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A B S T R A C T

In this paper we report the implementation of a global vertex fitting algorithm within the Belle II analysis software environment, which was originally developed
for BaBar (Hulsbergen, 2005). We explore the impact of global vertex fitting algorithms for flavour physics analyses with the Belle II detector at the SuperKEKB
𝑒+𝑒− collider, such as in the reconstruction of final states with neutral particles, and in fits with geometrical constraints from SuperKEKB’s nano-beam interaction
region. The algorithm is compared to the standard vertex fitting algorithm employed by the Belle experiment. We have developed the fitting framework to utilise
the EIGEN library for linear algebra operations, reducing the computation time for vertex fitting operations by an order of magnitude over previous methods.
This has a significant impact on physics analysis computing efficiency, where vertex fitting over large combinations of final state particles is one of the most CPU
intensive operations at Belle II.

1. Introduction

Particle vertex fitting techniques are widely used in particle and
nuclear physics. Beyond the suppression of background, applications
range from the improvement of particle momentum resolution (under
the assumption they originate from some vertex point), to the deter-
mination of the presence of intermediate particles, and the precision
determination of decay vertex positions. One can, for example, combine
the measurements of two charged pion tracks originating from the
decay of a 𝐾0

S to extract the decay vertex position, flight length, and
four-vector and their uncertainties. By performing a kinematic fit, one
obtains an improvement of the pion track momenta and can use the 𝜒2

of the fit result to suppress background.
In order to construct more complex decay topologies, one usually

combines cascades of these fits starting with long lived stable particles
such as electrons, muons, pions and photons, forming intermediate
resonances and finally the full decay of interest. For example, in the
decay 𝐵0 → 𝐽∕𝜓𝐾0

S , where 𝐽∕𝜓 → 𝜇+𝜇− and 𝐾0
S → 𝜋+𝜋−, one

would first fit the 𝐽∕𝜓 and 𝐾0
S candidates and then use these to

construct the 𝐵0 candidates, as depicted in Fig. 1a and 1b. However,
this only works well if the final state particles are charged and leave
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traces in the tracking detectors. Neutral particles cannot be tracked
in Belle II; they are only measured by their energy deposition in the
calorimeter. Single layer crystal calorimeters do not offer directional
information on where the particle associated to an energy deposition
originated from. That means that the decay vertex cannot be extracted
from a fit that exploits only the calorimeter information. In order to
obtain the momentum vector, it could be assumed that the particle
originates from the primary interaction point and travels directly into
the cluster’s centre of gravity. This can introduce a large bias on the
momentum direction. Consider, for example, the decay 𝐵0 → 𝐽∕𝜓𝐾0

S ,
where the kaon instead decays to neutral final states, 𝐾0

S → 𝜋0𝜋0, and
the pions decay, 𝜋0 → 𝛾𝛾, as displayed in Fig. 2. Weakly decaying
intermediate particles such as 𝐾0

S mesons have flight lengths of up to
tens of centimetres at Belle II. Thus for a neutral particle in such a
particle decay chain, the assumption that it originates from the primary
𝑒+𝑒− collision is not sufficient. Furthermore, decays of particles into
an intermediate state and a charged particle, i.e. 𝐷∗+ → 𝐷0𝜋+, form
a decay vertex that is only constraint by one measurement and thus
susceptible to measurement errors.

The method we present in this paper overcomes these issues by glob-
ally fitting the entire decay tree in a single fit, taking into account all
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Fig. 1. (a) Depiction of a 𝐽∕𝜓 → 𝜇+𝜇− decay. The red lines show the track helix approximations obtained from the tracking detectors, the blue dashed lines show the decaying
particle momentum vectors found by the fit. Since the decay length of the 𝐽∕𝜓 is too short to be seen in the detector, its decay vertex is taken to be the one of the 𝐵0. (b)
Depiction of a 𝐵0 → 𝐽∕𝜓(→ 𝜇+𝜇−)𝐾0

S (→ 𝜋+𝜋−) decay. Measured track helices do not necessarily overlap in three dimensions. The depicted length ratios are not to scale.

Fig. 2. Depiction of the decay 𝐵0 → 𝐾0
S𝐽∕𝜓 . The red lines show the track helix

approximations obtained by the tracking detectors, the blue dashed lines show the
composite particle momentum vectors found by the fit. The dashed black lines depict
the photon momenta found by the fit. Note that these can only be determined by the
fit as the directional information of the calorimeter is not sufficient. The initial guess
is that they point from the interaction point towards the calorimeter cluster. The decay
lengths of the 𝐽∕𝜓 and 𝜋0 are too short to be seen in the detector therefore the vertex
positions are taken from the particle above them in the hierarchy. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

intermediate particles, extracting all involved particle’s four-momenta,
vertex positions, flight lengths and their covariance matrices, using a
Kalman Filter as described in Ref. [1]. We use the software environment
of Belle II and rely on the C++template library EIGEN [2] for matrix
operations, which provides fast execution times for the fit algorithm.
We furthermore present physics applications of the fitter with Belle II
Monte Carlo samples and study performance characteristics.

1.1. The Belle II experiment

The vertex fitting algorithm described in this paper was developed
for the analysis software framework of Belle II. The Belle II experiment
takes place at the asymmetric 𝑒+𝑒− collider, SuperKEKB. SuperKEKB
provides a beam energy slightly above the mass of the 𝛶 (4S) resonance
(10.58 GeV) at an instantaneous luminosity of 8 ⋅ 1035 cm−2 s−1. The
𝛶 (4S) resonance decays into pairs of 𝐵-mesons just above production
threshold, hence this type of experiment is referred to as a 𝐵-factory.
The asymmetric beam energy gives the 𝐵-meson a relativistic boost
along a direction close to the detector’s axis of symmetry, increasing its
flight length in the lab frame, which makes it possible to study the time
evolution of 𝐵 decays — a key observable in the study of CP symmetry
violation.

The Belle II detector has a cylindrical structure designed to study the
decays of 𝐵- and 𝐷-mesons, 𝜏-leptons and other processes produced in
𝑒+𝑒− collisions. Six layers of silicon vertex detectors (2 layers of silicon
pixels (PXD), and 4 layers of double sided silicon detectors (SVD)) are
located in the central volume of the detector, designed to accurately
track the flight paths of charged particles. The following layers are, a
central drift chamber (CDC) used to measure track trajectories within
a solenoid magnetic field, Cherenkov light based particle identification
devices surrounding the CDC in the barrel (TOP) and forward regions
(ARICH), followed by the CsI(Tl) electromagnetic calorimeter (ECL).
The outermost layers are composed of a magnet solenoid and a 𝐾0

L and
muon detector system (KLM), which is also used as the flux return yoke
of the magnet. The magnetic field is aligned along the detector’s axis of
symmetry. For a more detailed description of the detector see Ref. [3].

