics & Probability

Statistics is largely the inverse problem of probability.

e Probability:

Know parameters of the theory = predict distributions of possible
experimental outcomes

e Statistics:

Know the outcome of an experiment = extract information about the
parameters and/or the theory

- Probability is the easier of the two — more straightforward.
- Statistics is what we need as HEP analysts.

- In HEP, the statistics issues often get very complex because we know so much
about our data and need to incorporate all of what we find.

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013



Probability Axioms

Consider a set S with subsets 4, B, ...

For all AC S,P(A) >0
P(S)=1

If ANB=0,P(AUB) = P(A) 4+ P(B)

Also define tio rail:

P(A|B) =

P(AN B)

P(B)

C e
D, =
™ -

Kol

ogorov (1933)




probability basic prob L /KID Bayesian prob

Probability: P(A|B) # P(B|A)

An extreme (and personal) case:

» () : all people

Bruce Yabsley Statistics for Belle: Fundamentals



probability basic prob

Probability: P(A|B) # P(B|A)

An extreme (and personal) case:
» () : all people
» P(woman) = 50%

Bruce Yabsley Statistics for Belle: Fundamentals



probability basic prob

Probability: P(A|B) # P(B|A)

An extreme (and personal) case:
» () : all people
» P(woman) = 50%

» P(pregnant | woman) = 3%

Bruce Yabsley Statistics for Belle: Fundamentals



probability basic prob L /KID Bayesian prob

Probability: P(A|B) # P(B|A)

An extreme (and personal) case:
Q2 : all people
P(woman) = 50%
P(pregnant | woman) = 3%
P(pregnant) = 1.5%

Bruce Yabsley Statistics for Belle: Fundamentals



probability basic prob L /KID Bayesian prob

Probability: P(A|B) # P(B|A)

I An extreme (and personal) case:

» () : all people

» P(woman) = 50%

» P(pregnant | woman) = 3%

» P(pregnant) = 1.5%

» P(woman | pregnant) = 100%

Bruce Yabsley Statistics for Belle: Fundamentals



Iwo approaches

< Relative frequency Frequentist

A, B, ... are outcomes of a repeatable experiment

times outcome is A

P(A) = Iim

N— 00 n

< Subjective probability Bayesian
A, B, ... are hypotheses (statements that are true or false)
P(A) = degree of belief that A is true

Frequentist approach is, in general, easy to understand, but
some HEP phenomena are best expressed by subjective prob.,
e.g. systematic uncertainties, prob(Higgs boson exists), ...




Measurement with errors

o Let’s say we are doing a single measurement

,CC:CL::b

< Frequentist interpretation

® Repeating the measurement many times under identical
conditions (“ensemble”), in 68.3% of those results, the true value
of x will lie betweena -b and a + b

< Result of each measurement is a sampling from a Gaussian
distribution with mean pu and width o

® We may not know u

® We have some idea about o -- experimental sensitivity




some useful distributions




Distribution

Probability density function

f (variable; parameters)

Characteristic

function ¢(u) Mean

Variance o2

Uniform

Qe

1/(b—a)

0 otherwise

f(w;a,b)'{

eibu___eiau gy
(b—a)iu 9

(b~ a)’
st

Binomial

(Q+p€iu)N Np

Npq

Poisson

Normal
(Gaussian)

exp(ipuu — %02u2)

Multivariate
(Gaussian

—00 < I; < 00

flx; p, V) =

 (2m)n/2/[V]
xexp [~3 (@ — )V (@~ p)]
B R s 00,

V| >0

exp [ipt-u — gu’ Vul

Zn/2—16—z/2

R G )

f(z;n) =

)




Binomial distribution

< Given a repeated set of N trials, each of which has probability p of
“success” (hence 1-p of “failure”), what is the distribution of the
number of successes if the N trials are repeated over and over?

N

Binom(k | N, p) = (?) “1-p)'", o(k)=~/Var(k) = [Np(1- p)

where k is the number of success trials
® (Ex) events passing a selection cut, with a fixed total N




Poisson distribution

e Limit of Binomial when N — oo and p — 0 with Np = u being finite and
fixed = Poisson distribution

k 0,16 T

—u
Poiss(k | 1) = & k"" ok)=~u

0,08 +

Normalized to EPoiss(k lw=1 Vu 006 1
unit area in k=0

two different senses f: Poiss(k lu)du=1 Vk - J

0,00

0,04 +

0 2 4 6 8 101214 16 13 20 22 24

All counting results in HEP are assumed to be Poisson-distributed

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013



Gaussian (Normal) distribution

1
o\ 2T

exp(—(x — p)*/20%)

Al 1
G
/_Oof(w) o=

o) =

o fb—~——1 " [ °
=0, 02=0.2, == _| [ |H=0, 0%=0.2, =—
=0, 07?210, w— L (=0, 0%=1.0, w—
=0, 0250, =" 08— p=0, 0%=5.0, —
=-2, 02=0.5, = |




Gaussian (Normal) distribution

f(x; u,0)

TMath: : Prob (02,1)

Q ) Q )
0.3173 lo 0.2 1.280
4.55 x1072 20 0.1 1.640
T s 30 0.05 1.960
6.3x107° 4o 0.01 2.58¢0
Sl 50 0.001 3.290
(x-w)/o 2.0x107° 60 == 3.890

Table 36.1: Area of the tails a outside 4+0 from the mean of a Gaussian
distribution.




