Study of $B^0 \rightarrow l^+ \tau^$ using untagged method at Belle

Youngsoo Sohn

Yonsei University, Seoul, Korea Jan. 17th 2014 @Saga-Yonsei Workshop

Introduction

* $B^0 \rightarrow e^+ \tau^-$, $B^0 \rightarrow \mu^+ \tau^-$ are forbidden in the Standard Model by lepton-flavor conservation law.

- * However, they are predicted to occur in many theories "beyond the Standard Model" including neutrino oscillations.
- * In the general flavor-universal Minimal Supersymmetric Standard Model(MSSM), the branching fractions are estimated as below.

$$Br(B^0 \rightarrow l^+ \tau^-) \approx 2.0 \times 10^{-10}$$

Figure 1: The diagram for $B^0 \rightarrow l^+ \tau^-$

* Observation of these decays would be clear evidence of physics beyond the Standard Model.

Existing Measurements

Upper limits on the branching fractions are as follows.

(1)BABAR(342fb⁻¹), PHYSICAL REVIEW D 77 091104(R) (2008) – hadronic tagged

$$Br(B^0 \to e^+ \tau^-) < 2.8 \times 10^{-5}$$
 90% C.L.
 $Br(B^0 \to \mu^+ \tau^-) < 2.2 \times 10^{-5}$ 90% C.L.

(2) CLEO(9.2fb⁻¹), PHYSICAL REVIEW LETTERS 93 241802 (2004)- untagged

$$Br(B^0 \to e^+ \tau^-) < 1.3 \times 10^{-4} \quad 90\% \quad C.L.$$

 $Br(B^0 \to \mu^+ \tau^-) < 3.8 \times 10^{-5} \quad 90\% \quad C.L.$

Selection Criteria(1)

- $\Delta r < 2.0cm$ $|\Delta z| < 5.0cm$
- $-\mu$: Muid _mdst.Muon _likelihood () > 0.9
- e: eid.prob(3,-1,5) > 0.9
- $K: K/\pi \quad atc _ pid(3,1,5,3,2) > 0.6$ - p: Pr/\pi atc _ pid(3,1,5,4,2) > 0.6
- $\pi: \pi/K \ atc \ pid(3,1,5,2,3) < 0.6$

Selection Criteria(2)

- * Number of lepton $N_l = 1$
- $*M_{bc}: 5.10 GeV/c^2 < M_{bc} < 5.29 GeV/c^2$
- * $\Delta E: -3GeV < \Delta E < 5GeV$
- * CM momentum of signal lepton : $1.8GeV/c < p_l^* < 3GeV/c$
- * Cosine Thrust Angle :

 $\left|\cos\theta_{TH}^{e}\right| < 0.61$ & $\left|\cos\theta_{TH}^{\mu}\right| < 0.53$

*Polar angle of missing (neutrino):

 $\cos\theta_{missing} < 0.9$ *Cosine BY ($\cos\theta_{BY}$, $Y = \pi + l$):

 $-1 < \cos \theta_{BY} < 1$

*Number of charged tracks: $N _ chg \ge 5$

Signal MC Study

We study for $B^0 \rightarrow e^+\tau^-$ and $B^0 \rightarrow \mu^+\tau^-$ by using the de cay mode $\tau^- \rightarrow \pi^- \nu_{\tau}$. Therefore, final state of B^0 is $B^0 \rightarrow e^+\pi^- \nu_{\tau}$ and $B^0 \rightarrow \mu^+\pi^- \nu_{\tau}$. Since neutrino is undete cted, neutrino is missing particle in the event. The missing energy and momentum in the CM frame are defined as follows.

$$E_{miss} \equiv 2E_{beam} - \sum_{i} E_{i} \qquad \qquad \stackrel{\rightarrow}{P}_{miss} \equiv -\sum_{i} \stackrel{\rightarrow}{P}_{i}$$

We generated 300,000 events for signal MC both $B^0 \rightarrow e^+ \tau^$ and $B^0 \rightarrow \mu^+ \tau^-$.

Sample used in analysis

Mode	Process
Generic MC	$B\bar{B}, \bar{q}\bar{q}$
Ulnu	$B \rightarrow X_u l \nu$
Rare B	$b \rightarrow s, d$

Neural Network (*eτ*) * Input variables

Black line: signal Red line: continuum Blue line: BBbar Green line: Ulnu Pink line: Rare

- 5.1GeV<Mbc<5.29GeV
- -3GeV<de<5GeV

1.8GeV <e mom. <3GeV

-0.61 <cos_thrc< 0.61

costh_missing<0.9

 $-1 < \text{costh}_BY < 1$

 $N_chg \ge 5$

* picture

From left to right;

Top1 : Mbc Top2: transverse missing mom. Top3: pi mom. in tau rest frame

Top4: pion mom in CM frame Top5: cos_lepton Top6: cos_BL Bot1: M2_miss Bottom2: R2so Bottom3: R4so Bottom4: R2oo Bottom5: R3oo Bottom6: R4oo (sfw 5 moment variables)

Neural Network (μτ) * Input variables

Black line: signal Red line: continuum Blue line: BBbar Green line: Ulnu Pink line: Rare

