Diffractive physics at ALICE,LHC.

Kim Beomkyu, Yonsei university

Physics motivation – Mesons not allowed by CQM

- Constituent Quark Model (CQM)
 - Goes back over 40 years to Gell-Mann and Zweig
 - Constituent quarks: Quasi particles with additional effective mass due to interac tion with gluon field.
- Mesons in constituent quark model
 - Color-singlet $|q\bar{q}\rangle$ states, groups into SU(*N*)_{*flavour*} multiplets
 - Table of mesons with quantum numbers

l	<u>s</u>	J	$P = (-1)^{1+\ell}$	I	$G = (-1)^{I+\ell+S}$	$C = (-1)^{\ell+S}$	$I^G J^{PC}$	nomenclature
0	0	0	-1	0	+1	+1	0+0-+	η
0	0	0	-1	1	$^{-1}$	$^{+1}$	1-0-+	π
0	1	1	-1	0	$^{-1}$	$^{-1}$	0-1	ω
0	1	1	-1	1	+1	-1	1+1	ρ
1	1	0	+1	0	+1	$^{+1}$	0+0++	f_0
1	1	0	+1	1	$^{-1}$	+1	$1^{-}0^{++}$	a_0
1	0	1	+1	0	$^{-1}$	$^{-1}$	0-1++	h_1
1	0	1	+1	1	+1	-1	$1^{+}1^{+-}$	\boldsymbol{b}_1
1	1	1	+1	0	+1	$^{+1}$	0+1++	f_1
1	1	1	+1	1	-1	+1	$1^{-}1^{++}$	a_1
1	1	2	+1	0	+1	$^{+1}$	0+2++	f_2
1	1	2	+1	1	$^{-1}$	$^{+1}$	$1^{-}2^{++}$	a_2
2	0	2	-1	0	+1	+1	0+2-+	η_2
2	0	2	$^{-1}$	1	$^{-1}$	$^{+1}$	$1^{-}2^{-+}$	π_2

- Not allowed J^{PC} with CQM mesons : $0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, ...$ (spin-exotic)

Purposes of this study

- Finding states beyond Constituent Quark Model (CQM)
 - Physical mesons = linear superposition of all allowed basis states: $|q\bar{q}\rangle$, $|q\bar{q}g\rangle$, $|gg\rangle$, $|q^2\bar{q}^2\rangle$, ...
 - Quarkonia $q\bar{q}\rangle$ Tetra-quarks : is not my sight $q^2\bar{q}^2\rangle$ Hybrids : The first purpose of this study $q\bar{q}g\rangle$ Glueballs : The second purpose $gg\rangle$

Hybrids $|q\bar{q}g\rangle$

- Resonances with excited glue and quarks.
- Angular momentum of glue component \rightarrow all J^{PC} possible
- Lightest predicted hybrid : **spin-exotic** $J^{PC} = 1^{-+}$
 - ✓ Mass 1.3 to 2.2 GeV/ c^2
 - ✓ Experimental candidates $\pi_1(1400, 1500, 2000)$ controversial

Purposes of this study

- Finding states beyond Constituent Quark Model (CQM)
 - Physical mesons = linear superposition of all allowed basis states: $|q\bar{q}\rangle$, $|q\bar{q}g\rangle$, $|gg\rangle$, $|q^2\bar{q}^2\rangle$, ...
 - Quarkonia $q\bar{q}\rangle$ Tetra-quarks : is not my sight $q^2\bar{q}^2\rangle$ Hybrids : The first purpose of this study $q\bar{q}g\rangle$ Glueballs : The second purpose $gg\rangle$

Glueballs $|gg\rangle$

- Bound states consisting purely of gluons
- Lightest predicted glueball : ordinary $J^{PC} = 0^{++}$
 - ✓ Will strongly mix with nearby conventional $J^{PC} = 0^{++}$
 - ✓ Mass 1.5 to 2.0 GeV/ c^2
 - Experimental candidate *f*₀(1500); glueball interpretation disputed

Systems for the study?

- Gluon-rich environment is needed
 - Gluons play a key role for Hybrids & glueballs
 - More possibility to search them with gluon-rich environment

→Centrally diffracted system(CD)

- Central diffraction system
 - Central diffraction system is caused by two IP(pomeron) exchange

→ Pomeron is also quasi-particle(at least {gg}(first order) in and around proton)

- \rightarrow Gluon-rich environment
- \rightarrow More possible to find a glueball and hybrid
- The best thing is we can **exclude many quarkonia from the system**
 - → J^{PC} =even⁺⁺(J^{PC}) states are only possible with two **IP** exchange.
 - \rightarrow Thus many quantum states cannot survive in CD system
 - \rightarrow We can search glueballs or hybrids without backgrounds

Central diffraction and double-gap topology

Schematic view of the Central Diffraction (double IP exchange)

Of particular interest is double-gap topology as filter for central diff(CD)

A Large Ion Collider Experiment

Double-Gap topology in ALICE

- Selection criteria for the double-gap topology
 - Activity in the central barrel (-0.9< η <0.9) \rightarrow detector : SPD
 - Two gaps (no activity) outside of central barrel
 - A-side : 0.9<η<5.1, C-side : -3.7< η <-0.9
 - Detectors : VZERO, FMD, SPD requiring no activity(no tracks and signals)

•
$$R_{DG}(2.8, \pm 0.9, 4.2) = \frac{N_{DG}}{N_{MB}} = (7.63 \pm 0.02_{stat} \pm 0.87_{sys}) \times 10^{-4}$$

- Uniform behavior at ALICE, stable with various run-periods.