Figs. 3 and 4 show an event display depicting simulated particles
traversing the Belle II detector. In the decay 𝛶 (4S) → �̄�0𝐵0, one meson
decays as �̄�0 → 𝐷𝜔𝜋𝜋, and the other as 𝐵0 → 𝐾S𝐽∕𝜓 , with 𝐽∕𝜓 →
𝜇+𝜇− and 𝐾0

S → 𝜋0𝜋0 with 𝜋0 → 𝛾𝛾. Fig. 3 depicts the full detector
geometry and Fig. 4 shows a close-up of the inner vertex detectors. In
this example we show that the decay vertex of the 𝐾0

S can be highly
displaced.

2. Extended Kalman filter

Vertex fitting can be formulated as a least squares minimisation
problem. The computational challenge in finding a solution lies in
matrix inversions, which naively scale as (𝑛3), where 𝑛 is the dimen-
sion of the matrix. In a naive approach, this is equal to the number
of parameters extracted in the fit. An extended Kalman Filter is an
iterative approach to find the least squares estimator by defining a
series of constraints (knowledge of parameters from measurements and
symmetries) on a hypothesis (a set of particle parameters in this case).
The hypothesis has different states during the stages of the filtering
process. The filtering process is an iterative algorithm applying the
constraints sequentially and updating the state with respect to the
constraints. The sequence is repeated until convergence is reached
or divergence is observed. In the case of convergence, the last state
describes the best hypothesis for the parameters that can be found. We
use an Extended Kalman Filter in the gain matrix formulation [1,4,5]
in our algorithm. The state vector 𝒙 holds the particle parameters to
be optimised by the fit. The parameters depend on the type of particle.
The most general parametrisation takes the form

𝒙 = {𝑥1, 𝑦1, 𝑧1, 𝜃1, 𝑝𝑥1, 𝑝𝑦1, 𝑝𝑧1, 𝐸1,… , 𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝜃𝑛, 𝑝𝑥𝑛, 𝑝𝑦𝑛, 𝑝𝑧𝑛, 𝐸𝑛}, (1)

where vertex coordinates of the 𝑖th particle are denoted as {𝑥𝑖, 𝑦𝑖, 𝑧𝑖}, its
decay length is denoted as 𝜃𝑖 and the four momentum is {𝑝𝑥,𝑖, 𝑝𝑦,𝑖, 𝑝𝑧,𝑖,
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Fig. 3. Event display projected onto the 𝑥–𝑦 plane depicting the process of 𝑒+𝑒− → 𝛶 (4S) → �̄�0𝐵0, with �̄�0 → 𝐷𝜔𝜋𝜋 and 𝐵0 → 𝐾S𝐽∕𝜓 , where 𝐽∕𝜓 → 𝜇+𝜇− and 𝐾0
S → 𝜋0𝜋0 with

𝜋0 → 𝛾𝛾. All particles of the signal 𝐵0 decay are indicated by black lines. The rest of the event correspond to the decay of the �̄�0. All distances are measured in centimetres. For
a close-up of the vertex detector see Fig. 4.

𝐸𝑖}, and 𝑛 is the number of particles in the fitted topology. This implies
that 𝑛 ≈ 8 × number of particles. However, for final state particles
the decay vertex is not of interest, so that only the momenta have
to be parametrised. The problem is split into 𝑘 constraints given by
measurements and other knowledge of parameters (see Section 3 for
the definitions of the measurement 𝒎 and hypothesis 𝒉 for each of
the different constraints). The minimised 𝜒2 can be expressed as a
weighted sum of 𝑘 sets of equations, which are the constraints. For a
given iteration, 𝛼, of the Kalman Filter, one can write

𝜒2
𝛼 =

∑

𝑘
𝜒2
𝑘 , (2)

and
𝜒2
𝑘 = (𝒙𝒌 − 𝒙𝑘−1)𝑇𝑪−1

𝑘−1(𝒙𝒌 − 𝒙𝑘−1)+

(𝒎𝑘 − 𝒉𝑘(𝒙𝒌))𝑇 𝑽 −1
𝑘 (𝒎𝑘 − 𝒉𝑘(𝒙𝑘)),

(3)

using the measurement covariance matrix 𝑽 −1
𝑘 transported to the 𝒎−𝒉

system as a weight, and the covariance matrix 𝑪−1
𝑘−1 of the hypothesis,

such that the hypothesis of each constraint 𝑘 depends on the outcome
of the previous constraint. Minimising Eq. (3) yields a rule to find a
new state 𝒙𝛼𝑘 for the current iteration and constraint, that is

𝒙𝛼𝑘 = 𝒙𝛼𝑘−1 −𝑲𝛼
𝑘𝒓
𝛼
𝑘 , (4)

where 𝑲 is a gain matrix, which will be defined below. However, we
first define the residual 𝒓 as the distance between measurement and
hypothesis

𝒓𝛼𝑘 = 𝒎𝑘 − 𝒉𝑘(𝒙𝛼𝑘−1) . (5)

The hypothesis 𝒉𝑘(𝒙𝛼) can be linearised around a reference state of the
previous iteration 𝒙𝛼−1 using the Jacobian

𝑯𝛼−1
𝑘 ∶=

𝜕𝒓𝑘(𝒙𝛼−1)
𝜕𝒙𝛼−1

= −
𝜕𝒉𝑘(𝒙𝛼−1)
𝜕𝒙𝛼−1

, (6)

such that

𝒉𝑘(𝒙𝛼𝑘−1) = 𝒉𝑘(𝒙𝛼−1) −𝑯𝛼−1
𝑘 ⋅ (𝒙𝛼𝑘−1 − 𝒙𝛼−1). (7)

Note that 𝒙𝛼−1 is always taken after the last constraint in iteration 𝛼−1
was filtered and the minus sign is coming from generalising 𝑯 as the
derivative of the residual. Eq. (5) thus becomes

𝒓𝛼𝑘 = 𝒎𝑘 − 𝒉𝑘(𝒙𝛼−1) +𝑯𝛼−1
𝑘 ⋅ (𝒙𝛼𝑘−1 − 𝒙𝛼−1). (8)

The gain matrix is calculated for every constraint in every iteration and
is defined as

𝑲𝑘 = 𝑪𝑘−1(𝑯
𝛼−1
𝑘 )𝑇𝑹−1

𝑘 . (9)

The only matrix to be inverted is of the dimension of the constraint and
not the dimension of the state–space. 𝑹𝑘 is defined below. The current
state’s covariance matrix is obtained via propagation of uncertainties

𝑪𝑘 = 𝑪𝑘−1 − 𝑪𝑘−1𝑯𝛼−1
𝑘 𝑹−1

𝑘 𝑯𝛼−1
𝑘 𝑪𝑇

𝑘−1 (10)

There are other formulations of Eq. (10) that are numerically more
stable as discussed in [1]. The covariance matrix of the residual system
can be found to be

𝑹𝑘 = 𝑽 𝑘 +𝑯𝛼−1
𝑘 𝑪𝑘−1(𝑯𝛼−1

𝑘 )𝑇 . (11)

For constraints where no measurement is available, for example the
kinematic or geometric constraint, it can be shown that Eq. (11) is valid
if 𝑽 𝑘 = 0 [1].