Poisson for large u is approximately Gaussian of width 0 = /1

A=16.0

If in a counting experiment all
we have is a measurement 711, we
often use this to estimate u.

We then draw V7error bars on
the data.

This is just a convention, and
can be misleading.

(It is still recommended you do
it, however.)

4 6 & 10 12 14 16 18 20 22 24 26 28




Not all Distributions are Gaussian

| do from light quark jets (other taus in evts with taus matching MC) I jet do

"Entries 11988
L L L LN LN L BLELEL N BLELELELE BLELEL Mean 0.006378
3 RMS 0.01347

Track impact 10 Underflow :

Overflow 558
Integral 1.143e+04
parameter . .
. , Core is approximately
distribution Gaussian
core: Gaussian;

for example
rare large scatters; III,,, EE

heavy ﬂaVOI‘, 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Multiple
scattering --

nuclear interactions,
decays (taus In
this example)

“All models are false. Some
models are useful.”

Statistics/Thomas R. Junk/TSI July 2009



Chi-square (?) distribution

The chi-square pdf for the continuous r.v. Z (2> 0) 1s defined by

1
: _ n/2—1_—z/2
f(zin) 2n/2r(n/2)z y

n=1, 2, ...= number of ‘degrees of
freedom’ (dof)

Flzl=n, V][z] =2n.

5

For independent Gaussian X, /=1, ..., /1, means /i, variances o;

n )2
z= > (23 02/%) follows »? pdf with 77 dof.
i=1 i
Example: goodness-of-fit test variable especially in conjunction
with method of least squares.

G. Cowan Statistical Methods in Particle Physics




Cauchy (Breit-Wigner) distribution

The Breit-Wigner pdf for the continuous r.v. X1s defined by

1 /2
7T|_2/4—|— (x — :L‘o)2

f(z; T, z0) =

(I' =2, X, = 0 1s the Cauchy pdf.)

E[X] not well defined, [X] —oo.

X, = mode (most probable value)

I" = full width at half maximum

Example: mass of resonance particle, e.g. p, K, ¢°, ...

I' = decay rate (inverse of mean lifetime)

Statistical Methods in Particle Physics



[_andau distribution

For a charged particle with = V/¢ traversing a layer of matter
of thickness @, the energy loss A follows the Landau pdf:

P 8) = Z(\) .
§ B R
d(N) = 1/00 exp(—ulnu — Au) sin Trudu

7T JO

—~ d -
= Has(ngrrne)]. "

. 27Npe*2?p> 7 d , 12 exp 32

, € = :
mec? S A (32 2mec?232~2

3

L. Landau, J. Phys. USSR 8 (1944) 201; see also
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253.

G. Cowan Statistical Methods in Particle Physics




Landau distribution (2)

Long ‘Landau tail’

— all moments oo

Mode (most probable
value) sensitive to £,

— particle 1.d.

Statistical Methods in Particle Physics



some theorems, laws...




the Law of Large Numbers

e Suppose you have a sequence of indep’t random variables x;

with the same mean u

and variances o7

but otherwise distributed “however”
the variances are not too large

N— oo

N
lim (1/N*)) o7 =0
=1

Then the average Xy = (1/N) > . x; converges to the true mean p

e (Note) What if the condition (1) is finite but non-zero?

= the convergence is “almost certain” (i.e. the failures have measure zero)

In short, if you try many times, eventually you get the true mean!

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013



the Central Limit Theorem

e Suppose you have a sequence of indep’t random variables x;

- with means y; and variances o7
- but otherwise distributed “however”
- and under certain conditions on the variances

The sum S = ) . x; converges to a Gaussian

lim 52", Ar(0.1)

N— o0 Z 0_12

e (Note) important not to confuse LLN with CLT

- LLN: with enough samples, the average — the true mean
- CLT: if you put enough random numbers into your processor, the
distribution of their average — N (0, 1)

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013



an example of the CLT at work

15000 [~

I

}

10000

2000

-
I
d

0

Q llllllllllllll

lll'lllllllllllllllllll—

H R TN NN

'—lll]llllllllllllll
- h=10

lIlIlllIl
I O B N

Statistics/Thomas R. Junk/TSI July 2009




the Neyman-Pearson LLemma

< We will explain it later when we discuss the “critical region” ...

Particle identification with the atc_pid class is based on the likelihood of the detector
response being due to an hypothesized signal particle species, compared to the likelihood

for an assumed background particle species. This is expressed as a likelihood ratio

o P, _ pdE/dz TOF ACC
Prob(z:j):B+Pj PZ—Pz XPi XPi

where P is the particle-ID likelihood calculated for the signal particle species and P for
the background particle species; ¢ and j can be any of five particle species, e, u, 7, K and

p. Clearly Prob(i : j) is distributed on the interval [0, 1], and we usually think of it as

I

Exp5 data
O (TOF) = 100ps
P<1.25GeV/c

1.2
Mass(Gev)

0

- 0.5 1
log,,( p (GeV/c))




the Wilk’s theorem

Y We will explain it later when we discuss the “likelihood ratio” ...




the Neyman-Pearson LLemma

& We will explain it later when we discuss the “critical region” ...




Hypothesis lesting




Remember? Consider a set S with subsets 4, B, ...