Are we correctly taking CD events by DG topology?

- CD (two IP exchange) system confines quantum numbers
 - Double \mathbb{P} exchange only allows quantum numbers, $J^{PC} = even^{++}(0^{++}, 2^{++}, ...)$
 - With double-gap condition
 - $\rightarrow 1^{--}\rho_0(770)$ was restricted, $0^{++}f_0(980)$ and $2^{++}f_2(1270)$ appear significantly

Results $X^0 \to K^+ K^-$

- Full statistics at 7TeV
- Clear $f_0(1500)(gluball \ candidate)$ or $f'_2(1525)$ and $f_0(1710)$
 - Need to study about J=0 and p and c=+ (by partial wave fit)
- $f_2(1270)$, $f_0(1370)$ also can be seen however cannot be distinguished.

COMPASS measurement for hybrid $1^{-+}(\pi_0(1600))$

COMPASS measurement for hybrid1⁻⁺($\pi_0(1600)$)

13

4 Pion events and 3 pion sub-system at ALICE

- We are expecting to find a hybrid 3 pion sub-system of 4 pion events fro m DG(1-+ →pi+pi-pi-)
- Developing "partial wave analysis" which was used for the COMPASS res ult in order to pull out signals from data
- Analysis are ongoing for glueball and hybrids.

Summary and promising points for the physics

- We found that we can choose central production by control of the doub le rapidity gap condition. $(f_0(980), f_2(1270)$ showed up as we expected)
- Search for glueball& hybrids is ongoing. Remaining jobs are just "fitting"
- At RUN2(2015~) period, pp collisions with √s =13 to 14 TeV are reserved. We expect that there would be more statistics with central production since cross-section of the double pomeron exchange goes up exponentia lly with energy.
- With the help of the forward new detectors, ADA & ADC, we can measu re the system more efficiently with extended pseudo-rapidity coverage
- ALICE has the capability to measure low p_T particles compared to other LHC experiment(ATLAS, CMS) which is very important for this study

 \rightarrow Promising subject for RUN₂, RUN₃ with ALICE

Physics motivation

- Exotic meson : mesons which have quantum numbers not possible in the quark model
 - QCD suggests : in addition to mesons made by quarks, new states where colored gluons play an essential role.
 - New state 1 : "glueballs" resonating states purely made by gluons
 - New state 2 : "Hybrids" resonating states made by gluons and quarks.
 - This study : search for this glueballs or Hybrids
- Possible states by J^{PC} expression for the constituent model of $q\bar{q}$ mesons

0-+, 0++, 1--, 1+-, 1--, 2--, 2-+, 2++, 3--, 3+-, 3--, · · ·

• Not possible states

• The latter quantum numbers are known as "*explicitly exotic*". If this states are found, it implies that it should not be a normal $q \bar{q}$ meson

Glueballs in the exotic mesons

- Gluons
 - Because gluons carry color charge, it is possible to bind into color-singlet objects
 - The simplest glueballs are either two or three gluons confined together.
 - The best prediction of the glueball spectrum comes from the lattice QCD

Two and three gluons bound into color singlet glueballs

Glueball states which are predicted by L-QCD. The states described by black means that this states are also possible by $q\bar{q}$ meson. On the other hand, pink states are not possible by $q\bar{q}$

- The lightest glueball is expected to have $J^{PC} = 0^{++}$ followed by a 2⁺⁺ and then a 0⁻⁺. Unfortunately all these 3 states are allowed for the normal meson[$q\bar{q}$]
- The lightest glueball states with exotic are beyond $4GeV/c^2$. This exceeds our experimental mass regime.

Glueballs in this experiment

- By double-gap condition
 - $J^{PC} = even^{++}$ is only allowed
 - 0^{++} and 2^{++}
 - Two possible states of glueball
 - For 2^{++} , it is difficult to discriminate it from $q\bar{q}$ mesons
 - Target of this experiment
 - 0⁺⁺ gluball

Mass independent partial wave fit

Components of the LogLikelihood function:

Incoherent sum over reflectivities

Production amplitudes \rightarrow Spin density matrix:

$$\rho_{ij}^{\epsilon} = \sum_{r} T_{ir}^{\epsilon} T_{jr}^{\epsilon*}$$

Normalized decay amplitudes:

$$ar{\psi}^\epsilon_i(au) = rac{\psi^\epsilon_i(au)}{\sqrt{\int |\psi^\epsilon_i(au')|^2 \mathrm{d} au'}}$$

Phase space integrals (with acceptance):

$$egin{aligned} & I\!A_{ij}^\epsilon = \int ar{\psi}_i^\epsilon(au_n) ar{\psi}_j^\epsilon(au_n)^* \mathit{Acc}(au) \mathrm{d} au \ & \mathit{Acc}(au) = \left\{egin{aligned} 0 \ 1 \end{aligned}
ight. \end{aligned}$$