Linearising the hypothesis around a reference state, see Eq. (7), is
a major improvement to the stability of the fit. The authors of Ref. [1]
pointed us towards this improvement and more details can be found
in Ref. [6]. In this formulation of the LSE problem, the update of the
covariance matrix, Eq. (10), is the computational bottleneck, as it is a
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Fig. 4. Close-up of Fig. 3. In this event, the 𝐾0
S travels until the edge of the vertex detectors before decaying.

dense 𝑚 × 𝑚 matrix with the dimension of the state vector 𝑚 and must
be calculated and filled 𝑘 times for each iteration. We define a fit as
converged when the change of the 𝜒2 is less than 2% and the resulting
covariance matrix is invertible, which is tested by checking its rank. A
Kalman Filter is sensitive to the initial state vector and its associated
covariance matrix chosen. We choose values of the measurement in the
respective constraint multiplied by a factor 1000 as the initial value
of the hypothesised covariance matrix. For the initial vertex positions
we use the points of closest approach of track-helices or those of the
‘‘parent particles", if they are available, zero otherwise.

3. Parametrising and constraining the decay chain

To parametrise the decay chain, we use a set of parameters that
describe the properties of the particles. We perform a number of reduc-
tions on these properties to reduce the dimensionality of the problem.
For final state particles, we only save the momenta, as they do not have
decay vertices. For their production vertices we use the decay vertices
of their respective composite particles, referred to as the parents. The
energy of each final state particle is calculated using the momenta and
its nominal mass hypotheses, taking the mass values provided by the
particle data group (PDG) [7]. Intermediate particles are classified in
two categories: particles that decay dominantly via the strong force,
and those that decay via the weak force. Strongly decaying particles
with a lifetime of less than 10−14 s, which corresponds to boosted flight
lengths of less than 1 μm, are treated as if they instantly decay (the
detector has a vertex position resolution in the x-y plane for charged
particles of 20–30 μm). The hypothesised quantities are their energy
and momenta, while the production and decay vertices coincide and
are taken from their parent particle’s decay vertex. For weakly decaying
particles, we additionally measure a decay vertex and a flight length,
defined as the distance between the production and decay vertices in
three dimensions.

3.1. Parametrising the constraints

Constraints are defined by Eq. (7), note that Lagrange multipliers
could be eliminated, which allows for this convenient definition of
constraints [1]. The resulting Jacobians take the form of 𝑚×𝑛 matrices
where 𝑚 is the dimension of the state vector and 𝑛 is the dimension of
the respective constraint. Thus, only few of its elements are non-zero.
For example, for a three dimensional point constraint 𝑘, the hypothesis
of particle number 𝑗 with 𝒉𝑗 = {𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗} and 𝒙 as in Eq. (1), only the
𝑗th diagonal block is non-zero

− 𝜕𝒉
𝜕𝒙

= 𝑯 =

⎛

⎜

⎜

⎜

⎝

0 −13 0
⎞

⎟

⎟

⎟

⎠

. (12)

The blocks filled with zero correspond to the parameters of particle
𝒙𝑖 ≠ 𝒙𝑗 . We will omit the columns filled with zeros throughout this
section, for brevity.

In the following we list the definitions of constraints that have been
implemented in the Belle II software, based on the specific geometry of
Belle II.

3.1.1. Reconstructed track
A track can be parametrised with a five parameter helix. In Belle II

it was chosen to use a perigee-parametrised helix, such that the helix is
defined at the perigee, the point of closest approach of the helix to the
origin of the coordinate system. The corresponding transformations to
transport a helix to that point are discussed in Ref. [9]. A description
of the parameters can be found in Table 1, and a depiction of the helix
is in Fig. 5. We parametrise tracks such that we can express the model’s
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Fig. 5. The perigee parametrisation of the track helix, depiction adapted from [8]. A description of the parameters can be found in Table 1.

Table 1
Definitions of the Belle II helix parametrisation and their dependencies.
𝑑0 The distance of closest approach to the 𝑧 axis

(POCA) signed with the 𝑧 component of the
angular momentum w.r.t. to the origin.

𝜙0 Azimuthal angle of the momentum at the
POCA.

𝜔 Scaled inverse of the track momentum.
𝑧0 The pivotal point is the perigee that is the

POCA.
tan 𝜆 The angle of the momentum at the POCA with

respect to the 𝑥–𝑦 plane.

𝜙 = atan2(𝑝𝑦 , 𝑝𝑥) Angle of the 𝑥–𝑦 plane to the helix.
𝛥∥ = −𝑥 ⋅ cos𝜙 − 𝑦 ⋅ sin𝜙 Quantities used to transport the

coordinate system, such that {𝑥, 𝑦, 𝑧}
points to the perigee.

𝛥⟂ = −𝑦 ⋅ cos𝜙 + 𝑥 ⋅ sin𝜙
𝐴 = 2 ⋅ 𝛥⟂ + 𝜔 ⋅ (𝛥2⟂ + 𝛥2∥)
𝑈 =

√

1 + 𝜔 ⋅ 𝐴
𝜆 Angle between the 𝑥–𝑦 plane and the helix.
𝑙 = atan2(𝜔 ⋅ 𝛥∥ , 1 + 𝜔 ⋅ 𝛥⟂) Arc length from the perigee to a point.
𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 Momenta along the 𝑥, 𝑦, 𝑧 axes.
𝑞 Charge of the particle.
𝐵𝑧 Magnetic field strength in 𝑧-direction.
𝑎 = 𝐵𝑧∕𝑐 Magnetic field strength in the 𝑧 direction

divided by the speed of light.
𝑝𝑡 =

√

𝑝2𝑥 + 𝑝2𝑦 Transverse momentum.

𝑝𝑡0 =
√

𝑝2𝑥0 + 𝑝
2
𝑦0 Pseudo transverse momentum.