TWO approaches Forall AC S,P(A) >0

P(S) = 1
If ANB=0,P(AUB) = P(A) + P(B)

< Relative frequency

A, B, ... are outcomes of a repeatable experiment Frequentist

P(A) — Iim times outcome is A

n—ao n

< Subjective probability

A, B, ... are hypotheses (statements that are true or false)  Bayesian

P(A) = degree of belief that A is true

Frequentist approach is, in general, easy to understand, but
some HEP phenomena are best expressed by subjective prob.,
e.g. systematic uncertainties, prob(Higgs boson exists), ...




probability basic prob £ /KID Bayesian prob

Bayesian and Frequentist Statistics

What is a Probability?

Frequentists Bayesians

P(A) = long run relative P(A[B) = Real number measure

frequency of A occurring in of the plausibility of proposition

identical repeats of an A, given (conditional upon) the
observation truth of proposition B.

wpm . . P measures degree of belief.
A” is restricted to propositions

. fp»P .
about random variables A” can be any logical

RIP B%Sti)ggnities are conditional;

we must be explicit what our
assumptions B are (no such thing

as an absolute probability!) g

Bruce Yabsley Statistics for Belle: Fundamentals



Bayes’ theorem

< From the definition of conditional prob., we have

P(ANB) P(BNA)
P(B) P(A)

*bup(ANB)=P(BNA)

® therefore,

P(A|B) =

P(A|B) =

and P(B|A) =

P(B|A) P(A)
12 (B ) -
® First published (posthumous) by Ref. Thomas Bayes (T7-62—1 %T)

An essay towards solving a problem in the doctrine of chances,
Phil. Trans. R. Soc. 53 (1763) 370.




probability basic prob £ /KID Bayesian prob

Bayesian probability: tossing a coin

>

suppose | stand to win or lose money in a game of chance
my companion gives me a coin to use in the game
do | trust the coin?
what is P(fair coin)?
frequentist answer:

» toss the coin n times

» P(heads) = lim, ., ny/n

» make a complicated statement about the results, which is

only indirectly about whether the coin is fair (see Lec.2 ...)

but | can only test the coin with five throws:

» | get 4H, 1T

» do | trust the coin?

frequentist answer based on these 5 trials: not much info
Bayesian answer depends on your prior belief . ..

assume for illustration that a bad coin has P(heads) = 0.75;;&33

a proper analysis would involve integrating over priors, etc.

Bruce Yabsley Statistics for Belle: Fundamentals



probability basic prob £ /KID Bayesian prob

Bayesian probability: interpreting the coin tosses

Likelihoods:

P((4H,1T) | fair) = 0.1563
P((4H,1T) | bad) = 0.3955

Priors:

P(fair | BG) = 0.95
P(bad | BG) = 0.05

Posterior:

P((4H,1T) | fair) - P(fair | BG)

Zi P((4H,1T) | i) - P(i | BG)
0.1563 - 0.95

0.1563 - 0.95 4 0.3955 - 0.05
= 0.882

P(fair | (4H,1T), BG) =

Bruce Yabsley Statistics for Belle: Fundamentals



probability basic prob £ /KID Bayesian prob

Bayesian probability: interpreting the coin tosses

Likelihoods:

P((4H,1T) | fair) = 0.1563
P((4H,1T) | bad) = 0.3955

Priors:

P(fair | DG) = 0.50
P(bad | DG) = 0.50

Posterior:

P((4H,1T) | fair) - P(fair | DG)

Zi P((4H,1T) | i) - P(i | DG)
0.1563 - 0.50

0.1563 - 0.50 4- 0.3955 - 0.50
= 0.233

P(fair | (4H,1T), BG) =

Bruce Yabsley Statistics for Belle: Fundamentals



probability basic prob £ /KID Bayesian prob

Bayesian probability: interpreting the coin tosses
Likelihoods:

P((8H,2T) | fair) = 0.04395
P((8H,2T) | bad) = 0.28157

Priors:

P(fair | DG) = 0.50
P(bad | DG) = 0.50

Posterior:

P((8H,2T) | fair) - P(fair | DG)
> . P((BH,2T) | i)- P(i | DG)
0.04395 - 0.50

P(fair | (8H,2T), BG) =

0.04395 - 0.50 + 0.281565 - 0.50
= 0.135 <

Bruce Yabsley Statistics for Belle: Fundamentals



probability

basic prob £ /KID Bayesian prob

Bayesian probability: interpreting the coin tosses

Likelihoods:

P((8H,2T) | fair) = 0.04395
P((8H,2T) | bad) = 0.28157

Priors:

P(fair
P(bad

Posterior:

P(fair | (8H,2T), BG) =

BG) = 0.95
BG) = 0.05

P((8H,2T) | fair) - P(fair | BG)

> . P((8H,2T) | i) - P(i | BG)

0.04395 - 0.95

0.04395 - 0.95
= 0.748

0.281565 - 0.05 __

Bruce Yabsley Statistics for Belle: Fundamentals



Frequentist statistics — general philosophy

e In frequentist statistics, probabilities such as
P(Higgs boson exists)

P(0.117 < a5 < 0.121)
are either O or 1, but we don’t have the answer

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013



Bayesian statistics — general philosophy

e In Bayesian statistics, interpretation of probability is extended to the degree
of belief (i.e. subjective).

e suitable for hypothesis testing (but no golden rule for priors)

probability of the data assuming | o
hypothesis /7 (the likelihood) _ prior probability, L.e.,

before seeing the data
P(z|H)m(H)

[ P(Z|H)x(H) dH

P(H|Z) =
/

posterior probability, 1.e., \ normalization involves sum
atter seeing the data over all possible hypotheses

e can also provide more natural handling of non-repeatable things:
e.g. systematic uncertainties, P(Higgs boson exists)

