## Searching for a long-lived neutralino with R-parity violation at Belle II: 2 scenarios

Abi Soffer Tel Aviv University

# Thank you for hosting us

STAT STAT

P 1

From my September 2017 visit



| Feb-Ma               | r 2023, https://indico.belle2                                                                                                                                     | .org/event/8771/                             | offer 🔻 |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------|
| TAU-Yc               | nsei symposium<br>023, 11:00 → 1 Mar 2023, 17:00 Asia/Jerusalem<br>Iun (Kaplun)                                                                                   | 2. •                                         |         |
| Descriptio           | Comil link: https://lau-enl.zoom.us//296658387117pwd-bINKOURMZFVwcmHLWXkrUDJCLzF0z209<br>Meeting ID: 296 658 8371<br>Passcode: 366612                             | 1                                            |         |
|                      | TUESDAY 28 FEBRUARY                                                                                                                                               |                                              |         |
| <b>11:30</b> → 12:10 | Search for long-lived heavy neutral lepton at Belle<br>Speaker: Ori Fogel (BELLE (BELLE II Experiment))<br>2023 Thesis.pdf                                        | <ul> <li>× 40m × 319 Kaplun [2" +</li> </ul> |         |
| <b>12:10</b> → 13:30 | Lunch                                                                                                                                                             | ▼ 1h 20m ▼ 319 Kaplun                        |         |
| <b>13:30</b> → 14:10 | EWP studies in B -> K \ell \tau (Belle) and B -> \rho \gamma (Belle+Belle II) Speaker: Shun Watanuki (BELLE (BELLE II Experiment))  TelAviv_workshop              | ✓ 40m                                        |         |
| <b>14:10</b> → 14:50 | Absolute measurement of Br(B>X(3872)K)<br>Speaker: Emilie Bertholet (Tel Aviv University)<br>2023_02_28_TAU-Y_                                                    | ✓ 40m 	¥ 319 Kaplun                          |         |
| <b>14:50</b> → 15:20 | Coffee break                                                                                                                                                      | ▼ 30m  ▼ 319 Kaplun                          |         |
| <b>15:20</b> → 16:00 | inclusive B -> X_s \nu \bar(\nu), B -> K A' A' (A' -> \ell^+ \ell^-) and rare D^0 decays<br>Speaker: Prof. Youngjoon Kwon (Yonsei University)<br>TAU_y Kwon_taik1 | - × 40m - <b>× 319 Kaplun</b>                |         |
| <b>16:00</b> → 16:40 | pi0 efficiency and systematic-less measurement of Br(B>D*pi) / Br(B>Dpi)<br>Speaker: Dey sdey Sourav (BELLE (BELLE II Experiment))<br>TAU_symposium_0_            | - × 40m - <b>× 319 Kaplun ⊠ →</b>            |         |
|                      | WEDNESDAY 1 MARCH                                                                                                                                                 | <u> </u>                                     |         |
| <b>12:00</b> → 13:00 | Lunch                                                                                                                                                             | ★ 1h ★ 319 Kaplun                            |         |
| <b>13:00</b> → 13:30 | ATLAS 2022 upgrade and Small-strip Thin Gap (STG) chambers<br>Speaker: Dr Margaret Lutz (Tel Aviv University)                                                     | * 30m * <b>319 Kaplun</b> 😰 +                |         |
| <b>14:00</b> → 15:00 | Department seminar: A tale of Two Leptons<br>Speaker: Prof. Youngjoon Kwon (Yonsei University)<br>TAU_yjKwon_semin                                                | * 1h ▼ 008 Schreiber 🛛 😹 ▼                   |         |

\* 30m \* 319 Kaplun

★ 40m ★ 319 Kaplun 💽 ★

★ 40m ★ 319 Kaplun 🛛 ★

**15:10** → 15:40

15:40 → 16:20 ALP search in B -> K a (a -> \gamma \gamma)

TAU230301 (1).pdf

Speaker: Sungjin Cho (BELLE (BELLE II Experiment))

Speaker: Abner Soffer (BELLE (BELLE II Experiment))

16:20 → 17:00 HNL search at ATLAS, heavy QCD axion search at Belle II, Crazy ideas for Belle II upgrades