𝑝𝑥0 = 𝑝𝑥 − 𝑎 ⋅ 𝑞 ⋅ 𝑦 Pseudo momentum along the 𝑥 direction.
𝑝𝑦0 = 𝑝𝑦 + 𝑎 ⋅ 𝑞 ⋅ 𝑥 Pseudo momentum along the 𝑦 direction.
𝑟2 = 𝑥2 + 𝑦2 Radius squared.
𝛽 = 1 + 𝑝𝑡0

𝑝𝑡
Quantity used for reading convenience.

dependence on Cartesian parameters as

𝒉track (𝒙) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑑0
𝜙0
𝜔
𝑧0

tan 𝜆

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐴(1 + 𝑈 )−1

atan2(𝑝𝑦, 𝑝𝑥) − atan2(𝜔 ⋅ 𝛥∥, 1 + 𝜔 ⋅ 𝛥⟂)
𝑎 ⋅ 𝑞∕𝑝𝑡

𝑧 + 𝑙 ⋅ tan 𝜆
𝑝𝑧∕𝑝𝑡

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (13)

Where atan2 refers to the 𝜙 domain corrected inverse tangent function.
We use the same parametrisation for the hypothesis and the measure-
ment. We label the measurement quantities with the index 𝑚. The
residuals of iteration 𝛼 then become

𝒓𝛼𝑡𝑟𝑎𝑐𝑘(𝒙) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑑0,𝑚 − 𝑑0
𝜙0,𝑚 − 𝜙0
𝜔𝑚 − 𝜔
𝑧0,𝑚 − 𝑧0

tan 𝜆𝑚 − tan 𝜆

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+𝑯𝛼−1 ⋅ (𝒙𝛼𝑘−1 − 𝒙𝛼−1) . (14)

We define the Jacobian block 𝑨 ∶= −𝜕𝒉∕𝜕𝒙 as the derivatives with
respect to the vertex position, and 𝑩 ∶= −𝜕𝒉∕𝜕𝒑 as the derivatives with
respect to momentum. The positions of these blocks in the Jacobian
depend on the topology fitted and the particle represented by the track.
We choose to order the state vector hierarchically. This means that
the decay vertex parameters come before its momentum, followed by
the child particle’s parameters. The full Jacobian 𝑯 then takes the
following form

𝑯 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

... ... ...

... ... ...

... 𝑨 ... 𝑩 ...

... ... ...

... ... ...

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (15)

For the non-zero elements of the Jacobian blocks, denoted by −𝜕𝑑0∕𝜕𝑥
= 𝑨𝑑0 ,𝑥, we derive the spatial components as

𝑨𝑑0 ,𝑥 = −
𝑝𝑦0
𝑝𝑡0

, 𝑨𝑑0 ,𝑦 =
𝑝𝑥0
𝑝𝑡0

,

𝑨𝜙0 ,𝑥 = −
𝑎 ⋅ 𝑞 ⋅ 𝑝𝑥0
𝑝2𝑡0

, 𝑨𝜙0 ,𝑦 = −
𝑎 ⋅ 𝑞 ⋅ 𝑝𝑦0
𝑝2𝑡0

,

𝑨𝑧0 ,𝑥 =
𝑝𝑥 ⋅ 𝑝𝑥0
𝑝2𝑡0

, 𝑨𝑧0 ,𝑦 =
𝑝𝑥 ⋅ 𝑝𝑦0
𝑝2𝑡0

, 𝑨𝑧0 ,𝑧 = −1,

(16)

5

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER



J.-F. Krohn, F. Tenchini, P. Urquijo et al. Nuclear Inst. and Methods in Physics Research, A 976 (2020) 164269

and for the momenta

𝑩𝑑0 ,𝑝𝑥 =
𝑦((𝑎𝑞)2𝑟 + 2𝑎𝑞𝑝𝑦𝑥 + 2𝑝2𝑦𝛽)

𝑝𝑡0𝑝2𝑡 𝛽2

+
𝑝𝑥(2𝑝𝑦𝑥𝛽 + 𝑎𝑞(𝑦2(−2 + 𝛽) + 𝑥2𝛽))

𝑝𝑡0𝑝2𝑡 𝛽2
,

𝑩𝑑0 ,𝑝𝑦 = −
2𝑝2𝑥𝑥𝛽 + 2𝑝𝑥𝑦(𝑝𝑦 − 𝑎𝑞𝑥 + 𝑝𝑦𝑝𝑡0∕𝑝𝑡)

𝑝𝑡0𝑝2𝑡 𝛽2

−
𝑎𝑞(𝑎𝑞𝑟𝑥 − 𝑝𝑦(𝑥2(−2 + 𝛽) + 𝑦2𝛽))

𝑝𝑡0𝑝2𝑡 𝛽2
,

(17)

and

𝑩𝜔,𝑝𝑥 =
𝑎𝑞𝑝𝑥
𝑝3𝑡

, 𝑩𝜔,𝑝𝑦 =
𝑎𝑞𝑝𝑦
𝑝3𝑡

,

𝑩𝑧0 ,𝑝𝑥 = −
𝑝𝑧(𝑝2𝑥𝑥 − 𝑝𝑦(𝑎𝑞𝑟 + 𝑝𝑦𝑥) + 2𝑝𝑥𝑝𝑦𝑦)

𝑝2𝑡0𝑝
2
𝑡

,

𝑩𝑧0 ,𝑝𝑦 = −
𝑝𝑧(𝑝𝑥(𝑎𝑞𝑟 + 2𝑝𝑦𝑥) − 𝑝2𝑥𝑦 + 𝑝

2
𝑦𝑦)

𝑝2𝑡0𝑝
2
𝑡

,

𝑩𝑧0 ,𝑝𝑦 = −(𝑎𝑞)−1atan2
(

𝑎𝑞(𝑝𝑦𝑦 − 𝑝𝑥𝑥), 𝑝2𝑥 + 𝑝𝑦𝑝𝑦0 − 𝑎𝑞𝑝𝑥𝑦
)

,

𝑩tan 𝜆,𝑝𝑥 =
𝑝𝑧𝑝𝑥
𝑝3𝑡

, 𝑩tan 𝜆,𝑝𝑦 =
𝑝𝑧𝑝𝑦
𝑝3𝑡

, 𝑩tan 𝜆,𝑝𝑧 = −𝑝−1𝑡 .