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013



Hypothesis testing

A hypothesis H specifies the probability for the data
(shown symbolically as x here),
often expressed as a function f(X|H)

The measured data x could be anything:

* observation of a single particle, a single event, or an entire experiment
* uni-/multi-variate, continuous or discrete

the two kinds:

* simple (or “point”) hypothesis — f(xX|H) is completely specified
* composite hypothesis — H contains unspecified parameter(s)

The probability for X given H is also called the likelihood of the hypothesis,
written as L(X|H)

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013



Hypothesis test

Consider e.g. a simple hypothesis Hy and an
alternative H;

A (frequentist) test of Hy:
Specify a critical region w of the data space €2 such

that, assuming Hj is correct, there is no more than
some (small) probability o to observe data in w

P()? ~ W‘Ho) < o

a: “size” or “significance level” of the test

If X is observed within w, we reject Hy with a
confidence level 1 — «

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis

Feb.19, 2013

data space Q)

critical region



Hypothesis test

e In general, 9 an oo number of possible critical regions that give the same
significance level o

e Usually, we place the critical region where there is a low probability « for
X € w if Hy is true, but high if the alternative (H;) is true

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013



Test statistic

e The boundary surface of the critical region
for an n-dim. data space can be defined by

an equation of the form: o
accept Hy «iie reject H,

t(Xl, T 7xn) = [,

where t(x1,--- ,Xx,) is a scalar test statistic.

For the test statistic t, we can work out the
PDFs g(t|Hy), g(t|H1), etc.

Decision boundary is now given by a signle
‘cut’ on t, thus defining the critical region

= for an n-dim. data space, the problem is
reduced to a 1-dim. problem

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013



lype-1, Type-lI errors

e Rejecting Hy when it is true is called the Type-I error

(Q) Given the significance « of the test, what is the maximum probability of
Type-I error?

e We might also accept Hy when it is indeed false, and an alternative H; is true.
This is called the Type-II error

The probability 3 of Type-II error:

P(X¥cQ—wlH;) =3

1 — 3 is called the power of the test with respect to H;

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013



Hypothesis Testing (“fixed level testing”)

Suppose we have an explicit alternative hypothesis H_(another statement about

the model) which we may adopt if we have reason to reject H .

Two possible errors (Neyman-Pearson hypothesis testing):

H_ chosen H, chosen

H_ true Correct decision, Type | error,
Prob = 1-a Prob = a

H. true Type Il error, Correct decision,
Prob = [3 Prob = 1-f3

Optimal decision: minimize (3 for given a

» The size of the test is Pr (Y € R )=a.

» The power of the testis Pr (Y € R )=1-(.

P(M)

b

from an FAPPS09 Lecture by S. T Jampens

10
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exercise on Type-I, II errors

Since B — K™~ has much higher branching fraction than B — p~y, the former can be a
serious background to the latter. It is crucial to understand the “efficiency” and “fake rate”
of K/m identification system of your experiment in this study. The figure below shows the
Mk~ invarianbt mass distribution, where one of the pion mass (in p° — 77~ decay) is
replaced by the Kaon mass, for the B — p°~ signal candidates (Belle, PRL 2008).

B — p%

30

10}
0

)
~
>
o
=
o
- 20
»
Q
S
]
c
I

-t
M, _(GeV/c?)

Y. Kwon (Yonsei Univ.)

Express the following observables in Type-I & Type-II
errors.

® f . _x+ = probability of misidentifying a 7 asa K™

® fc+_ .+ = probability of misidentifying a K™ asa 7™

® ¢+ = prob. of identifying a K™ correctly asa K™
+ +

® ¢ . = prob. of identifying a 7™ correctly as a 7

Statistical methods for HEP analysis Feb.19, 2013



Probability P(H |x)

e In the frequentist approach, we do not, in general, assign probability of a
hypothesis itself.

Rather, we compute the probability to accept/reject a hypothesis assuming
that it (or some alternative) is true.

e In Bayesian, on the other hand, probability of any given hypothesis (degree of
belief) could be obtained by using the Bayes’ theorem:

o P(xX|H)w(H)
PH) = T p@E ) (1) dir

which depends on the prior probability 7w (H)
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How to choose an optimal test statistic

e Ust Neyman-Pearson lemma

For a test of SiZ€"&i"0t the simple hypothesis Hy,
to obtain the highest power w.r.t. the simple alternative Hi,
choose the critical region w such that the likelihoot ratio satisfies

P(X|H;)
P(X|Ho)

>k

everywhere in w and is < k elsewhere,
where k is a constant chosen for each pre-determined size «.

Equivalently, the optimal scalar test statistic is

t(x) = P(x|H1)/P(X|Ho)

(Note) Any monotonic function of this leads to the same test.
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Particle identification with the atc_pid class is based on the likelihood of the detector

response being due to an hypothesized signal particle species, compared to the likelihood

for an assumed background particle species. This is expressed as a likelihood ratio

o P, _ pdE/dz TOF ACC
PTOb(Z:]):PiTPj PZ_PZ XPZ XPZ

where P; is the particle-ID likelihood calculated for the signal particle species and F; for
the background particle species; ¢ and j can be any of five particle species, e, u, 7, K and

p. Clearly Prob(i : j) is distributed on the interval [0, 1], and we usually think of it as
1

JT

Exp5 data

.