Coffee break

# Outline

- Supersymmetry
- R-parity violation (RPV)
- Searching for a long-lived light neutrino (missing-energy signature)
- Searching for a long-lived light neutrino (displaced-vertex signature)
- Potential applications of the method
- Summary

# Supersymmetry (SUSY)

Each SM particle has a "superpartner" with the same gauge quantum numbers and mass:



#### Why SUSY is interesting:

- Elegant: extension of the Poincare group, with operators that transform as spinors
- Needed for string theory
- Solves the hierarchy problem (next slide)
- Better gauge-coupling unification
- If SUSY exists, it is broken at low energies
- e.g., we don't see a 511 keV selectron

The neutrlainos  $\tilde{\chi}_{1-4}^{0}$  are mass-eigenstate superpositions of  $\tilde{B}, \tilde{W}^{0}, \tilde{H}_{u}^{0}, \tilde{H}_{d}^{0},$ superpartners of the SM with 2 Higgs doublets:  $B, W^{0}, H_{u}, H_{d}$  6

# The hierarchy problem

• The hierarchy problem:

Since the Higgs is a fundamental scalar, its squared mass gets quantum corrections to the scale of new physics

- If no NP up to Planck scale ~ 10<sup>19</sup> GeV → fine tuning of the bare mass m<sup>2</sup>(0) to >30 orders of magnitude!
- SUSY fixes this: equal-mass bosons and fermions cancel each other's contributions:



# The experimental status of SUSY

- SUSY particles haven't been found at LHC
- But large parameter-space regions haven't/can't be explored experimentally
- A ~GeV-scale neutralino is allowed in some scenarios
- It has to decay to avoid too much dark matter
- Since it's the LSP, it must decay to SM particles
- It can decay if we have R-parity violation (RPV)