(18)

3.1.2. Reconstructed photon

For photons we measure the position of the calorimeter cluster and
its energy and can infer the vertex parameters. The geometry, depicted
in Fig. 6, gives

0 = 𝒖parent + 𝜹 −𝒎, (19)

substituting 𝜹 = 𝜏 ⋅ 𝒑 and inserting the energy relation, we get

𝒉photon(𝒙) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑢𝑥 + 𝜏 ⋅ 𝑝𝑥
𝑢𝑦 + 𝜏 ⋅ 𝑝𝑦
𝑢𝑧 + 𝜏 ⋅ 𝑝𝑧

√

𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧

⎞

⎟

⎟

⎟

⎟

⎟

⎠

and 𝒎photon(𝒙) =

⎛

⎜

⎜

⎜

⎜

⎝

𝑚𝑥
𝑚𝑦
𝑚𝑧
𝐸𝑚

⎞

⎟

⎟

⎟

⎟

⎠

, (20)

where {𝑢𝑥, 𝑢𝑦, 𝑢𝑧} are the production vertex coordinates, {𝑝𝑥, 𝑝𝑦, 𝑝𝑧} are
the parameters of the momentum vector pointing from the production
vertex to the calorimeter cluster, {𝑚𝑥, 𝑚𝑦, 𝑚𝑧, 𝐸𝑚} are the position and
measured energy of the corresponding ECL cluster. The parameter 𝜏 is
a scalar with the units of time, it can be eliminated when writing down
the residual to reduce the dimensionality of the equation system and
avoid a trivial local minimum of 𝒓𝛾 at 𝜏 = 0 when taking {𝑢𝑥, 𝑢𝑦, 𝑢𝑧} =
0 as the starting point of the first iteration. Since the geometry of
the detector is cylindrical, we cannot simply eliminate any of the
dimensions as this could introduce a pole in the residual equations.
Therefore we sort the momenta and eliminate the dimension with the
highest momentum such that we form a 3-dimensional equation system

𝒓′𝛼photon(𝒙) =

⎛

⎜

⎜

⎜

⎜

⎝

(𝑚𝑖 − 𝑢𝑖) − (𝑚𝑘 − 𝑢𝑘)
𝑝𝑖
𝑝𝑘

(𝑚𝑗 − 𝑢𝑗 ) − (𝑚𝑘 − 𝑢𝑘)
𝑝𝑗
𝑝𝑘

𝐸𝑚 −
√

𝑝2𝑖 + 𝑝
2
𝑗 + 𝑝

2
𝑘

⎞

⎟

⎟

⎟

⎟

⎠

+𝑯𝛼−1 ⋅ (𝒙𝛼𝑘−1 − 𝒙𝛼−1) , (21)

where the indices 𝑖, 𝑗, 𝑘 indicate the dimensions by order of increasing
momentum 𝑝𝑘 ≥ 𝑝𝑖 ≥ 𝑝𝑗 . We define 𝑨𝑖,𝑢𝑘 ∶= −𝜕ℎ′𝑖∕𝜕𝑢𝑘 and 𝑩𝑖,𝑝𝑘 ∶=
−𝜕ℎ′𝑖∕𝜕𝑝𝑘 with the hypothesis of the reduced system 𝑟′. Thus, the

non-zero entries are

𝑨0,𝑢𝑘 =
𝑝𝑖
𝑝𝑘
, 𝑨0,𝑢𝑖 = −1,

𝑨1,𝑢𝑘 =
𝑝𝑗
𝑝𝑘
, 𝑨1,𝑢𝑗 = −1,

𝑩0,𝑝𝑘 = 𝑝−2𝑘 , 𝑩0,𝑝𝑖 =
𝑢𝑘 − 𝑚𝑘
𝑝𝑘

,

𝑩1,𝑝𝑘 = 𝑝−2𝑘 , 𝑩1,𝑝𝑗 =
𝑢𝑘 − 𝑚𝑘
𝑝𝑘

,

𝑩2,𝑝𝑘 = −
𝑝𝑘
|𝒑|

, 𝑩2,𝑝𝑖 = −
𝑝𝑖
|𝒑|

, 𝑩2,𝑝𝑗 = −
𝑝𝑗
|𝒑|

.

(22)

The full Jacobian then takes the form

𝑯 =
⎛

⎜

⎜

⎝

... ... ...

... 𝑨 ... 𝑩 ...

... ... ...

⎞

⎟

⎟

⎠

. (23)

We must transform the covariance matrix of the measurement into the
reduced system. For that, we use

𝑽 ′ = 𝑭𝑽 𝑭 𝑇 , (24)

with the transport matrix 𝑭 = 𝜕𝑟′∕𝜕𝑚, which depends on the sorting of
the momenta such that the non-zero entries are

𝑭 0,𝑚𝑘 = −
𝑝𝑖
𝑝𝑘
, 𝑭 0,𝑚𝑖 = 1,

𝑭 1,𝑚𝑘 = −
𝑝𝑗
𝑝𝑘
, 𝑭 1,𝑚𝑗 = 1,

𝑭 2,𝐸𝑘 = 1.

(25)

We do not parametrise this constraint in 𝑝𝑡 in order to keep the
derivatives in Eq. (22) as computationally simple as possible.

3.1.3. Reconstructed 𝐾0
𝐿

We treat 𝐾0
𝐿 in the same way as photons, except that we use the

nominal mass provided by the PDG in the energy calculation. The KLM
detector is used for the cluster position measurement instead of the
calorimeter. It cannot provide a precise energy measurement. Instead,
it extrapolates the energy deposited by a particle as 𝐸 = 𝑐 ⋅ 𝑛, where
𝑛 is the number of hit cells in the cluster and 𝑐 is a constant with the
units GeV. This approach makes the energy measurement for 𝐾0

𝐿 much
less resolved than for photons.

3.1.4. Kinematic constraint
The kinematic constraint enforces four-momentum conservation,

meaning it fits the four-momentum of the parent as the sum of the child
momenta

𝒓𝛼(𝒙) = 𝒑particle −
∑

𝑖
𝒑𝑖,child +𝑯𝛼−1 ⋅ (𝒙𝛼𝑘−1 − 𝒙𝛼−1) . (26)

The Jacobian for a particle with 𝑡𝑤𝑜 children, which in this example
are taken to be stable particles, can be defined as

𝑯 =

⎛

⎜

⎜

⎜

⎜

⎝

... ... ... ...

... ... ... ...

... 𝑨 ... 𝑩1 ... 𝑩2 ...

... ... ... ...

⎞

⎟

⎟

⎟

⎟

⎠

, (27)

with the blocks 𝑨,𝑩 as

𝑨 = − 𝜕𝒉
𝜕𝒑particle

= 14, (28)

and

𝑩𝑖 = − 𝜕𝒉
𝜕𝒑child,𝑖

= −1

⎛

⎜

⎜

⎜

⎜

⎝

1
1

1
𝑝𝑥,𝑖∕𝐸𝑖 𝑝𝑦,𝑖∕𝐸𝑖 𝑝𝑧,𝑖∕𝐸𝑖 0

⎞

⎟

⎟

⎟

⎟

⎠

, (29)

Note that the energy row of 𝑩𝑖 depends on how the particle is
parametrised. Composite particles, for example, are parametrised with
an energy variable in the state vector, resulting in 𝑩 = −14, while for
stable particles Eq. (29) is used.