O (TOF) = 100ps
P<1.25GeV/c

~
S

Entries/0.02/track

',

“
,¢+'9¢+31,,...‘.°°.4
.‘"’ e s NEISY
T"(ﬂ Yrd NI ORI
. AN 11 R N NN N
I T R N A I N NN
j— 01 02 03 04 05 06 07 08 09 1

Qs 1 .
log,,( p (GeV/c) ) Prob(k:pi)




the p-value

e With p-value, we express the level of agreement b/w data and H

p = probabilty, under assumption of H, to observe data with equal or lesser
compatibility with H, in comparison to the data we obtained

# the probability that H is true A\

e In frequentist statistics, we don’t talk about P(H).
In Bayesian, however, we determine P(H |x) using the Bayes’ theorem

< depending on the prior probabilty 7w (H)

e For now, we stick with the frequentist interpretation of the p-value
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Significance from the p-value

o Often we quote the significance Z, for a given p-value

® / = the number of standard dev. that a Gaussian random variable would
fluctuate in one direction to give the same p-value

1
V2T

e_m2/2 dr =1— ®(2) 1 - TMath: :Freq

Z =&"1(1-p) TMath: :NormQuantile

(Ex) Z =5 (a “5-sigma effect”) & p =2.9 x 10”7




Remember?

Gaussian (Normal) distribution

f(x; u,0)

TMath: : Prob (02,1)

Q ) Q )
0.3173 lo 0.2 1.280
4.55 x1072 20 0.1 1.640
T s 30 0.05 1.960
6.3x107° 4o 0.01 2.58¢0
Sl 50 0.001 3.290
(x-w)/o 2.0x107° 60 == 3.890

Table 36.1: Area of the tails a outside 4+0 from the mean of a Gaussian
distribution.

(Ex) Z =5 (a “5-sigma effect”) & p =2.9 x 10”7




p-value example: testing whether a coin is “fair’

Probability to observe n heads in N coin tosses 1s binomial:

P(n;p, N) = n!(NNi n>!pn(1 —p) "

Hypothesis H: the coin 1s fair (p = 0.5).

Suppose we toss the coin N = 20 times and get n = 17 heads.

Region of data space with equal or lesser compatibility with
Hrelativeton=171s: n=17, 18, 19, 20,0, 1, 2, 3. Adding
up the probabilities for these values gives:

P(n=0,1,2,3,17,18,19, or 20) = 0.0026 .

1.e. p = 0.0026 1s the probability of obtaining such a bizarre
result (or more so) ‘by chance’, under the assumption of H.
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The significance of an observed signal

Suppose we observe n events; these can consist of:

n, events from known processes (background)
ng events from a new process (signal)

If n,, n, are Poisson r.v.s with means s, b, then n = n_ + n,
1s also Poisson, mean = s + b:

P(n;s,b) = (s +b) e (s+0)

n!

Suppose b = 0.5, and we observe n_,. = 5. Should we claim
evidence for a new discovery?
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The significance of an observed signal

Suppose we observe n events; these can consist of:

n, events from known processes (background)
ng events from a new process (signal)

If n,, n, are Poisson r.v.s with means s, b, then n = n_ + n,
1s also Poisson, mean = s + b:

P(n;s,b) = (s +b) e (s+0)

n!

Suppose b = 0.5, and we observe n_,. = 5. Should we claim
evidence for a new discovery?

Give p-value for hypothesis s = O:
p-value = P(n>5;b=0.5,s=0)
= 1.7 x107% % P(s =0)!
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1983 Champion Haitai Tigers starting roster
El= S =El= =
CF 219 , 364 b
oo 207 : 339 3
1B 327 , 448 !
DH 280 . 552 22
LF 300 , 524 11
RF 248 . 362 10
C 262 , 453 12
2B 236 : 303 2
2B 266 , 323 1

[] “J
e
M

Quiz

N s
0z
| e o

40 Hi Of o 0x
4 H

02 I oY oY 0¥ [
>
S U

i
0% 0
e

2
3
4
o
b
Vi
o
3

< 1983 Korean Baseball Champion Haitai Tigers starting roster
e (observation) Six out of 9 starting hitters have family name ‘Kim’.
e (fact) According to census, ~20% of all Koreans have family name ‘Kim'.

e (Hypothesis to test) The manager of 1983 Tigers (himself a ‘Kim’) has a bias
toward players with family name ‘Kim'.




Model-independent test?

e In general, we cannot find a single critical region that gives tha maximum
power for all possible alternatives (no “uniformly most powerful” test)

In HEP, we often try to construct a test of the Standard Model as H, (or
sometimes called “background only”)

such that we have a well specified false discovery rate o (=prob. to reject H
when it is true),

and high power w.r.t. some interesting alternative Hq, e.g. SUSY, Z’, etc.

But, there is no such thing as a model-independent test.

Any statistical test will inevitably have high power w.r.t. some alternatives
and less for others
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Confidence interval from inversion of a test

e Suppose a model contains a parameter u

We want to know which values are consistent with data and which are
disfavored.

e Carry out a test of size « for all values of L.

e The values that are not rejected constitutes a confidence interval for ;4 at
confidence level CL=1 — a.

The probability that the true value of u will be rejected is not greater
than «, so by construction the confidence interval will contain the true
value of p with probability > 1 — «

e The interval depends on the choice of the test (critical region).

e It the test is formulated in terms of a p-value, p,,, then the confidence
interval represents those values of i for which p,, > «.

e To find the end points of the interval, set p, = o and solve for .
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(Ex) UL on Poisson parameter

Consider again the case of observing n ~ Poisson(s + b).