|               | Model                                                                                                                                                                                 | S                        | ignatur                   | er ∫.                        | <i>L dt</i> [fb <sup>-</sup> | Mass limit                                                                                    |                                                                                                                                                                                                                                       | Reference                                  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|------------------------------|------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Se            | $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$                                                                                                                    | 0 e, µ<br>mono-jet       | 2-6 jets<br>1-3 jets      | $E_T^{miss}$<br>$E_T^{miss}$ | 140<br>140                   | [1x, 8x Degen.] 1.0<br>[8x Degen.] 0.9                                                        | 1.85 m(ξ <sup>0</sup> <sub>1</sub> )<400 GeV<br>m(ξ)·m(ξ <sup>0</sup> <sub>1</sub> )=5 GeV                                                                                                                                            | 2010.14293<br>2102.10874                   |
| arche         | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_1^0$                                                                                                              | 0 e, µ                   | 2-6 jets                  | $E_T^{miss}$                 | 140                          | Forbidden                                                                                     | 2.3 m( $\tilde{\xi}_1^0$ )=0 GeV<br>1.15-1.95 m( $\tilde{\xi}_1^0$ )=1000 GeV                                                                                                                                                         | 2010.14293<br>2010.14293                   |
| Sei           | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}W\tilde{\chi}_{1}^{0}$                                                                                                           | 1 e, µ                   | 2-6 jets                  | -                            | 140                          |                                                                                               | 2.2 m( $\tilde{\chi}_1^0$ )<600 GeV                                                                                                                                                                                                   | 2101.01629                                 |
| ISive         | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell \ell)\chi_1^-$<br>$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$                                         | 0 e, µ                   | 7-11 jets                 | $E_T^{miss}$                 | 140                          |                                                                                               | 2.2 m(ℓ <sub>1</sub> )<700 GeV<br>1.97 m(ℓ <sub>1</sub> )<600 GeV                                                                                                                                                                     | 2204.13072<br>2008.06032                   |
| Inclu         | $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$                                                                                                            | 55 e,μ<br>0-1 e,μ        | в jets<br>3 b             | $E_T^{miss}$                 | 140<br>140                   | 1.15                                                                                          | m(?)-m(?)=200 GeV<br>2.45 m(?)=500 GeV                                                                                                                                                                                                | 2307.01094<br>2211.08028                   |
|               | aara oost                                                                                                                                                                             | SS e, µ                  | 6 jets                    | <u> </u>                     | 140                          | 1.2                                                                                           | 25 m(g)-m(t <sup>0</sup> <sub>1</sub> )=300 GeV                                                                                                                                                                                       | 1909.08457                                 |
|               | $\tilde{b}_1 \tilde{b}_1$                                                                                                                                                             | 0 e,µ                    | 2 b                       | $E_T^{mass}$                 | 140                          | 0.68 1.25                                                                                     | 55 m( $\tilde{\chi}_1^0$ )<400 GeV<br>10 GeV<∆m( $\tilde{b}_1, \tilde{\kappa}_1^0$ )<20 GeV                                                                                                                                           | 2101.12527<br>2101.12527                   |
| tion          | $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}^0_2 \rightarrow b h \tilde{\chi}^0_1$                                                                                | 0 e,μ<br>2 τ             | 6 b<br>2 b                | $E_T^{miss}$<br>$E_T^{miss}$ | 140<br>140                   | Forbidden 0.23-1<br>0.13-0.85                                                                 | 1.35 $\Delta m(\tilde{\xi}_{2}^{0}, \tilde{\xi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\xi}_{1}^{0}) = 100 \text{ GeV} \\ \Delta m(\tilde{\xi}_{2}^{0}, \tilde{\xi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\xi}_{1}^{0}) = 0 \text{ GeV}$ | 1908.03122<br>2103.08189                   |
| onpo          | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$                                                                                                                 | 0-1 e, µ                 | ≥ 1 jet                   | $E_T^{miss}$                 | 140                          | 1.2                                                                                           | 25 m( $\tilde{k}_1^0$ )=1 GeV                                                                                                                                                                                                         | 2004.14060, 2012.03799                     |
| en.           | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb \tilde{t}_1$<br>$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b v, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$ | 1 e,μ<br>1-2 τ           | 2 jets/1 b                | $E_T^{miss}$                 | 140                          | Forbidden Forbidden                                                                           | m(t <sub>1</sub> )=500 GeV<br>1.4 m(t <sub>1</sub> )=800 GeV                                                                                                                                                                          | 2012.03/99, 2401.13430<br>2108.07665       |
| 3" g<br>direc | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$                                                 | 0 e. µ<br>0 e. µ         | 2 c<br>mono-iet           | Emiss<br>Emiss               | 36.1                         | 0.55                                                                                          | m(t_1)=0 GeV                                                                                                                                                                                                                          | 1805.01649 2102.10874                      |