6

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER

USER



J.-F. Krohn, F. Tenchini, P. Urquijo et al. Nuclear Inst. and Methods in Physics Research, A 976 (2020) 164269

Fig. 6. (a) The photon constraint, Eq. (21), reduced to two dimensions for simplicity. The vector 𝜹 is defined as pointing from the photon’s production vertex to the measured
calorimeter cluster, indicated with the photons parent’s coordinate vector 𝒖 and measurement vector 𝒎. (b) Geometric constraint, Eq. (31). The vector 𝜟 is defined pointing from
the particles decay and production vertex, indicated with the particle’s and its parent’s coordinate vector 𝒖.

3.1.5. Geometric constraint
The geometric constraint fits the decay length parameter 𝜃 for

composite particles, see Fig. 6. Accounting for the geometry we have

0 = 𝒖parent + 𝜟 − 𝒖 . (30)

Instead of directly extracting a flight vector 𝜟, we use the unit vector
of the momentum as it is well constrained by the previously filtered
kinematic constraints, substituting 𝜟 = 𝜃 ⋅ 𝒑∕|𝒑|, allows for a more
accurate estimation of 𝜃, the decay length parameter in our model.
In contrast with [1], we choose decay length rather than decay time,
because it makes the fit more linear. We define the residual as

𝒓𝛼(𝒙) = 𝒖parent + 𝜃 ⋅
𝒑
|𝒑|

− 𝒖 +𝑯𝛼−1 ⋅ (𝒙𝛼𝑘−1 − 𝒙𝛼−1) . (31)

using

𝑨 = − 𝜕𝒉
𝜕𝒖parent

= 13, 𝑩 = − 𝜕𝒉
𝜕𝒖

= −13, 𝑪 = − 𝜕𝒉
𝜕𝜃

= 1
|𝒑|

⎛

⎜

⎜

⎝

𝑝𝑥
𝑝𝑦
𝑝𝑧

⎞

⎟

⎟

⎠

, (32)

and

𝑫 = − 𝜕𝒉
𝜕𝒑

= 𝜃
|𝒑|3

⎛

⎜

⎜

⎝

(𝑝2𝑦 + 𝑝
2
𝑧) −𝑝𝑥𝑝𝑦 −𝑝𝑥𝑝𝑧

−𝑝𝑦𝑝𝑥 (𝑝2𝑥 + 𝑝
2
𝑧) −𝑝𝑦𝑝𝑧

−𝑝𝑧𝑝𝑥 −𝑝𝑧𝑝𝑦 (𝑝2𝑥 + 𝑝
2
𝑦)

⎞

⎟

⎟

⎠

, (33)

such that

𝑯 =
⎛

⎜

⎜

⎝

... ... ... ... ...

... 𝑨 ... 𝑩 ... 𝑪 ... 𝑫 ...

... ... ... ... ....

⎞

⎟

⎟

⎠

.

(34)

3.1.6. Mass constraint
The mass constraint requires a particle four-vector to be consistent

with its nominal mass. We treat the particle as a measurement with
infinite precision and use the mass value provided by PDG such that

𝑟𝛼(𝒙) = 𝑚2
PDG − 𝐸2 + |𝒑|2 +𝑯𝛼−1 ⋅ (𝒙𝛼𝑘−1 − 𝒙𝛼−1), (35)

with

𝑯 =
(

... 2𝑝𝑥 2𝑝𝑦 2𝑝𝑧 −2𝐸 ...
)

. (36)

3.1.7. Beam spot constraint
𝐵-mesons have a short lifetime and decay very close the beam spot,

therefore it is useful to constrain the reconstructed particles to a volume
within that region. The constraint is implemented by considering the
initial 𝑒+𝑒− collision as an abstract parent particle with the parameters

and uncertainties of the beam spot, thus constraining the 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
vertex position of its children to an area within the beam spot’s three
dimensional uncertainty region using

𝒓𝛼(𝒙) = 𝒔 − 𝒉production +𝑯𝛼−1 ⋅ (𝒙𝛼𝑘−1 − 𝒙𝛼−1), (37)

with the Jacobian

𝑯 =

⎛

⎜

⎜

⎜

⎝

... ...

... −13 ...

... ...

⎞

⎟

⎟

⎟

⎠

. (38)

Here 𝒔 denotes the beam spot position vector and 𝒉production is the
fitted production vertex of the particle. The beam spot is typically
determined by averaging the 𝑥, 𝑦 and 𝑧 positions of the 𝑒+𝑒− collisions
over many interactions. SuperKEKB’s nano-beam scheme will give 𝑥, 𝑦
and 𝑧 collision vertex distributions of 𝜎∗𝑥 = 11 μm, 𝜎∗𝑦 = 0.062 μm, and
𝜎∗𝑧 = 500 μm respectively. This will imply powerful 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 vertex
constraints for physics analyses.

3.1.8. Custom origin constraint
Similar to the beam spot constraint, one can construct another

geometric constraint by defining a custom vertex position and an
associated uncertainty to be the origin of the decay chain. This can
be very useful when the decay chain contains particles that cannot be
detected, for example, neutrinos or long lived dark matter particles. In
these decay chains it is not useful to fit the full chain, as the missing
particle’s four momentum would lead to an incorrect assumption for
the kinematic constraint of the parent particle. However, knowing
that the particle originates from a 𝐵-meson decay, one can define
a geometric constraint corresponding to the volume where 𝐵-mesons
decay on average. A beam energy constraint is not necessarily needed,
as one can mass constrain the 𝛶 (4𝑆) particle, since all four-vectors in
𝑒+𝑒− → 𝛶 (4S) are well known.

4. Applications of the fitter in Belle II

In this section we present use cases of the algorithm within the
Belle II experiment. Of special interest are decay chains containing
one and two 𝜋0-mesons, as well as 𝐷∗+-mesons. There are numerous
channels where the phase space is large enough to add a 𝜋0 to a vertex
with two charged tracks, which makes this a very common structure
in decay trees and therefore an interesting target to fit in a wide
spectrum of analyses. Many decay channels of the 𝐵 -meson contain
𝐷∗+-mesons, hence improving the reconstruction of these is a major
goal. We use Monte Carlo samples from the Belle II experiment and
evaluate background rejection and signal resolution improvements, as
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Fig. 7. Resolution comparison of the variable 𝛥𝑚 for TreeFit (a) with and (b) without geometrically constraint 𝐷0-meson and 𝐵0-meson to KFIT.

well as the extraction of various other parameters and their resolutions.
Background can arise from non-signal processes, and from incorrect
combinations of particles used in building the tree. The selection cri-
teria used for all analyses in this section are listed in Table 2. We use
implicit charge conjugation, meaning that charged particles appearing
in the decay chains imply the inclusion of opposite-sign charges. We
abbreviate decays 𝑥 → 𝑦𝑧 as 𝑥(𝑦𝑧). Because some distributions are
not Gaussian we use the inter quantile width containing 68% of the
distribution as a measure to compare them. It is defined as width68 =
𝑞(84%) − 𝑞(16%).

