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Introduction

Fundamental interactions and theories

● Electromagnetic interaction

● Weak interaction

● Strong interaction

Unified with QED Glashow-Salam-Weinberg theory

● Gravitational interaction

Quantum Electrodynamics (QED)

Quantum Chromodynamics (QCD)

General Relativity Quantum theory?
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Interaction strengths of QCD and QED in low energy region

QED

QCD

Running coupling(s)

Perturbative approach is valid.

Non-perturbative dynamics is important.
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Running couplings of QCD and QED

The coupling is small.
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The coupling is strong.



Non-linear QED

Perturbative expansion is no longer valid.

Electron propagator in the presence of the strong EM fields
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For instance, strong B field case:

We have to take into account all order contributions.
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Euler-Heisenberg Lagrangian
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Euler-Heisenberg Lagrangian is an effective Lagrangian of QED
in the presence of strong electromagnetic fields.
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Effective potentials: 

Color fields are spontaneously generated in QCD.

Veff = −Leff (E = Ec = 0)
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What’s happened in QCD vacuum?

We investigate QCD in strong magnetic fields.

In particular, eBext ≥ �gHc�



Lattice QCD simulation provides us non-
perturbative results of QCD.

PTEP 2012, 01A102 S. Aoki et al.

Fig. 3. SU(2) chiral perturbation theory fit for m2
π/mAWI

ud and fK reproduced from Ref. [7]. FSE in legends
means including finite-size corrections. @ph means fit prediction at the physical point.

Fig. 4. Light hadron spectrum extrapolated to the physical point using mπ , mK and m" as inputs reproduced
from Ref. [7]. The horizontal bars denote experimental values.

with µ the renormalization scale. There are six unknown low energy constants B0, f0, L4,5,6,8 in the
expressions above.

We simultaneously fit data to the formula such as the above for m2
π/(2mud), m2

K /(mud + ms), fπ ,
and fK . We find that the fit exhibits a large χ2/dof, and the dependence on the strange quark mass
is not reproduced well. Furthermore, the next-to-leading order contribution coming from the kaon
loop is uncomfortably large in the decay constants.

A baryon spectrum analysis is tried using heavy baryon SU(3) chiral perturbation theory [64].
Incorporating the chiral symmetry breaking effects of the Wilson-clover quark action is left for future
work. The leading order formula yields a reasonable fit of the data. Including next-to-leading order
corrections, however, the flavor SU(3) coupling constants are found to take very small values quite
different from existing phenomenological estimates. It is our conclusion that the strange quark mass
is too large to be treated by chiral perturbation theory.

This situation leads us to make a reanalysis treating only up and down quarks as light. For this
purpose we use the SU(2) chiral perturbation theory formula, and make a linear extrapolation or
interpolation for the strange quark mass since our simulation points are close to its physical value.
We find good fits for pion masses below mπ ≈ 400 MeV as shown in Fig. 3.

In Fig. 4 the light hadron spectrum extrapolated to the physical point using SU(2) chiral perturba-
tion theory is compared with experimental values. Finite-size corrections are taken into account for
completeness, but they do not make large contributions. For the vector mesons and the baryons we
use a simple linear formula mhad = αh + βhmAWI

ud + γhmAWI
s . Data in the range mπ ≤ 400 MeV are

used for these analyses.
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Lattice QCD simulation with strong magnetic fields

We can test our ideas by using lattice QCD simulation with magnetic fields.

Magnetic catalysis
(Enhancement of the chiral condensate in strong B) Hadron properties in strong B

Chiral Magnetic effect

backreaction from the quarks to the electromagnetic gauge
field. For simplicity, we consider two fermion flavors with
the same charge q. This approximation does not change the
qualitative behavior since the charge difference between
the quarks is not essential for the underlying mechanism of
the chiral magnetic effect.

In this setup, we measured the vector current density

j! ! a3h !c"!c i: (4)

The simulations were done in the deconfinement phase
(Nt ¼ 4), which is relevant for the chiral magnetic effect
in heavy-ion collisions. The transverse component j1 and
the longitudinal component j3 of the current density are
depicted as a function of !5 in Fig. 3, and as a function of
qB in Fig. 4. The two transverse components of the current
density are the same, j1 ¼ j2, from the rotational symme-
try, and they are zero in all of the simulations. All compo-
nents of the current density are zero either at B ¼ 0 or at
!5 ¼ 0. Only when both B and !5 are nonzero, a finite
current density is generated in the longitudinal direction.
These results suggest that an external magnetic field in-
duces a finite current density along the magnetic field only
in a chirally imbalanced QCD matter. This is exactly what
is expected of the chiral magnetic effect.