|               | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$                                                              | 1-2 e, µ                 | 1-4 b                     | $E_T^{miss}$                 | 140                          | 0.067-1.18                                                                                    | m(F2)=500 GeV                                                                                                                                                                                                                         | 2006.05880                                 |
|               | $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$                                                                                                                    | 3 e, µ                   | 1 b                       | ET                           | 140                          | Forbidden 0.86                                                                                | $m(\tilde{t}'_1)=360 \text{ GeV}, m(\tilde{t}_1)-m(\tilde{t}'_1)=40 \text{ GeV}$                                                                                                                                                      | 2006.05880                                 |
|               | $\tilde{\chi}_1^* \tilde{\chi}_2^0$ via WZ                                                                                                                                            | Multiple ℓ/jet<br>ee, μμ | s<br>≥ljet                | $E_T^{mass}$<br>$E_T^{mass}$ | 140<br>140                   | ( <i>μ</i> <sup>2</sup> )<br>( <i>μ</i> <sup>2</sup> ) 0.205                                  | $m(\tilde{t}_1^n)=0$ , wino-bino<br>$m(\tilde{t}_1^n)=m(\tilde{t}_1^n)=5$ GeV, wino-bino                                                                                                                                              | 2106.01676, 2108.07586<br>1911.12606       |
|               | $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW                                                                                                                                 | 2 e, µ                   |                           | $E_T^{miss}$                 | 140                          | 0.42                                                                                          | m(ti)=0, wino-bino                                                                                                                                                                                                                    | 1908.08215                                 |
|               | $\chi_1^* \chi_2^* $ via $Wh$                                                                                                                                                         | Multiple <i>t</i> /jet   | s                         | Emiss                        | 140                          | 1.06                                                                                          | $m(\tilde{\epsilon}_1^n)=70$ GeV, wino-bino<br>$m(\tilde{\epsilon}_2^n)=0$ $\tilde{\kappa}(m(\tilde{\epsilon}_1^n),m(\tilde{\epsilon}_2^n))$                                                                                          | 2004.10894, 2108.07586                     |
| SC V          | $\hat{\tau}$<br>$\hat{\tau}$ , $\hat{\tau} \rightarrow \tau \hat{\chi}_{1}^{0}$                                                                                                       | 2 7                      |                           | $E_T^{miss}$                 | 140                          | (ř <sub>R</sub> ř <sub>R</sub> ) 0.35 0.5                                                     | $m(\tilde{c}_{1}^{*})=0.5(m(c_{1})^{*})=0$<br>$m(\tilde{c}_{1}^{*})=0$                                                                                                                                                                | 2402.00603                                 |
| ш iģ          | $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$                                                                                                | 2 e, μ<br>ee, μμ         | 0 jets<br>≥ 1 jet         | $E_{Triss}^{miss}$           | 140<br>140                   | 0.26                                                                                          | m(t̃)-m(t̃)=0<br>m(t̃)-m(t̃)=10 GeV                                                                                                                                                                                                   | 1908.08215<br>1911.12606                   |
|               | $\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$                                                                                                                     | 0 e, µ                   | $\geq 3 b$                | Eniss                        | 140                          | 0.94                                                                                          | $BR(\tilde{\xi}^0_1 \rightarrow h\tilde{G})=1$                                                                                                                                                                                        | 2401.14922                                 |
|               |                                                                                                                                                                                       | 4 e.μ<br>0 e.μ           | 0 jets<br>≥ 2 large jet   | ts Eniss                     | 140<br>140                   | 0.55 0.45-0.93                                                                                | $BR(\tilde{\ell}_1^{\circ} \rightarrow ZG)=1$<br>$BR(\tilde{\ell}_1^{\circ} \rightarrow ZG)=1$                                                                                                                                        | 2103.11684<br>2108.07586                   |
|               |                                                                                                                                                                                       | 2 e, µ                   | $\ge 2$ jets              | $E_T^{miss}$                 | 140                          | 0.77                                                                                          | $BR(\tilde{\ell}_1^0 \rightarrow Z\tilde{G}) = BR(\tilde{\ell}_1^0 \rightarrow h\tilde{G}) = 0.5$                                                                                                                                     | 2204.13072                                 |
| _             | $\operatorname{Direct} \tilde{\mathcal{X}}_1^+ \tilde{\mathcal{X}}_1^-$ prod., long-lived $\tilde{\mathcal{X}}_1^\pm$                                                                 | Disapp. trk              | 1 jet                     | $E_T^{miss}$                 | 140                          | 0.21                                                                                          | Pure Wino<br>Pure higgsino                                                                                                                                                                                                            | 2201.02472<br>2201.02472                   |