4.1. Comparing the global fit to staged fits — the effect of the geometric
constraint

We compare the described method to the standard staged fit
method, KFIT [10], that was employed by the Belle experiment. KFIT
performs stage wise fits, fitting the children particles of each vertex in
a separate fit, so that only the measurements of the children particles
are accounted for. This is done in a global fit to the 4-vectors and
vertex position in cartesian space. In the case of the decay 𝐷∗+ →
𝐷0𝜋+ in the decay chain �̄�0 → 𝐷∗+(𝐷0(𝐾−𝜋+)𝜋+)𝜋−, the first decay
vertex is fitted using 𝐷0 → 𝐾−𝜋+ the resulting 𝐷0-meson is then
fitted together with a pion track to form a 𝐷∗+-meson. This means
that the decay vertex of the 𝐷∗+-meson is only constrained by the
measurement of the 𝜋+-track and the direction of the 𝐷0-meson. The
𝜋+-tracks of 𝐷∗+-meson decays have in the environment of the Belle II
experiment usually low transversal momenta and thus are more likely
to have large measurement uncertainties. In the global fit the final
state particles are constrained via their respective constraints, tracks
in this case. The four-vectors of intermediate particles are built using
kinematic constraints. These, together with the decay vertex of the 𝐷0-
meson and the decay vertex of the 𝐷∗+ are optimised at the same
time, via a geometric constraint. As a result the resolution on the
correlated quantity 𝛥𝑚 = 𝑚(𝐷∗+) − 𝑚(𝐷0) can be improved by about
30% to a width of 0.57 MeV, depicted in Fig. 7a. If this constraint
is lifted the improvement is diminished, see Fig. 7b. However, the
individual resolutions on the masses of the 𝐷∗+-meson and 𝐷0-meson
are not improved. The improvement can be observed in semi-leptonic
decay chains such as �̄�0 → 𝐷∗+(𝐷0(𝐾−𝜋+)𝜋+)𝜇−�̄�𝜇 displayed in Fig. 8.
However, in this case the resulting kinematic parameters of the 𝐵0-
meson will be strongly biased due to the missing four-vector of the
neutrino.

4.2. Fitting decay chains containing neutral particles

A high rate mode with a single 𝜋0, is �̄�0 → 𝐷∗+(𝐷0(𝐾−𝜋+𝜋0(𝛾𝛾))𝜋+)
𝜋−. This channel is of interest as it is the highest branching ratio 𝐷0

Fig. 8. Comparison of the 𝛥𝑚-resolution in a semi-leptonic decay chain for different
fitters. The resolution is worse than in a kinematically fully constrained decay chain,
Fig. 7a, but the relative improvement compared to KFIT is similar.

Fig. 9. P-value distributions of fits to �̄�0 → 𝐷∗+(𝐷0(𝐾−𝜋+𝜋0)𝜋+)𝜋−. Failed fits were
assigned a 𝑝-value of −1. The shape of the distribution is non-flat due to the use of a
mass constraint on the 𝜋0. The preselection criteria are listed in Table 2.

decay mode. We use the fitter in this example to suppress background.
If we reject combinations for which the fit failed – i.e. those with a
𝑝-value ≤ 0 – we are able to reject about 15% of the background while
rejecting only about 1% signal, as displayed in Fig. 9. If a fit fails, a 𝑝-
value of −1 is assigned for display purposes only. Note that since some
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Fig. 10. (a) 𝑃 -value of the fits to 𝐵0 → 𝐽∕𝜓𝐾0
S . (b) Fitted mass of the 𝐾0

S (green) and the mass before the fit (black). The mass distribution is centred around the true value after
performing the fits with a 𝜋0 mass constraint. Qualitatively this is the same result as obtained in Ref. [1]. The bias was removed and the width reduced by 9.6 MeV.

Fig. 11. (a) Resolution of the 𝑧 coordinate of 𝐵-mesons with and without applying a beam constraint. (b) Resolution of the 𝑧 coordinate of 𝐷∗+-mesons with and without applying
a beam constraint. The fits using a beam constraint are indicated as TreeFit bc. Over- and underflow bins are not depicted.

of the constraints are nonlinear and the uncertainties are not exactly
Gaussian in some cases, p-values can have non-flat shapes.

4.3. Fitting decay vertices of neutral particles

We will next study the decay chain 𝐵0 → 𝐾0
S (𝜋

0(𝛾𝛾)𝜋0(𝛾𝛾))𝐽∕𝜓
(𝜇+𝜇−). By performing the fit a large amount of the background can
be removed by requiring that it passes the fit, see Fig. 10a. The only
well defined vertex in this chain is given by the 𝐽∕𝜓 → 𝜇+𝜇− decay.
The other vertices are very uncertain due to the absence of charged
tracks. The best assumption that can be made for the production
vertex position of the four photons is that they originate from the
interaction point, if they are fitted in a single stage fit oblivious of the
𝐽∕𝜓 . Performing a fit with mass constrained 𝜋0-mesons improves the
extracted mass of the 𝐾0

S , so that after the fit, it is centred around the
true value, as depicted in Fig. 10b. It is then possible to further reject
background outside the nominal mass window and improve the signal
purity when analysing this channel.

4.4. Using a beam spot constraint to improve the decay vertex resolution of
b-mesons

A beam constraint enforces the production vertex of the 𝐵0-meson
to lie within the beam spots volume, see Section 3.1.7. It can be used

to improve the decay vertex resolution of 𝐵-mesons and all children
particles in the decay chain, depicted in Figs. 11a, 11b and 12. The
resolution for 𝐵-mesons was improved by 15% to a value of about 33 μm
in the example of the decay chain �̄�0 → 𝐷∗+(𝐷0(𝐾−𝜋+)𝜋+)𝜋−. In the
no fit case 0, 0, 0 is taken to be the vertex and no error is assigned.
In terms of the defined resolution this can be better than the fit using
KFIT in the 𝐷∗+ case, because the pion involved in the decay has a low
momentum, typically of around 150 MeV. These have measurement
with a very large uncertainties and a fit involving only the 𝐷0 and the
pion then is dominated by this uncertainty. The very long tails for KFIT
are due to very forward or very backward tracks. When fitting the entire
decay chain with TreeFit, the tracks with better measurements help to
constrain the vertex via geometric constraints. The efficiency of both
algorithms is comparable.