As seen in Figs. 3 and 4, the induced current density is an
increasing function of !5 and qB. Furthermore, it is given
as a linearly rising function both of !5 and of qB. We can
parametrize its functional form as

j3 ¼ a3CNdof!5qB: (5)

The factor Ndof is the number of particles with the same
charge, which is 6 ( ¼ Nc # Nf) in this simulation. The
overall constant is numerically determined as C ¼
0:013$ 0:001 by fitting the data. This functional form
has been predicted by an analytical approach using the

Dirac equation coupled with the background magnetic
field [1]. The lattice result establishes this prediction, ex-
cept for the overall constant C, which is 1=ð2#2Þ ’ 0:05 in
the analytical approach. This deviation comes from some
QCD corrections. One possible candidate is a correction by
the renormalization. The local vector current (4) is not
renormalization-group invariant on the lattice [15]. This
is very different from the vector current in the continuum.
Another candidate is the dielectric correction, which re-
duces the induced current [6].
The above situation is completely different from the

standard lattice QCD without the chiral chemical potential.
In the standard lattice QCD, we cannot observe the global
induced current. Because the current itself is zero and only
its local fluctuation is nonzero, the chiral magnetic effect is
studied only through the local fluctuation [7]. In principle,
lattice QCD can reproduce the gauge configuration with a
nontrivial topology, which gives a finite chiral imbalance
via the index theorem. However, the global topological
charge (or the global chiral charge) per volume is negli-
gibly small, unless one artificially makes the gauge con-
figuration with a huge number of topological charge. The
magnetic field cannot induce the global current in observ-
able amount. On the other hand, at a finite chiral chemical
potential, the chiral charge density is finite and indepen-
dent of the volume. Therefore, owing to the introduction of
the chiral chemical potential, we can observe the global
current induced by the chiral magnetic effect.
Finally, in Fig. 5, we plot the induced current density as a

function of the chiral charge density n5 with a fixed mag-
netic field. We can see that the induced current density is
approximately proportional to n5. In this simulation, the
magnetic field is very large, qB ' !2

5. Under the strong
magnetic field, the quantum state of a charged particle is
dominated by the lowest Landau level. While the induced
current density cannot generally be written in a simple
analytical function of n5, the contribution of the lowest
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FIG. 3 (color online). The transverse current density j1 and the
longitudinal current density j3 as a function of the chiral chemi-
cal potential !5. The black dashed line is a linear function (5).
The lattice size is N3

s # Nt ¼ 123 # 4.
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FIG. 4 (color online). The transverse current density j1 and the
longitudinal current density j3 as a function of the magnetic
field B.
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lattice QCD. In the background magnetic field, the !-"3

mixing exists even for in the connected diagram. Thus, the
# ¼ 3 component of a " meson is an excited state of a
pion. At least in the weak magnetic field limit, there is a
large number of magnetic-splitting states of the pion below
the energy level of the "-meson state. We cannot calculate
such a highly excited state in the lattice QCD simulation.

For neutral ! and " mesons, we calculated only the
connected diagram, which is necessary for the QCD in-
equality. While the disconnected diagram is forbidden in
the absence of the magnetic field, it is allowed in the
presence of the magnetic field because the magnetic field
breaks isospin symmetry. We ignored the disconnected
diagram in this simulation. In this sense, our neutral me-
sons are not physical ones.

B. Meson masses

We performed the standard mass analysis of ground-
state mesons in lattice QCD. The meson masses were
extracted from the fitting function

GXðtÞ ¼ AX cosh ½mXðt% aNt=2Þ& (18)

in large t. The lattice volume is N3
s ' Nt ¼ 163 ' 32. The

numerical results are shown in Fig. 1.
The charged pion mass increases in the magnetic field.

This mass shift can be explained by the naive mass formula
m2

!þðBÞ ¼ m2
!þðB ¼ 0Þ þ eB. As shown in the figure, this

formula well reproduces the present lattice result in a weak
magnetic field. This behavior was also observed in the full
QCD simulation [20]. The lattice data slightly deviate from
this formula in a strong magnetic field.

The charged "-meson mass shows a nontrivial depen-
dence on the magnetic field. When the magnetic field is
weak, the mass is a decreasing function of the magnetic
field. The naive mass formula, m2

"þðBÞ ¼ m2
"þðB ¼ 0Þ %

eB, reproduces the lattice data. At eB ’ 1 GeV2, the mass

has a nonzero minimum. When the magnetic field is
stronger than this value, the mass becomes an increasing
function of the magnetic field. As a consequence, the
charged " meson is always massive and heavier than the
connected neutral pion in the whole range of the magnetic
field. Although the Wilson fermion does not have the exact
positivity, the present lattice result is consistent with the
Vafa-Witten theorem and the QCD inequality.
The neutral mesons are much more nontrivial. In the

naive mass formula, neutral particles are independent
of a magnetic field. The lattice result suggests, however,
that the neutral meson masses depend on the magnetic
field. This is due to the internal structure of the mesons.
To know how the physical neutral mesons behave in a
magnetic field, we have to take into account the discon-
nected diagram.
When the magnetic field is extremely strong, i.e., eB )

1 GeV2, the masses of all the mesons monotonically in-
crease. This is interpreted as a sign that the internal quarks
obtain the large magnetic-induced mass. The underlying
mechanism is unknown in the present analysis.