| les           | Stable g R-hadron                                                                                                                                                                     | pixel dE/dx              |                           | $E_T^{miss}$                 | 140                          |                                                                                               | 2.05                                                                                                                                                                                                                                  | 2205.06013                                 |
| l-fizi        | Metastable $\tilde{g}$ R-hadron, $\tilde{g} \rightarrow qq \tilde{\ell}_1^0$                                                                                                          | pixel dE/dx              |                           | $E_T^{miss}$                 | 140                          | [r(ĝ) =10 ns]                                                                                 | 2.2 m(t <sup>0</sup> )=100 GeV                                                                                                                                                                                                        | 2205.06013                                 |
| pa            | $\ell \ell$ , $\ell \rightarrow \ell G$                                                                                                                                               | Displ. lep               |                           | $E_T^{max}$                  | 140                          | μ 0.74<br>0.36                                                                                | $\tau(\tilde{c}) = 0.1 \text{ ns}$<br>$\tau(\tilde{c}) = 0.1 \text{ ns}$                                                                                                                                                              | ATLAS-CONF-2024-011<br>ATLAS-CONF-2024-011 |
|               |                                                                                                                                                                                       | pixel dE/dx              |                           | $E_T^{miss}$                 | 140                          | 0.36                                                                                          | $r(\tilde{t}) = 10 \text{ ns}$                                                                                                                                                                                                        | 2205.06013                                 |
|               | $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0$ , $\tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$                                                 | 3 e, µ                   | 0 iete                    | emiss                        | 140                          | /Å <sup>0</sup> [BR(Zτ)=1, BR(Zε)=1] 0.625 1.05                                               | Pure Wino                                                                                                                                                                                                                             | 2011.10543                                 |
|               | $\chi_1 \chi_1 / \chi_2 \rightarrow W W / Z U U U V V$<br>$\tilde{v} \tilde{v}, \tilde{v} \rightarrow a a \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow a a a$                       | 4 e, µ                   | ≥8 jets                   | $L_T$                        | 140                          | [mt <sup>2</sup> , )=50 GeV. 1250 GeV1                                                        | 1.6 2.34 Large X''.                                                                                                                                                                                                                   | 2401.16333                                 |
| >             | $\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$                                                                              |                          | Multiple                  |                              | 36.1                         | [X' <sub>323</sub> =2e-4, 1e-2] 0.55 1.05                                                     | m(ž <sub>1</sub> <sup>0</sup> )=200 GeV, bino-like                                                                                                                                                                                    | ATLAS-CONF-2018-003                        |
| 5             | $\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow bbs$                                                                               |                          | $\geq 4b$<br>2 inte + 2 i |                              | 140                          | Forbidden 0.95                                                                                | m( $\hat{x}_{1}^{*}$ )=500 GeV                                                                                                                                                                                                        | 2010.01015                                 |
|               | $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow g \ell$<br>$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow g \ell$                                                                | 2 e. µ                   | 2 jets + 2 t              | ,                            | 140                          | [qq, 8s] 0.42 0.61                                                                            | 0.4-1.85 BR(i <sub>1</sub> →be/bµ)>20%                                                                                                                                                                                                | 2406.18367                                 |
|               | ct. ct                                                                                                                                                                                | 1 µ                      | DV                        |                              | 136                          | $[1e \cdot 10 < \lambda'_{234} < 1e \cdot 8, 3e \cdot 10 < \lambda'_{234} < 3e \cdot 9] $ 1.0 | 1.6 BR(i <sub>1</sub> →qµ)=100%, cosθ <sub>1</sub> =1                                                                                                                                                                                 | 2003.11956                                 |
|               | $\chi_1/\chi_2/\chi_1, \chi_{1,2} \rightarrow lbs, \chi_1 \rightarrow bbs$                                                                                                            | 1-2 e, µ                 | ≥o jets                   |                              | 140                          | 0.2-0.32                                                                                      | Pure nggsino                                                                                                                                                                                                                          | 2106.09609                                 |
|               |                                                                                                                                                                                       |                          |                           |                              |                              |                                                                                               |                                                                                                                                                                                                                                       |                                            |