Su;
Rel

opose b=4.5,n_,.=15. Find upper limit on s at 95% CL.

obs

evant alternative 1s s = 0 (critical region at low n)

p-value of hypothesized s 1s P(n <n_, ; s, b)

obs?

Upper limit s, at CL = 1 — a found from

Ngbs

Q= P(n < Mobs: Supab) — Z (sup.n—l'_ b) ‘8_(SuD+b)

n=>0

1
Sup = 5P (1 = 052(nns + 1)) — b

1
— 5Fx—gl(o.si)s; 2(5+1)) —4.5 = 6.0
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The profile likelihood ratio

e Base significance test on the profile likelihood ratio

profile likelihood - maximizes I for
Specified u

K maximize L

he likelihood ratio of point hypotheses gives optimal test
by Neyman-Pearson lemma)
he statistic above is nearly optimal

e Advantage of A\(u) — in large sample limit, f(—21In A\(u) |+ ) approaches a
v? pdf for n = 1 (by Wilk’s theorem)




Parameter Estimation




Basics of parameter estimation

e The parameters of a PDF are constants characterizing its shape, e.g.

1
[ 0) = 53_)(/9

where 6 is the parameter, while x is the random variable.

e Suppose we have a sample of observed values, Xx.

We want to find some function of the data to estimate the parameter(s): 0(x).

Often @ is called an estimator.
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Properties of estimators

e If we were to repeat the entire measurement, the set of estimates would
follow a PDF:

| ;e

large / N\
variance

0

g(0;0)
biased

A

- We want small (or zero) bias (= syst. error): b = E|f] — 6
- and we want a small variance (= stat. error): V|0
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Bias versus Consistency

unbiased biased

g
S N N N
9[] Hﬂ
(a) (b)
E
= N N N
\
Hn H[}
(c) (d)

: 41
N: sample size

from an FAPPS09 Lecture by S. T Jampens James(2/ 80




The likelihood function

e Suppose the entire result of an experiment (set of measurements) is a
collection of numbers X, and suppose the joint PDF for the data x is a
function depending on a set of parameters 0: f(x; )

e Evaluate this function with the measured data X, regarding this as a
function of 0 only. This is the likelihood function.

— —

L(6) = f(%: ) (x, fixed)
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The likelihood function for i.i.d. data

i.i.d. = independent and identically distributed

e Consider n independent observations of x: xi, - - - ,X,, where x follows f(x, 6).

The joint PDF for the whole data sample is:

fler, -+ xa:0) = | [ f(xi:0)
=1

e In this case, the likelihood function is

L(f) = ﬁ f(xi;0)  (x; constant)
i=1

So we define the max. likelihood (ML) estimator(s) to be the

parameter value(s) for which the L becomes maximum.

Y. Kwon (Yonsei Univ.) Statistical methods for HEP analysis Feb.19, 2013 82



Example: fitting a straight line

Data: (x;,vy;,0;) ,i1=1,...,n.

Model: y; independent and all follow y, ~ Gauss(u(x; ), o; )

> 1.8
p(x; 0g,01) = 0g + 017,
assume x; and o; known.

Goal: estimate 6,

Here suppose we don’t care
about 0, (example of a
“nuisance parameter”)
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Maximum likelihood fit with Gaussian data

In this example, the y. are assumed independent, so the
likelithood function 1s a product of Gaussians:

n 1 1 (y; — p(z4500,01))%
L(6p,01) = exp | —5
Z.l;ll V2T O 2 07;2

Maximizing the likelihood 1s here equivalent to minimizing

" (y; — p(xy; 00, 01))2
X2(60761) = —21In L(90761)+C0ﬂ5t: Z (y’L :u(xzrz O> 1)) .

i—1 g;
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Bayesian likelihood function

e Suppose our L-function contains two parameters 6y and 6;, where we have
some knoweldege about the prior probability on #; from previous
measurements:

W(@o, (91) — 7T()((9())7T1(@1)
mo(fp) = const.

1 2 /0 2
m1(61) = - e~ (01=0p)"/20,
V £T0p

e Putting this into the Bayes’ theorem gives the posterior probability:

— 1 (xi360,01)) /207 o

p(6y, 61]%) eV
0, 01%) H \/ TO; V 2moy,

® Then, P((90 ‘f) — fp(@O, (91 ‘)?) d(91

o~ (01=0p)" /20,
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Bayesian method with alternative priors

Suppose we don’t have a previous measurement of 6, but rather,
e.g., a theorist says i1t should be positive and not too much greater
than 0.1 "or so", 1.e., something like

771(91):16_91/7, 01 >0, 7+=0.1.
T
From this we obtain (numerically) the posterior pdf for 6,

—~ 40

—1=0.1
----- t =0.01

1 20.001

This summarizes all
T knowledge about 6,

161 L — Look also at result from
variety of priors.

8_

1j3 | 1-55 .1.(& 145
9,
Cargese 2012 / Statistics for HEP / Lecture 1




some more sophisticated topics

¢ nuisance parameters & systematic uncertainties
¢ spurious exclusion => the CLs procedure
¢ look-elsewhere effect




Systematic uncertainties?

In statistics, they call it the “nuisance parameter”

All €@E7°5D Thesaurus Apple Wikipedia

nuilesance |'n(y)oosans|

noun

a person, thing, or circumstance causing inconvenience or annoyance : an unreasonable landlord could
become a nuisance | I hope you're not going to make a nuisance of yourself.
» (also private nuisance) Law an unlawful interference with the use and enjoyment of a
person’s land.
» Law see PUBLIC NUISANCE .