4.5. Extracting the decay length of 𝐷0-mesons from 𝐷∗+ decays using a
geometric constraint

The geometric constraint, see 3.1.5, constrains production and de-
cay vertices of long lived particles in the decay chain. This allows
for the extraction of flight lengths and thus lifetimes of intermedi-
ate particles such as 𝐷0-mesons. We perform this study on �̄�0 →

𝐷∗+(𝐷0(𝐾−𝜋+)𝜋+)𝜋− decays and extract the decay length of the 𝐷0-
meson. The results are depicted in Fig. 13. Since 𝐷∗+-mesons decay
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Table 2
Selection criteria used in the analyses in this section. All particles use the same criteria
if appearing in the decay chains. The invariant mass is obtained by summing the
particle’s daughter four-momenta before performing the fit. The particle ID for 𝐾+∕𝜋+

is defined as the likelihood ratio (𝐾+(𝜋+)) = (𝐾+(𝜋+))∕((𝜋+) + (𝐾+)) and the
beam energy constrained mass 𝑚bc [11].

Particle Preselection applied

𝛾 𝐸𝛾 > 0.075 GeV
𝜋0 0.145 GeV > 𝑚(𝛾𝛾) > 0.125 GeV
𝜋+ (𝜋+) > 0.5
𝐾+ (𝐾+) > 0.5
𝐷0 1.9 GeV > 𝑚(𝐾−𝜋+𝜋0) > 1.7 GeV
𝐷∗ 𝛥𝑚 = 𝑚(𝐷∗) − 𝑚(𝐷0) < 0.155 GeV

𝐵0 𝑚bc =
√

𝐸2
beam∕4 − 𝑝

2 > 5.27 GeV

Fig. 12. Resolution of the 𝑧 coordinate of 𝐷-mesons with and without applying a
beam constraint. The fits using a beam constraint are indicated as TreeFit bc. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

almost instantly, we will use the three dimensional distance between
the 𝐵0 and the 𝐷0 decay vertices. To improve the resolution on the 𝐵0

vertex we apply a beam spot constraint.

5. Performance

Vertex fitting is computationally the most expensive operation dur-
ing physics analysis. This is due to the large number of possible
combinations that arise when reconstructing complex decay topologies.

Physics analyses in the Belle II experiment are performed on a global
grid of computing clusters [12] occupying thousands of CPUs simul-
taneously. Reducing the execution time of these analyses is a major
effort of the collaboration. To achieve this we use the EIGEN library
for matrix operations. EIGEN ensures memory locality is respected
and operations are vectorised when possible. Modern CPUs are much
faster in performing operations than retrieving memory. Allocating
memory used locally in time and space allows modern CPUs to guess
and prefetch the memory that is used next, such that no clock cycles
are wasted [13]. The algorithm based on EIGEN was profiled using
the Valgrind [14] module Callgrind. We find that one iteration of the
algorithm spends 69% of the time on the implementation of Eq. (10),
27% on Eq. (9) and 4% on other operations, when fitting the decay chain
𝐵+ → 𝐷0(𝐾−𝜋+)𝜋+. The performance using EIGEN was compared to a
previous implementation using the CLHEP library [15], a C++library
widely used for algebraic operations in particle physics. By using EIGEN
we could speed up the execution time by a factor two in simple cases
and more than an order of magnitude in more complex topologies,
see Fig. 14. These numbers were obtained using EIGEN-3.3.4 and
CLHEP-2.2.0.4 and compiled with clang-4.0 using the −𝑂3 flag for full
optimisation including vectorisation.

In order to assess the scaling with increasing matrix sizes, we
compiled a stand-alone programme to directly compare the libraries.
We investigate 𝑛 times 𝑚 matrices, 𝑀 , and symmetrical matrices, 𝑆.
For the latter we used symmetric matrix types in both libraries and.
Optimised matrix operation implementations provided by the libraries
are used where possible. We fix one matrix dimension to the largest
occurring number in the algorithm, which is 𝑚 = 5 for track constraints.
Then we increase the other dimension 𝑛, which is equivalent to adding
more particles to the decay chain. The computation of Eq. (10) is
repeated 500 times and the median is taken as a data point. The process
is repeated 100 times, each time with randomised initial matrices
and the width of the distribution is taken as the uncertainty. We
observe much stronger exponential scaling of the operations involving
the CLHEP library, depicted in Fig. 15. Since the version of CLHEP
used in the algorithm is outdated, we additionally compare to a more
recent version of the library. We do not find a change in performance
for the operations investigated. We used the compiler flags −𝑂3 and
−𝑚𝑎𝑟𝑐ℎ = 𝑛𝑎𝑡𝑖𝑣𝑒 when building our programme to enable all possible
optimisations the hardware allows. We find that omitting these flags
drastically worsens the performance of EIGEN, while CLHEP has to be
compiled prior to usage and therefore is oblivious to these options. We
measured the cache-miss rate to be close to zero, which persists if we
specify an upper limit for the size of the matrices in EIGEN. From this

Fig. 13. (a) The extracted decay length (green) and the generated decay length (black). The negative tail of the extracted decay length is due to the detectors resolution function.
(b) Pull (measured − −generated∕uncertainty) of the decay length distribution. The shape of a Gaussian with a mean of zero and a RMS of one is plotted for reference. The shape of
the pull matches with a Gaussian, apart from a small mismatch in the central region. This mismatch can be attributed to an underestimation of the tracking parameter uncertainties,
where a similar mismatch was observed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. (a) Average execution time per candidate fitting two tracks. (b) Average execution time per candidate fitting a topology with an intermediate decay. The errors are
estimations from repeating the study 10 times.

Fig. 15. (a) Execution time scaling of Eq. (10). For increasing matrix sizes 𝑛. (b) Execution time scaling for the inner matrix product of Eq. (10). The notation 𝑆 indicates a
symmetrical matrix, 𝑀 a non symmetrical, the dimension 𝑚 was fixed to 𝑚 = 5, which is equivalent to Eq. (10) being calculated for a track constraint.

we conclude that our matrices are mostly heap allocated and the main
performance gain is driven by vectorisation.

6. Conclusion

We presented an improved implementation of a global vertex fitting
tool, based on Ref. [1], tailored for the environment of the Belle II
experiment. It can be used for various purposes, such as the extraction
of particle production and decay vertices, decay lengths, particle four-
momenta and rejection of backgrounds, as well as the extraction of
the respective uncertainties. The global fitting technique is particularly
powerful in fitting and reducing background in modes that contain
neutral particles and can significantly improve the resolution on 𝛥𝑚
an important variable for the reconstruction of 𝐷∗-mesons, which will
be very important for the Belle II physics analysis programme. We
were able to reduce the execution time of the algorithm by an order
of magnitude, by restricting the maximum possible size of dynamic
matrices and enabling vectorised matrix operations.
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