# R-parity $(R_p)$

- $R_p = \begin{cases} 1 & \text{SM particles} \\ -1 & \text{superpartners} \end{cases}$
- If  $R_p$  is conserved:
  - A superpartner must decay to a state with an odd number of lighter superpartners, e.g.,  $\tilde{b} \rightarrow b\tilde{Z}$
  - The lightest superpartner (LSP) is stable, since it can decay only to SM particles
- But there is no requirement that  $R_p$  should be conserved
  - So it's worth exploring scenarios with  $R_p$  violation (RPV)
- In particular, I will focus on an RPV scenario in which
  - The LPS is the neutralino  $\tilde{\chi}_1^0$ , which is mostly the "Bino": superpartner of the SM hypercharge gauge boson *B*

## RPV terms in the SUSY Lagrangian



These terms violate baryon number, so they must be suppressed  $\rightarrow$  small couplings

# RPV in B decays @ Belle II

JHEP 02 (2023) 224, Dib, Helo, Liubovitskij, Neill, Soffer, Wang

• Focus on  $\lambda_{ij3}'' \neq 0$  (where ij = 1,2), so we have the decays  $B^+ \to \tilde{\chi}_1^0$  + baryon



We considered  $\lambda_{ij3}^{\prime\prime} =$ 

- $\lambda_{113}'': B^+ \to \tilde{\chi}_1^0 p \ (uud)$
- $\lambda_{123}^{\prime\prime}: B^0 \to \tilde{\chi}_1^0 \Lambda \Sigma^0 (uds), B^+ \to \tilde{\chi}_1^0 \Sigma^+ (uus)$
- $\lambda_{213}^{\prime\prime}: B^+ \to \tilde{\chi}_1^0 \Lambda_c^+ / \Sigma_c^+ (udc), B^0 \to \tilde{\chi}_1^0 \Sigma_c^0 (ddc)$
- $\lambda_{223}'': B^+ \to \tilde{\chi}_1^0 \Xi_c^+ (usc), B^0 \to \tilde{\chi}_1^0 \Xi_c^0 (dsc)$

# Lower limit on $m_{\tilde{\chi}_1^0}$

• If  $m_{\tilde{\chi}_1^0} < m_p$ , the proton can decay, e.g.,  $p \to \tilde{\chi}_1^0 e^+ v$ 



- Limits on the proton lifetime are greater than  $\sim 10^{29}$  years
- So we conclude  $m_{\tilde{\chi}_1^0} > m_p$
- (This condition applies even if we turn on only another RPV coupling via SM flavor transitions)

## Does the neutralino decay?

• Yes, e.g.,  $\tilde{\chi}_1^0 \rightarrow p e^- \bar{\nu}_e$ 



- But it's a 2<sup>nd</sup> order process, so  $\tilde{\chi}_1^0$  decays far outside the detector
- $\rightarrow$  The experimental signature is  $B^+ \rightarrow$  baryon + missing

## Form factor calculation

• Due to boson (squark) propagator, we have :

$$Br \propto \left(\frac{\lambda_{ij3}^{\prime\prime}}{m_{\tilde{q}}^2}\right)^2 \equiv G^2$$

- Also  $\propto$  hadronic form factors for the *B* meson  $\rightarrow$  baryon transition.
- We base our calculations on form factors others calculated for proton decay (e.g.,  $p \rightarrow \pi^0 e^+$ ) with proper adjustment.
- E.g., for  $B^+ \to \tilde{\chi}_1^0 p$  there is a direct contribution and a pole contribution from, e.g.,  $B^+ \to \overline{\Lambda}_b^* p$  with  $\overline{\Lambda}_b^* \to \tilde{\chi}_1^0$ :



Need to add all the terms from all the diagrams with the right signs

### Form factors suppress the signal decay



# Experimental analysis technique

- The "missing" neutralino is an experimental challenge. To address it we use knowledge of the initial state, i.e.,  $e^+e^- \rightarrow B_{tag}B_{sig}$
- B factories regularly study rare  $B_{sig}$  decays into missing particles, e.g.,  $B \to K^{(*)} \nu \overline{\nu}, \quad B \to \tau \nu, \quad B \to D^{(*)} \tau \nu, \quad B \to \pi \ell \nu$
- 3 techniques:
  - Hadronic tagging: fully reconstruct  $B_{tag}$  in a hadronic decay (e.g.,  $B \rightarrow D\pi$ . Actually O(1000) decay modes are used)
  - Semileptonic tagging: partially reconstruct the  $B_{\text{tag}}$  in a semileptonic decay  $B \rightarrow D^{(*)} \ell \nu$
  - Inclusive tagging: combine all the non- $B_{sig}$  particles in the event and use various techniques to separate signal from background

# Experimental analysis technique

- The 3 techniques typically have similar sensitivities.
- We considered only hadronic tagging, where it is simplest to estimate the background in a phenomenological study like this.
- In hadronic tagging one can calculate the missing (neutralino) mass:  $m_{\text{miss}}^2 = (p_{ee} - p_{\text{tag}} - p_{\text{barvon}})^2$
- So a signal looks like a peak in the  $m_{miss}$  distribution:



• Bump-hunt analysis: look for such a peak (bump)

# Background estimation for the $B \rightarrow \tilde{\chi}_1^0 p$ bump hunt

- The idea is to estimate the number of background events in a region of  $m_{\text{miss}}$  whose width is the  $m_{\text{miss}}$  resolution  $\sigma_{m_{\text{miss}}}$
- The resolution  $\sigma_{m_{\text{miss}}}$  is dominated by the resolution on the transverse momentum of the proton. We used the Belle resolution,

$$\left(\frac{\sigma(p_T)}{p_T}\right)^2 = \left(0.0019 \frac{p_T}{\text{GeV}}\right)^2 + \left(0.003 \frac{1}{\beta}\right)^2$$