ORIGIN late Middle English (in the sense [injury, hurt] ): from Old French, ‘hurt,” from the verb
nuire, from Latin nocere %o harm.’




Nuisance parameters

In general our model of the data 1s not perfect:

model: L(z|0) = 6x

truth: L(z|0) = 0z + ax?® + Bz> + - - -

X

Can improve model by including

additional adjustable parameters. L(z|0) — L(z|0,v)

Nuisance parameter < systematic uncertainty. Some point in the
parameter space of the enlarged model should be “true™.

Presence of nuisance parameter decreases sensitivity of analysis
to the parameter of interest (e.g., increases variance of estimate).
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p-values 1n cases with nuisance parameters

Suppose we have a statistic g, that we use to test a hypothesized
value of a parameter 6, such that the p-value of 0 1s

o0

Py = f(qp|0,v) dqgy

d8.obs

But what values of v to use for f (g,|0, v)?

Fundamentally we want to reject 6 only if p, < a for all v.

— “‘exact” confidence interval

Recall that for statistics based on the profile likelihood ratio, the
distribution f (g,|0, v) becomes independent of the nuisance
parameters 1n the large-sample limiat.

But 1in general for finite data samples this 1s not true; one may be
unable to reject some 6 values 1if all values of v must be
considered, even those strongly disfavoured by the data (resulting
interval for @ “overcovers”).
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low sensitivity & spurious exclusion

< Sometimes, the effect of a given hypothesized u is very small relative
to the null (u =0) prediction

® This means that the distributions f (g, | u) and f (g, | 0) will be almost the
same.

/l/+(§rlf‘)

_» critical r¢3l°0“

‘.‘./\/‘F(‘L/«l°>




low sensitivity & spurious exclusion

¢ In contrast, for a high-sensitivity test, the two pdf’s -- f (g, | 1) and f
(gu | 0) -- are well separated

s Y (+ieal v cy'on

In this case, the power is substantially higher than 1-a.
Use this 'power' as a measure of the sensitivity.




low sensitivity & spurious exclusion

o Consider again the case of low-sensitivity

This means that with
probability of around a = 5%
(slightly higher), one excludes
—» critical region  hypotheses to which one has

essentially no sensitivity (e.g.,
myg = 1000 TeV).

’/I/‘HE)J/‘)

.‘./\/'F(‘L;Jo)

“Spurious exclusion™

spurious = not being what it claims to be

93



how to handle spurious exclusion

The problem of excluding parameter values to which one has
no sensitivity known for a long time; see e.g.,

Virgil L. Highland, Estimation of Upper Limits from FEzxperimental Data, July 1986,
Revised February 1987, Temple University Report C00-3539-38.

In the 1990s this was re-examined for the LEP Higgs search by
Alex Read and others

T. Junk, Nucl. Instrum. Methods Phys. Res., Sec. A 434, 435 (1999); A.L. Read, J.
Phys. G 28, 2693 (2002).

and led to the “CL_” procedure for upper limits.

Unified intervals also effectively reduce spurious exclusion by
the particular choice of critical region.




The Cl procedure

In the usual formulation of CL, one tests both the 4 = 0 (/) and
w1 > 0 (us+b) hypotheses with the same statistic 9 =-2In L_,,/L,:

- J(QIb)

0.06

f(Qls+b)




The Cl procedure

The CL, solution (A. Read et al.) 1s to base the test not on
the usual p-value (CL,,), but rather to divide this by CL,
(~ one minus the p-value of the b-only hypothesis), 1.e.,

—~ 0.08
o

S
L

Define: _f (Q|s+b)

a., A J(Qlb
CT"S b 5

Cls
. (jI;b

~ Ps+b
L —pp

Reject s+b

hypothesis if: Reduces “effective” p-value when the two

distributions become close (prevents

(-JTJS < (¥ . . e .
exclusion 1f sensitivity 1s low).




the L.ook Elsewhere Effect




Gross and Vitells, EPJC 70:525-530,2010, arXiv:1005.1891
The Look-Elsewhere Effect

Suppose a model for a mass distribution allows for a peak at
a mass m with amplitude u.

The data show a bump at a mass m,,

60

50

sl iRy | How consistent is this
‘ with the no-bump (u = 0)
hypothesis?
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Local p-value

First, suppose the mass m, of the peak was specified a priori.

Test consistency of bump with the no-signal (u = 0) hypothesis
with e.g. likelihood ratio

L(0,mg)
L, mg)

tﬁx — —2111

where “fix” indicates that the mass of the peak 1s fixed to m,,.

The resulting p-value

oo

Plocal = f(tﬁx‘o) dtﬁx

Lfix ,obs

gives the probability to find a value of 7, at least as great as
observed at the specific mass m, and 1s called the local p-value.
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Global p-value

But suppose we did not know where 1n the distribution to
expect a peak.

What we want 1s the probability to find a peak at least as
significant as the one observed anywhere 1n the distribution.

Include the mass as an adjustable parameter 1n the fit, test
significance of peak using

L(0) (Note m does not appear
| in the u = 0 model.)

Zfﬁ(:)a.’(- — _2 hl

>

Pglobal — f (tﬂoat|0) dtﬂoat

tﬂoat.,obs
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Gross and Vitells

Distributions of 7, 74,

For a sufficiently large data sample, 7, ~chi-square for 1 degree
of freedom (Wilks’ theorem).