C. Meson condensations

To exclude the possibility of the charged "-meson con-
densation in lattice QCD, we performed another analysis.
If a meson condensation exists, the ground state becomes
massless and a long-range correlation appears. The corre-
lation function becomes

G0
XðtÞ ¼ AX cosh ½mXðt% aNt=2Þ& þ CX (19)

in large t. If the constant parameter CX is finite in the limit
Nt ! 1, CX corresponds to the squared meson condensa-
tion hXi2, and mX corresponds to the mass of the first
excited state. A similar analysis was performed in a pre-
vious work [16]. However, such a constant term can be
easily generated by a finite-volume artifact. We must care-
fully check the finite-volume artifact. In particular, we
need a larger size in the fitting direction, i.e., in the t
direction in Eq. (19), because CX coincides hXi2 only in
the limit Nt ! 1.
We calculated the correlation functions GXðtÞ with three

lattice volumesN3
s ' Nt ¼ 163 ' 32, 203 ' 40, and 243 '

48 and fitted the results with Eq. (19). The numerical
settings are summarized in Table I. In Fig. 2, we show
CX as a function of the lattice volume V ¼ a4N3

sNt. The
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FIG. 1 (color online). The meson masses in a magnetic field.
The broken curves are m2

!þðBÞ ¼ m2
!þðB ¼ 0Þ þ eB and

m2
"þðBÞ ¼ m2

"þðB ¼ 0Þ % eB.

TABLE I. The numerical settings in Fig. 2. In fitting with
Eq. (19), the fit range tfit, the best-fit value of C"þ , and

$2=d:o:f: (number of degrees of freedom) are listed.

eB [GeV2] a [fm] Ns Nt tfit [a] C"þ [GeV6] $2=d:o:f:

4.3 0.10 16 32 8–24 35ð44Þ ' 10%5 1.43
4.3 0.10 20 40 10–30 13ð46Þ ' 10%6 0.73
4.3 0.10 24 48 12–36 33ð77Þ ' 10%7 1.45
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is determined by varying the node positions. We find that
lattice discretization errors become large at high magnetic
fields due to saturation of the lattice magnetic flux [44],
therefore we only include points with Nb=N

2
s < 0:1. In

Fig. 1 we also show the continuum limit of the difference
!ð"u þ"dÞ=2.

Next, we address the condensate at nonzero temperature,
carrying out a similar continuum extrapolation for!" as at
T ¼ 0, using three lattice spacings with Nt ¼ 6, 8 and 10.
The increase of the difference !"ðBÞ is qualitatively simi-
lar for zero and nonzero temperatures in !PT and in the
PNJL model (see below). In QCD, however, the situation is
quite different: in Fig. 2 we plot the continuum extrapo-
lated lattice results for !ð"u þ"dÞ=2 as functions of B
for several temperatures, ranging from T ¼ 0 up to T ¼
176 MeV. Note that the transition temperature varies
from TcðeB ¼ 0Þ % 158 MeV down to Tcð0:9 GeV2Þ %
138 MeV [44]. The increasing behavior of !"ðBÞ at low
temperatures (T & 130 MeV) corresponding to magnetic

catalysis continuously transforms into a humplike structure
in the crossover region (T¼148MeV, 153MeV) and then on
to a monotonously decreasing dependence (T'163MeV).
We remark that—although in the high temperature limit
the condensate and its dependence on B are suppressed—at
T * 190 MeV!"ðBÞ again starts to increase. Furthermore,
we note that the strange condensate !"s [with a definition
similar to that in Eq. (4)] does not exhibit this complex
dependence on B and T but simply increases with growing
B for all temperatures. This shows that the partly decreasing
behavior near the crossover region only appears for quark
masses below a certain thresholdmthr, in between the physi-
cal light and strange quark masses, mud < mthr <ms.

IV. COMPARISON TO EFFECTIVE
THEORIES/MODELS

In Fig. 3 we compare our zero temperature QCD result
for!ð"u þ "dÞ=2 as a function of B to the !PT prediction
[13–15,54] and to that of the PNJL model [18,55], both at
physical pion mass. We see that the !PT prediction de-
scribes the lattice results well up to eB ¼ 0:1 GeV2, while
the PNJL model works quantitatively well up to eB ¼
0:3 GeV2. Note that, since the Polyakov loop at zero
temperature vanishes, in the limit T ! 0 the PNJL model
becomes indistinguishable from the NJL model with the
same couplings.
In Fig. 4, the condensate Eq. (4) as a function of T is

compared to !PT and to the PNJL model for different
magnetic fields. At B ¼ 0 we use the continuum extrapo-
lation for the condensate presented in Ref. [50] (where
lattices up to Nt ¼ 16 were employed), and complement
this with the differences!"ðBÞ shown in Fig. 2. In addition
to the continuum extrapolated lattice data we plot the !PT
curves for B ¼ 0 [35] and for B> 0 [14,15,54], together
with the PNJL model predictions [18,55]. The results
indicate that !PT is reliable for small temperatures and

FIG. 2 (color online). Continuum extrapolated lattice results
for the change of the condensate as a function of B, at six
different temperatures.

FIG. 1 (color online). The change of the renormalized con-
densate due to the magnetic field at T ¼ 0 as measured on five
lattice spacings and the continuum limit.

FIG. 3 (color online). Comparison of the continuum limit of
the change of the condensate to the !PT [13–15,54] and the (P)
NJL model [18,55] predictions.
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Strong magnetic fields in heavy ion collisions
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eB ∼ m2
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e,m
2
q

Extremely strong magnetic fields are generated in non-central HIC.

We can expect several interesting phenomena with such strong
magnetic fields in HIC.