• Propagating this to  $\sigma_{m_{\text{miss}}}$ :



# Background estimation for the $B \rightarrow \tilde{\chi}_1^0 p$ bump hunt

- We used a  $B^+ \rightarrow K^+ \nu \bar{\nu}$  study by BABAR (1303.7465)
- We parameterized their background as a function of  $m_{miss}$ :



• and reduced it by the the ratio of proton to kaon production,

$$\frac{Br(B^+ \to p + X)}{Br(B^+ \to K^+ + X)} \approx \frac{1}{16}$$

# Belle II sensitivity to $B^+ \rightarrow \tilde{\chi}_1^0 p$

• Assuming Belle II will have an integrated luminosity of 50 ab<sup>-1</sup>, we estimate that it can set this limit on  $Br(B^+ \to \tilde{\chi}_1^0 p)$  as a function of  $m_{\tilde{\chi}_1^0}$ 



## Belle II sensitivity to $\lambda_{113}^{\prime\prime}/m_{\tilde{q}}^2$

• Since we calculated  $\operatorname{Br}(B^+ \to \tilde{\chi}_1^0 p)$  as a function of  $\lambda_{113}''/m_{\tilde{q}}^2$ , we can calculate the expected limit on  $\lambda_{113}''/m_{\tilde{q}}^2$  for each value of  $m_{\tilde{\chi}_1^0}$ :



- BABAR (2302.00208) obtained limits weaker by ~10.
- Expect  $3 \approx 100^{1/4}$  from luminosity
- The rest is from larger background / smaller efficiency wrt. my estimate 21

# Belle II sensitivity to $\lambda_{113}''$

• Convert this to the expected limit on  $\lambda''_{113}$  as a function of  $m_{\tilde{q}}$  for various values of  $m_{\tilde{\chi}^1_0}$ 



# BABAR limits on $\lambda_{123}''/m_{\tilde{q}}^2$

• We also obtained limits on  $\lambda_{123}^{\prime\prime}$  using older searches on  $B^0 \rightarrow \Lambda + \text{missing}$ 

-20

- Used the tighter limits of BABAR (2302.00208) rather than Belle (2110.14086)
- We estimate the sensitivity on  $\lambda_{213}^{\prime\prime}, \lambda_{223}^{\prime\prime}$  to be worse by about a factor of 15-70, mostly due to form factors and reconstruction efficiency for charmed baryons



~50 times weaker than our prediction for  $B^0 \rightarrow \tilde{\chi}_1^0 p$  at Belle II:

- $(22)^{1/2}$  from form factor
- $(125)^{1/4}$  from luminosity
- $(1/0.64)^{1/2}$  from  $\Lambda \rightarrow p\pi^{-}$

### Limits from other processes are much weaker

•  $\Xi_b^0 - \overline{\Xi}_b^0$  oscillations (LHCb, 1708.05808): We estimate  $\lambda_{123}''/m_{\tilde{b}}^2 < 4 \times 10^{-4} \text{ GeV}^{-2}$ (for  $m_{\tilde{\chi}_1^0} = 2.5 \text{ GeV}$ )



• Limits on  $n - \bar{n}$  oscillations are much tighter, but are suppressed by 2 weak loops due to lack of *b* content in the neutron:



• The same holds for dinucleon decays:



From these we estimate:  $\lambda_{113}''/m_{\tilde{q}}^2 \lesssim 6 \times 10^{-4} \,\text{GeV}^{-2}$   $\lambda_{123}'/m_{\tilde{q}}^2 \lesssim 2 \times 10^{-2} \,\text{GeV}^{-2},$   $\lambda_{213}'/m_{\tilde{q}}^2 \lesssim 5 \times 10^{-6} \,\text{GeV}^{-2}, \longrightarrow \text{Only this one beats}$ our method  $\lambda_{223}''/m_{\tilde{q}}^2 \lesssim 2 \times 10^{-4} \,\text{GeV}^{-2}$ 

# What if the neutralino decays inside the detector?

- The tracks produced in the decay of a long-lived neutralino that decays inside the detector form a displaced vertex (DV)
- The DV signature is a great background suppressor
- We can take advantage of an experimental idea:

# Experimental idea



Can we reconstruct what we need?