For ¢, ., there are two adjustable parameters, ¢ and m, and naively
Wilks theorem says ¢, ~ chi-square for 2 d.o.f.

I I 1 1 I I —]

.-t u)i Infact Wilks’ theorem does
—f(t, |H) - not hold 1n the floating mass

E case because on of the
parameters (m) 1s not-defined
in the u = 0 model.

So getting 74, distribution 1s
more difficult.

L. o
OHHI_-*“IIIII‘ T LA
L -
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Gross and Vitells

Approximate correction for LEE

We would like to be able to relate the p-values for the fixed and
floating mass analyses (at least approximately).

Gross and Vitells show the p-values are approximately related by

Pglobal = Plocal + (N (¢))

where (N(c)) is the mean number “upcrossings” of —2In L in
the fit range based on a threshold

2
C = tfix = Zlocal

and where Z, ..., = @7 '(1 — p,,.,) 1s the local significance.

So we can either carry out the full floating-mass analysis (e.g.
use MC to get p-value), or do fixed mass analysis and apply a

correction factor (much faster than MC).
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An 1nternal CDF study that didn’t make 1t to prime time
— dimuon mass spectrum with signal fit ~ (not enough PE’s)

: ++++ QC-Run 1A+ 1B
: ++ ¢ Data-0S

— Fit

---- Data - SS

—~
>
=
o
U]
X
7]
=
L
-
m

LI B I B N L L N B B L L L N D B B N L L D N B B B L L B B

Mass (GeV)

249.7+£60.9 events fit in bigger
signal peak (40?7 No!)

Significance Tests on the Dimuon Mass Bump
D

Entries
Mean
RMS

Trials/10 evts

||1|r‘||r‘l‘|_| | AP N B T B |

300 200 - 200 300 400
Fitted events

i
blen

Trials/10 evts
Tnals/10 evts

llllll—lll_l—l—lllllllll I-Illllll hl—nhl:—llllll

-300 -200 -100 0 0 100 200 300 400
Fitted events Fitted events

Null hypothesis pseudoexperiments
with largest peak fit values

Statistics/Thomas R. Junk/TSI July 2009




Examples to test what you've learned




what to make sense of my plots, statistically

2400 I I I I I I I I I I I I I I I I I I
2200
2000

Selected diphoton sample

® Data 2011 and 2012
Sig + Bkg inclusive fit (m, = 126.5 GeV)

1800 4th order polynomial
1600

1400
1200
1000
800
600
400
200

Events / GeV

'ad

ls=7TeV, | Ldt=4.8f0"

'

ls=8TeV | Ldt=59f0"

.’.

*

100

Data - Bkg
-
|11
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how to read the green & yellow plots

e For every (assumed) value of my, we want to find the CL; upper limit on
u=oc(H)/osm(H) (solid curve)

e Also shown is the ‘expected upper limit’, determined for each assumed my
value, under the assumption that we see no excess above background.

 ATLAS 2011 j Ldt~1.04-4.9 15" .
7 TaV  Observed --- median expected

---- Bkg. Expected limit w/o signal
O+ 16

+ 20

-
o

T T TTTl

=.
-
@)
by —t
£
-
—
O
0
9]
(@)}

ATLAS, Phys. Lett.
B 710 (2012) 49-66

—A
A
L1

CL, Limits _|

—

300 400 500 600
m, [GeV]
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how to read the green & yellow plots

e For every (assumed) value of my, we want to find the CL; upper limit on
u=oc(H)/osm(H) (solid curve)

e Also shown is the ‘expected upper limit’, determined for each assumed my
value, under the assumption that we see no excess above background.

6

Observed CL; limit SN\ H_)»Y'Y

Expected CLS limit Data 2011 , \‘Sz 7 TeV,JL dt=4.8 fb-1 ]

] i:; Data 2012, \s= 8 TeV,fL dt=5.9fb’ E

ATLAS Preliminary

=

n
2
©
-
o
=
E
_
O
X
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IIIIIIII|IIII|III||IIII_
llllllllllll

lllllllllIlllllllllllllllllllIllllIllll

10 115 120 125 130 135 140 145 150
my [GeV]
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how to read the pg plots

e The local py values for a SM Higgs boson as a function of assumed my.

e The minimal py (observed) is 2 x 107° at myy = 126.5 GeV.
= local significance of 4.70 — reduced to 3.6¢ after LEE

o 10IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

1
10
10

3
10 Data 2011, Vs= 7 TeV, [ Ldt = 4.8 fb"

| | lllllll|

IIIIII| I IIIIIII|

10 Data 2012, Vs= 8 TeV, | Ldt = 5.9 fb

LT

¥

Observed P, 2011+2012
i - = = Expected p 201142012
Observed p 2011+2012 (with ESS
© Yeh, * w Observed p02011

O Observed p_ 2011 (with ESS) - = = . Epected p 2011

) ObservedB 2012
0O Observed P, 2012 (with ESS) . Expected po 2012
0

107

T TTTI T
llllll| llllllll| |

10°
50
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how to read the “blue band” plots

e (i1 vs. my where [ is the signal strength (= o/osy) estimated by likelihood
method!. The blue band corresponds to approx. 1o error bar for L.

M H
S %.W ATLAS Preliminary
— Best fit

[]-2InA(w)<1
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'Some details are skipped, for the sake of simplicity
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Now that you have the language
to talk about stat. interpretation of HEP

results (e.g. LHC),
it’s your job to explore & enjoy them!

Thank you!