Next Hattori-san’s talk



In QCD under the strong magnetic field...

two kinds of strong dynamics coexist.

Strongly interacting quark 
and gluon dynamics

Non-linear QED dynamics
with strong B field



= + +

+ + + · · · · · ·

Quark propagator non-linearly interacting with photons and gluons 

Gluon couples to quark and gluon itself.

Magnetic field (photon) does not couple to gluon directly but 
interacts with quarks.

The effect of magnetic field must be reflected on QCD through the quark.



= +

· · ·

+ + +

+ + + · · ·

Using quark loop non-linearly interacting with gluon and 
photon, one can calculate effective Lagrangian for QCD+QED.



The integral of the full correlator over r gives the topological susceptibility T/V · �Q2�, and is thus

positive. At intermediate distances, however, the correlator becomes negative, with the position of the

zero proportional to the lattice spacing. This is clear from the continuum limit, in which the correlator

is negative for all distances apart from zero, where it contains a contact term [40]. The scaling of the

position of the zero has turned out to be very similar for many current fermion discretizations [34].

We will focus on intermediate distances r/a = 2 . . . 4. Note that, due to the restriction of r to

two-dimensional hyperplanes, less discrete distances are available for the perpendicular and parallel

correlators than for the full propagator, resulting in lower effective statistics.

Finally, we remark that the use of smearing and of the improved field strength definition may affect

the anisotropy of the correlator, as both techniques effectively amount to an averaging over space-time

regions in a spherically symmetric way. For the mild averaging that we employ, however, these regions

do not overlap strongly and, thus, the correlators defined above still contain the information about

anisotropies in the topological charge.

3 Results I: gluonic and fermionic observables

Our measurements have been performed on the same configurations as used in our previous studies

of magnetic fields in QCD. The configurations at zero and nonzero temperature have been generated

with the tree-level improved Symanzik gauge action and Nf = 1 + 1 + 1 stout smeared staggered

fermions, at physical quark masses, for details see [12, 13, 19]. The light quark masses are set equal,

mu = md ≡ mud, whereas the strange quark mass is ms = 28.15 ·mud. The quark masses are tuned as

a function of β along the line of constant physics (LCP) [29], which ensures that for all lattice spacings,

the hadron masses are at their physical values. The quark charges are −qu/2 = qd = qs = −e/3.

3.1 Interaction measure

Figure 1. The change in the gluonic contribution to the interaction measure, eq. (2.5), at zero temperature
(left, including the continuum limit from four lattice spacings) and the corresponding light quark contribution
mud∆ψ̄udψud (five lattice spacings and the continuum limit), in the same units.

We start the analysis by considering the change of the renormalized gluonic action, i.e., of the glu-

onic contribution to the interaction measure −∆I imp
g of eq. (2.5) at zero temperature. We use four

different lattice spacings with magnetic fields eB up to about 1 GeV
2
, and perform a combined spline

interpolation and continuum extrapolation to obtain the a → 0 limit. The results, together with the

– 6 –

Figure 4. Anisotropies in the squared field strengths, eq. (2.10), (left panel) and in the fermionic action
eq. (2.12) (right panel) at zero temperature.

to-noise ratio becomes worse at high temperatures (which, in our fixed Nt approach, correspond to
finer lattices), again due to the cancellation of O(a−4) divergences in A(E) and A(B).

The fermionic anisotropies defined in eq. (2.12) also develop nonzero expectation values for B > 0,
see the right panel of fig. 4 for our zero temperature results for the up quark. We find the anisotropies
A(Cf ) to be negative for all three quark flavors. The anisotropy in physical units is by about a factor of
five larger than the anisotropies found in the gluonic sector. Similarly as for the gluonic anisotropies,
we find the magnitude of A(Cf ) to be roughly independent of the temperature. We stress again that
the anisotropies presented here are still subject to an additive renormalization, which we discuss in
sec. 4 below.

3.3 Topological charge

Figure 5. Left panel: correlator of the topological charge density, eq. (2.14), at eB = 1.1 GeV2 at vanishing
temperature on a 403 × 48 lattice of lattice spacing a = 0.1 fm. The perpendicular and parallel (green and
red points, respectively) correlators are compared to the total one (dashed line). Right panel: the difference
between the total correlator at eB = 1.1 GeV2 and at eB = 0 (red triangles), and the anisotropy between the
parallel and perpendicular correlators at eB = 1.1 GeV2 (blue squares).

– 9 –

Full order calculation with respect to the fields is needed!

where V4 = T/V again denotes the four-volume, q is the charge of the fermion (the electron), for a

review see [55]. This action is divergent for small s, i.e. in the UV, since coth(qBs/m2) = m2/qBs+

qBs/(3m2) − (qBs)3/(45m6). The leading singularity is independent of B, and is thus absent in the

difference Seff(B)−Seff(0). The singularity quadratic in B is taken care of by charge renormalization.

The first non-trivial order is quartic, where, in diagrammatic language, four external photon legs

interact via an electron loop (light-by-light scattering). The next order comes with an additional

factor of (qB)2/m4
, and is thus negligible for weak fields.