- 5.1 GeV < Mbc < 5.29 GeV
- -3GeV<de<5GeV

1.8GeV <e mom. <3GeV

 $-0.53 < cos_thrc < 0.53$

 $costh_missing < 0.9$

 $-1 < costh_BY < 1$

 $N_chg \ge 5$

* picture

From left to right;

Top1 : Mbc Top2: transverse missing mom. Top3: pi mom. in tau rest frame

Top4: pion mom. CM frame Top5: cos_lepton Top6: cos_BL Bot1: M2_miss Bottom2: R2so Bottom3: R4so Bottom4: R2oo Bottom5: R3oo Bottom6: R4oo (sfw 5 moment variables) Neural Network Output (Y_n)

Hidden node: N+2,N +1($e\tau$)

Training sample: signal, cont. BBbar

Black line: signal Red line: continuum Blue line: BBbar Green line: Ulnu Pink line: Rare

* Picture

Top left: y_ann distribution of signal

Top middle: y_ann distribution of continuum

Top right: y_ann distribution of BBbar

Bottom left: y_ann distribution of Ulnu Bottom middle: y_ann of Rare Neural Network Output (Y_n)

Hidden node: N+2,N +1($\mu\tau$)

Training sample: signal, cont. BBbar

Black line: signal Red line: continuum Blue line: BBbar Green line: Ulnu Pink line: Rare

* Picture

Top left: y_ann distribution of signal

Top middle: y_ann distribution of continuum

Top right: y_ann distribution of BBbar

Bottom left: y_ann distribution of Ulnu Bottom middle: y_ann of Rare

2D PDF $P_l^B : Y_N$ ($e\tau$)

≻² 1

0.9

0.8

0.7

0.6

0.5

1.8

≻ž

0.9

0.8

0.7

0.6

0.5

1.8

2.2

2.2

2

2.4

2.6

2.8 3 p^B₁ (GeV/c)

2

2.4

2.6

2.8 (p^B₁ (GeV/c)

$Y_N > 0.47$

PDF's by Roo2DKeysPDF

0.0012 0.000 x 2000 0.000 x 2000 0.000 x 2000

0.000

0.0004

0.0002

0.0002 0.0000 0.000

0.02

8980.0 Events Ev

0.0004

0.0002

Signal, BBbar cont., ulnu, rare

Pull distribution ($e\tau$)

2D PDF $P_l^B: Y_N$ ($\mu\tau$)

≻^{z 1}

0.9

0.8

0.7

0.6

0.5

0.4

0.3

1.8

2.2

2

$Y_N > 0.25$

*Picture

Signal, BBbar cont., ulnu, rare

2.4 2.6

Evender (0.0230.012512

0.0006

0.0004

0.0002

2.8 p^B (GeV/c)

Pull distribution ($\mu\tau$ **)**

Result

 $e\tau$

Y_n cut	Signal efficiency (%)	Number of BB/continuum Ulnu/rare	Expected U.L. (10 ⁻⁵)
> 0.47	10.64	$\begin{array}{r} 2083 \pm 45.6 / 1039 \pm 32.2 \\ 3374 \pm 58.1 / 50 \pm 7.1 \end{array}$	1.3

 $\mu\tau$

Y_n cut	Signal efficiency (%)	Number of BB/continuum Ulnu/rare	Expected U.L. (10 ⁻⁵)
> 0.25	10.59	$\begin{array}{r} 3636 \pm 60.3 / 2082 \pm 45.6 \\ 4135 \pm 64.3 / 258 \pm 16.1 \end{array}$	1.4

Blue line: On- off data

Pink line: BBbar+Ulnu+Rare

In lepton_mom. sideband region

 $1.8GeV < P_l^* < 2.2GeV$

From left to right;

Top1 : Mbc Top2: transverse missing mom. Top3: pi mom. in tau rest frame Top4: pion mom in CM frame Top5: cos_lepton Top6: cos_BL

* picture

Bot1: M_miss2 Bottom2: R2so Bottom3: R4so Bottom4: R2oo Bottom5: R3oo Bottom6: R4oo (sfw 5 moment variables)

Blue line: On-off data

Pink line: BBbar+Ulnu+Rare

In lepton_mom. sideband region

 $1.8GeV < P_l^* < 2.2GeV$

* picture

From left to right;

Top1 : Mbc Top2: transverse missing mom. Top3: pi mom. in tau rest frame

Top4: pion mom in CM frame Top5: cos_lepton Top6: cos_BL Bot1: M_miss2 Bottom2: R2so Bottom3: R4so Bottom4: R2oo Bottom5: R3oo Bottom6: R4oo (sfw 5 moment variables)

Systematics

	еτ	$\mu \tau$
N_{BB}	1.4%	1.4%
MC Statistics	0.56%	0.558%
Tracking efficiency	0.7%	0.7%
Lepton ID	1.8%	2.3%
Pion ID	0.9%	0.9%

* Systematics Study - doing Control sample study $B^+ \rightarrow D^0 \pi^+$ to calibrate $B^0 \rightarrow l^+ \tau^-$