The fourth order term for constant field strength Gµν in an arbitrary gauge group has been given

by Novikov et al. [64],

S(4)
eff (Gµν) = − V4

576π2

λ4

m4

�
(GµνGµν)

2 − 7

10
{Gµα, Gαν}

2 − 29

70
[Gµα, Gαν ]

2 +
8

35
[Gµν , Gαβ ]

2

�
, (D.3)

where λ is the coupling in the covariant derivative Dµ = ∂µ + iλAG
µ and {.., ..} and [.., ..] denote the

anti-commutator and the commutator, respectively. For pure QED, upon replacing λGµν → qFµν ,

this yields

S(4)
eff (E,B) = − V4

360π2

q4

m4

�
(E2 +B2)2 − 7(EB)2

�
, (D.4)

reproducing the result by Euler and Heisenberg, (−E2+B2)2+7(EB)2, if we change from Minkowski

to Euclidean space, by multiplying the electric field by an imaginary unit.

In the following, we again denote SU(3) fields by calligraphic letters and U(1) fields by straight

characters. For QCD in external magnetic fields, one has to replace λGµν → Fµν+qB(δµ1δν2−δν1δµ2)

and a careful evaluation of eq. (D.3) to bi-quadratic order
5

yields

S(2,2)
eff (Fµν ;B) = − V4

180π2

(qB)2

m4

�
3 trB2

� + trB2
⊥ + tr E2

⊥ − 5

2
tr E2

�

�
, (D.5)

in terms of the field strength components defined in sec. 2.2. No topological charge term EB appears,

as expected from CP arguments in a purely magnetic external field.

Thus, in perturbation theory for constant fields |qB|, |Fµν | � m2
the chromo-electric field parallel

to the external field has an increased action compared to the perpendicular fields, whereas the parallel

chromo-magnetic field reduces the action. This means that parallel E-fields are disfavored, while

parallel B-fields are favored. This is in qualitative agreement with our non-perturbative findings that

A(E) > 0 and A(B) < 0.

The remainder of this appendix is devoted to check the main formula eq. (D.5). First, let us

revisit the Abelian theory, by removing the traces and replacing calligraphic letters by q times straight

ones. This should be the fourth order result of Euler and Heisenberg, eq. (D.4), up to the fact that

here we have split the B-field in the z-direction artificially into B� +B and computed only the terms

of O(B2). If we do the same in eq. (D.4), we obtain in this order

− V4

360π2

q4

m4

�
(E2

⊥ + E2
� +B2

⊥ + [B� +B]2)2 − 7(E⊥B⊥ + E�[B� +B])2
�

(D.6)

=− V4

180π2

q4

m4
B2

2E2
⊥ + 2E2

� + 2B2
⊥ + 2B2

� + 4B2
� − 7E2

�
2

+ . . . (D.7)

which is what we get from eq. (D.5), too.

5We note that additional terms of the form qB tr(B�F2
µν) and qB tr(E�FµνF̃µν) also appear, and contribute to S(3,1)

eff .
For instance, eq. (D.8) below contains a term

�
a qB B3

a = qB trB3
�.

– 20 –

Euler-Heisenberg effective action is basically the expansion of
e*field/m, and in the current case this expansion obviously  breaks down.

Euler-Heisenberg effective action

The first term on the right hand side of eq. (2.5) is the direct gluonic contribution, see, e.g., ref. [29].
Since the additive divergences are canceled in ∆sg (see the discussion in apps. A and B), this first
term already has a well-defined continuum limit (at B = 0, typically differences in the temperature
are utilized to achieve this). The leading lattice discretization error, however, is of O(1/ log a) and,
therefore, vanishes very slowly. The second, fermionic term in eq. (2.5) does not contribute to the
continuum limit, but it cancels the logarithmic discretization error, thereby improving the convergence
to O(a2), see app. B. The improvement is evident from our numerical data, see fig. 7. The procedure is
equivalent to multiplying the result by a finite renormalization constant 1+O(1/β) that we determine
non-perturbatively, using the line of constant physics (LCP) for the action that we employ [29]. To
our best knowledge, such an O(1/β)-improvement of a gluonic quantity by a fermionic quantity has
not been considered in the literature previously.

2.2 Anisotropies

The continuum counterpart of the gluonic action in Euclidean space is written as

βSg ↔ 1

2g2

�
d4x trF2

µν(x) =
1

g2

�
d4x tr

�
E2(x) +B2(x)

�
. (2.6)

The field strength is defined in terms of the SU(3) gauge potential Aµ as Fµν = ∂µAν−∂νAµ+i[Aµ,Aν ],
and consists of chromo-electric Ei = F4i and chromo-magnetic components Bi = �ijkFjk/2. We use
calligraphic letters to denote the non-Abelian SU(3) fields, to distinguish these from the external
Abelian field1. The full covariant derivative reads Dµ,f = ∂µ+iAµ+iqfAµ. Without loss of generality,
we will take the external magnetic field B to point in the z-direction. The simplest gauge field to
realize this (in infinite volume) is Ay = Bx, Aµ = 0 (µ �= y).

The translation of these quantities to the lattice discretization is straightforward. For the gauge
action we use the tree-level improved Symanzik action [30],

Sg = SSym
g =

�

µ<ν

�

n

1

3
Re trPµν(n), (2.7)

where Pµν(n) denotes a sum of gluonic loops lying in the µ-ν plane, see eq. (C.4), and n runs over
lattice sites. Therefore, Sg is readily decomposed into planar components and, therefore, into squared
traces of the chromo-electric and chromo-magnetic field strengths, according to eq. (2.6),

tr E2
i (n) = 2Re trP4i(n), trB2

i (n) = 2
�

j<k

|�ijk|Re trPjk(n). (2.8)

In the following, the components in the direction of the external field B � z are denoted as parallel,
whereas the x and y components as perpendicular,

E
2
� = E

2
z , B

2
� = B

2
z , E

2
⊥ =

E2
x + E2

y

2
, B

2
⊥ =

B2
x + B2

y

2
. (2.9)

We define the anisotropies as the densities of the expectation values of differences between these
components,

A(E) =
T

V

�
β

6

�

n

�
tr E2

⊥(n)− tr E2
� (n)

��
, A(B) =

T

V

�
β

6

�

n

�
trB2

⊥(n)− trB2
�(n)

��
,

(2.10)
1Note that the Euclidean E2 (E2) turns into −E2 (−E2) in Minkowski space-time, whereas the sign of the squared

magnetic fields remain the same.
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3.2 Anisotropies

Here, we study the individual components of the gauge action, as given by eq. (2.9). We remark that

for the anisotropies – unlike in sec. 3.1 above – we do not perform the continuum limit, but only show

the scaling tendency of the results with the lattice spacing. In order to carry out a proper continuum

extrapolation, one has to subtract terms ∼ (eB)2 log a that arise from charge renormalization (see

app. A). We will revisit this issue in sec. 4.

Figure 3. The components T/V
��

n trB2
i (n)

�
and T/V

��
n tr E2

i (n)
�

in lattice units a−4, as measured on
a 243 × 6 lattice at a temperature T = 189 MeV. The anisotropies induced by the temperature and by the
magnetic field are indicated by the arrows.

First, we demonstrate the hierarchy of the gluonic components at T > Tc and B > 0, where effects

from both the temperature and the magnetic field are present. In fig. 3, we plot the expectation values

of the densities of the individual components eq. (2.9), as determined on our Nt = 6 lattices. In the

absence of the magnetic field, the anisotropy is induced solely by the temperature, separating the

chromo-magnetic and chromo-electric components. For B > 0, in addition the parallel and perpen-

dicular components split, due to the spatial anisotropy induced by the magnetic field
2
. The generated

hierarchy is
�
trB2

�
�
>

�
trB2

⊥
�
>

�
tr E2

⊥
�
>

�
tr E2

�
�
, similar to what was observed in the SU(2) theory

in ref. [14].

To determine the dependence of the anisotropies on the external magnetic field, in the left panel of

fig. 4, we plot A(E) and A(B) (see their definition in eq. (2.10)) as functions of eB at T = 0. The parallel

chromo-electric field is suppressed with respect to the perpendicular fields, resulting in a positive

A(E), whereas the chromo-magnetic sector shows the opposite effect, giving a negative A(B). This

non-perturbative finding is in-line with a perturbative treatment of the anisotropy, see the generalized

Euler-Heisenberg calculation in app. D, in particular eq. (D.5). According to this calculation, tr E2
�

increases the effective action (to bi-quadratic order in B and F), and is thus suppressed. In contrast,

trB2
� reduces the action, and is favored. This implies A(E) > 0 and A(B) < 0, as we have found.

Furthermore, within the present statistical accuracy, the two anisotropies have the same magnitude.

The gluonic anisotropies do not show any significant finite volume effects, and we also find these

to be roughly independent of the temperature up to our largest T = 189 MeV. However, the signal-

2Note that the data in fig. 3 contains an additive divergence ∼ a−4. The anisotropies induced by T and B (indicated
by the arrows in the figure) are, however, ultraviolet finite.
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increases with eB�−Sg� = �+1

4
F 2�

Caution :

G. S. Bali et al, JHEP 1304(2013) 130Recent Lattice simulation



QCD Lagrangian with electromagnetic fields

Q = diag(Qq1 , Qq2 , · · · , Qqf ) Mq = diag(mq1 ,mq2 , · · · ,mqf )

Covariant derivative

Field strengths

fµν = ∂µaν − ∂νaµ

Charge and mass matrices

,

L = −1

4
F a
µνF

aµν − 1

4
fµνf

µν + q̄(iγµD
µ −Mq)q

Dµ = ∂µ − igAa
µT

a − ieQaµ

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν

∂f = 0 : constant fields



Background field method

: Slowly varying classical background field

: Quantum fluctuation

We apply the Covariantly-constant field as the background field.

D̂ab
ρ F̂ b

µν = 0 D̂ab
ρ = ∂δab + gfacbÂc

is varying very slowlyF̂ (∂F̂ = 0)

F̂ a
µν = Fµν n̂

a
n̂2 = 1

Âa
µ = Aµn̂

a

Gauge fixing（background gauge）
D̂ab

µ Abµ = 0

Fµν = ∂µAν − ∂νAµ

Aa = Âa +Aa

Âa

Aa

I. Batalin et al, Sov. J. Nucl.Phys. 26 (1977)214

M. Gyulassy and A. Iwazaki, Phys. Lett. B 165(1985) 157

N. Tanji and K. Itakura, Phys. Lett. B 713(2012) 117



Functional integral for second order fluctuations with 

�
DqDq̄ei

�
d4xq̄(iγµD̂

µ−Mq)q = det
�
iγµD̂

µ −Mq

�

The results are 
well known.

This work

exp
�
iSeff (Âµ)

�
=

�
DAµDcDc̄DqDq̄ exp

�
i

�
d4x

�
−1

4

�
F̂ a
µν + (D̂ab

µ Ab
ν − D̂ab

ν Ab
µ) + gfabcAb

µAc
ν

�2

− 1

2ξ
(D̂ab

µ Abµ)2 − c̄a(D̂µD
µ)accc + q̄(iγµD̂

µ −Mq)q + q̄(igγµAaµ · T a)q − 1

4
fµνf

µν

��

�
DAei

�
d4x − 1

2A
aµ{−(D̂2)acgµν−2gfabcF̂ b

µ}Acν

= det
�
−(D̂2)acgµν − 2gfabcF̂ b

µ

�−1/2

�
DcDc̄ei

�
d4x c̄[−(D̂2)ac]c = det

�
−(D̂2)ac

�+1

Effective action for Â

Gluon 

Ghost 

Quark

ξ = 1



The quark contribution to the effective action 

i∆Sq = log det[iγµD̂
µ −Mq]

D̂µ = ∂µ − igAµn̂aT a − ieQaµ

Un̂aT aU†

�
1/2 0
0 −1/2

�




w1 0 0
0 w2 0
0 0 w3





SU(2)

SU(3)

�
w1 0
0 w2

�
=

w1 =
1√
3
cos

�
Θ+

π

6

�
w2 = − 1√

3
cos

�
Θ− π

6

�
w3 =

1√
3
sin (Θ)

Nc�

a=1

w2
a =

1

2

Nc�

a=1

wa = 0

sin23Θ = 3C2 C2 = [dabcn̂an̂bn̂c]2

, ,

,

,

· ·
·

G. C. Nayak and P. Nieuwenhuizen, PRD71 (2005)

G. C. Nayak PRD72 (2005)
N. Tanji, Ann. Phys. 324(2009) 

Diagonalization in color space



We apply the Schwinger’s proper time method to evaluate
the effective potential.

In order to focus on the chromo-magnetic field, we employ 
the pure chromo-magnetic background for the gluon field. 

Performing the proper time integral, we derive the analytic 
expression of the effective potential of quark part.



Vq = V fin
q + V div

q

V fin
q =

Nc�

a=1

Nf�

i=1

�
−

a2a,i
24π2

�
log

�
2aa,i
µ2

�
+ 12ζ �(−1,

m2
qi

2aa,i
)− 1

�

+
m2

qiaa,i
8π2

log

�
2aa,i
m2

qi

�
−

m4
qi

16π4

�
log

�
2aa,i
m2

qi

�
+

1

2

��

aa,i =

��
gwa

�Hc + eQqi
�B
�2

=
�

g2w2
a
H2

c
+ e2Q2

qi
B2 + 2gwaeQqiHcBcosθHB

Hc =
�

�H2
c B =

�
�B2,

�H

�B
θHB

V fin
q =

Effective potential for quark part

c

log(2aa,i)

V
div
q =

Nf

48π2
(gHc)

2logΛ2 +
Nc

24π2




Nf�

i=1

Q
2
qi




2

(eB)2logΛ2



�B

e



�B �B

e



�B �B

�B

�H

e

Qq = 1

qw1(e)
qw2(e)

SU(2)

c

Color case with



�B �B

�B

�H

g

2
�H

e �B

e

e �B

−g

2
�H

qw1(e)
qw2(e)

qw1(e)

qw2(e)

c

c

c

Qq = 1SU(2)Color case with



Gluon＋ghost part effective potential

V
fin
g =

11Nc

96π2
(gHc)

2

�
log

�
gHc

µ2

�
− cg +

1

Nc

Nc�

a=1

λ2
alogλ

2
a

�

ReVg = V fin
g + V div

g

ImVg = − Nc

16π2
(gHc)

2

λ1 = +1 λ2 = −1

SU(2)

SU(3)

: Nilesen-Olesen instability

Color charges

λ2
1 =

1

2

�
1− cos

�
2Θ− π

3

��
λ2
2 =

1

2

�
1− cos

�
2Θ+

π

3

��
λ2
3 =

1

2
[1 + cos (2Θ)]

G. C. Nayak and P. Nieuwenhuizen, PRD71 (2005)

,

, ,

+

· ·
· · ·
·

Real part

Imaginary part

G. K. Savvidy, Phys. Lett. B71(1977)

N. Nielsen and Olesen, Nucl. Phys. B144(1978)

log(gHc)

V
div
g = −11Nc

96π2
(gHc)

2logΛ2



Logarithmic divergences and renormalization

replacing the couplings and field in the potential by bare couplings
g0, e0 H0, B0and fields

Veff =
H

2
0

2
+

B
2
0

2
+ V

div
0 + V

fin
0

and rescale the couplings and fields as

g = Z1/2
H

g0 e = Z1/2
B e0

H0 = Z
1/2
H

H B0 = Z1/2
B B,

,

The rescale factors are given by

ZH = 1 + δH ZB = 1 + δB,

counterterms

c

V
div =

1

2

�
− 1

(4π)2

�
11

3
Nc −

2

3
Nf

��
(gHc)

2logΛ2 +
1

2

Nc

12π2




Nf�

i=1

Q
2
qi



 (eB)2logΛ2



Using renormalized couplings g, e and fields H,B

we can write the effective potential as

Veff =
1

2
ZHH

2 +
1

2
ZBB

2 + V
div + V

fin

Introducing the counterterms so that log divergences cancel 

we finally get renormalized effective potential

Veff =
H

2

2
+

B
2

2
+ V

fin

Furthermore, we can calculate the beta functions of QCD and QED

δB = −Nce2

12π2




Nf�

i=1

Q2
qi



 log

�
Λ2

µ2

�

βQCD = µ
∂g

∂µ
=

1

2
gµ

∂ZH

∂µ
= − g3

(4π)2

�
11

3
Nc −

2

3
Nf

�

βQED = µ
∂e

∂µ
=

1

2
eµ

∂ZB

∂µ
= +

Nce3

12π2




Nf�

i=1

Q2
qi





δH =
g2

(4π)2

�
11

3
Nc −

2

3
Nf

�
log

�
Λ2

µ2

�

correct one-
loop β functions

c

c

c



In this study, we consider the color SU(3) case with the three 
flavor (u,d,s).

We use the following parameters

Qu = +
2

3
Qd = Qs = −1

3

mu = md = 5 MeV ms = 140 MeV

We investigate the magnetic field dependence of the QCD 
effective potential.

,

,

αs = 1 αEM =
1

137
µ = 1 GeV, ,
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The one-loop YM effective potential                    has a minimum away from 
the origin, which corresponds to the dynamical generation of the chromo-
magnetic condensate.

Quark loop contributions attenuate the gluonic contributions.
How the condensate behaves in the presence of the magnetic field?

H
2
c /2 + VYM

QCD effective potential at 

This result is qualitatively in agreement with LQCD and FRG analyses.

B = 0

J. Amebjorn, V. K. Mitrjushkin and A. M. Zadorozhnyi, PLB 245 (1990) 575

A. Eichhorn, H. Gies and J. M. Pawlowski, PRD83 (2011) 045014
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We defined the normalized potential:

As the magnetic field increases, the minimum shift to the right hand side.

The chromo-magnetic condensate increases with an increasing
magnetic field. 

This behavior is quite similar to the recent observed gluonic magnetic 
catalysis in lattice QCD.
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QCD effective potential with finite magnetic fields 
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In the mass less limit of the quark              , one can obtain the analytic 
expression of               with              : 

mq → 0
(gHc)

2
min eB = 0

(gHc)
2
min,0 = µ

4exp

�
− 8π

b0αs
− 1 +

2

b0

�
11Nc

3
cg −

2Nf

3
cq

��
b0 =

11Nc

3
− 2Nf

3,
where cg cqand are some constants.

In the small eB region, (gHc)min,0 >> eB , we find

(gHc)
2
min = (gHc)

2
min,0 +

(4π)2

b0

Nc

12π2




Nf�

i=1

Q
2
qi



 (eB)2

Note that the coefficient of the second term is the ratio of 
the coefficients of          and         .βQCD βQED

In the large eB region,              still monotonically 
increases as the magnetic field increases.

eB > (gHc)min , (gHc)
2
min



In our results, quark loop contributions should be important, 
since only Vq has B-dependence.

To see the importance, we define the following quantity

∆V̄ (Hc, B) = V̄ (Hc, B)− V̄ (Hc, 0)

= Vq(Hc, B)− Vq(0, B)− Vq(Hc, 0)

=
i�
d4x

log

�
det(i /̂D(Hc, B)−Mq)

det(i /̂D(Hc, 0)−Mq) det(i /̂D(0, B)−Mq)

�
.
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Using the definition of ΔV, we can rewrite the normalized effective 
potential

V̄ (Hc, B) = V̄ (Hc, 0)−∆V̄ (Hc, B)

=
H

2
c

2
+ VYM +

�
Vq(Hc, 0) +∆V̄ (Hc, B)

�

Vq(Hc, 0)

∆V̄ (Hc, B)

: B-independent part of quark loop which attenuates 
  the gluonic contributions.

: B-dependent part of quark loop which enhances 
  the gluonic contributions.

Completely opposite roles

Thanks to the property of the B-dep. part of the quark loop,
            monotonically increases with an increasing magnetic field.

This property of the quark loop supports the gluonic magnetic catalysis
at zero temperature, observed in current lattice data. 

(gHc)
2
min

+



Summary

We derive the analytic expression of the one-lop QCD effective 
potential with the magnetic field.

After the renormalization of couplings and fields, we obtain the correct
β-functions of both QCD and QED.

Our result shows that the chromo-magnetic field prefers to be parallel
(or anti-parallel) to the external magnetic field, which is consistent with 
recent lattice results.

Quark loop contributions with magnetic fields enhance the gluonic 
contributions and thus the chromo-magnetic condensate monotonically
increase with an increasing magnetic field.

This result supports the gluonic magnetic catalysis
at zero temperature, observed in current lattice data. 