We have:

- 8 unknowns:
  - p4 of D and B
- 8 constraints at an  $e^+e^- \rightarrow B\overline{B}$  machine:
  - p4 conservation in the *B* decay
  - $-m_B$
  - $E_B$  in the  $e^+e^-$  system
  - $\hat{p}_D$  from the location of the displaced vertex

## Analytic solution for $m_D$

$$p_{D} = \frac{1}{2(1-c_{D}^{2}\beta^{2})} \left[ -\left(2p_{F}c_{FD} - 2p_{F}^{z}c_{D}\beta^{2} - 2\frac{E_{b}}{\gamma}\beta c_{D}\right) \right]$$

$$\pm \sqrt{\left(2p_{F}c_{FD} - 2p_{F}^{z}c_{D}\beta^{2} - 2\frac{E_{b}}{\gamma}\beta c_{D}\right)^{2} - 4(1-c_{D}^{2}\beta^{2})\left(M_{B}^{2} + p_{F}^{2} - \left(\frac{E_{b}}{\gamma}\right)^{2} - \beta^{2}p_{F}^{z^{2}} - 2\frac{E_{b}}{\gamma}\beta p_{F}^{z}\right)\right]}$$

$$E_{D} = E_{B} - E_{F}$$

$$m_{D}^{2} = E_{D}^{2} - p_{D}^{2}$$
Terms that arise from the collider boost

where  $\beta$  is the speed of the  $e^+e^-$  frame in the lab,  $\gamma = (1 - \beta^2)^{-1/2}$ 

Requiring a solution to the quadratic equation removes >90% of the background and only 20% of the signal

Enable  $\tilde{\chi}_1^0$  decay with  $\lambda_{212}'' \neq 0$ 

To be submitted soon Bertholet, Dib, Gandelman, Helo, Liubovitskij, Nayak, Neill, Soffer, Wang

• For the neutralino to decay in the detector, we need a second nonzero RPV coupling:





 $\lambda_{113}''$  controls the neutralino production rate in  $B^+ \rightarrow p \chi_1^0$   $\lambda_{212}''$  controls the neutralino decay rate  $(=1/\tau_{\tilde{\chi}_1^0})$ in  $\chi_1^0 \to csd$ 

Heavy *csd* final state well-suited to the experimental method

# Why specifically $\lambda_{212}''$ ?

- We focus on  $\lambda_{212}^{\prime\prime}$  since other relevant couplings are strongly excluded by nuclear-physics experiments
- E.g.,  $\lambda_{112}''$  from dinucleon decays:



$$\begin{split} \lambda_{112}''/m_{\tilde{q}}^2 &\lesssim 9.8 \times 10^{-13}/\text{GeV}^2 \text{ (dinucleon)}, \\ \lambda_{212}''/m_{\tilde{q}}^2 &\lesssim 6 \times 10^{-6}/\text{GeV}^2 \text{ (dinucleon/collider)}, \end{split}$$

# Hadronization of the cds final state

• We consider 2-body decays to a charmed baryon plus meson:

$$\begin{split} \tilde{\chi}^0_1 &\to \Sigma^0_c + \bar{K}^0 \,, \quad \tilde{\chi}^0_1 \to \Omega^0_c + K^0 \,, \\ \tilde{\chi}^0_1 &\to \Lambda^+_c + K^- \,, \quad \tilde{\chi}^0_1 \to \Xi^+_c + \pi^- \,. \end{split}$$

- We ignore decays to  $D_{(s)}^{(*)}$ + baryon, which we find to have small form factors
- We calculate the relevant form factor & the neutralino lifetime

**Table 1**: Classification of the relevant baryons: quantum numbers, masses, and couplingconstants, extracted from Refs. [49, 50].

| Notation      | Content   | $J^P$   | $S_d$ | Mass (GeV) | Coupling $\beta$                             |
|---------------|-----------|---------|-------|------------|----------------------------------------------|
|               |           |         |       |            | (in units of $10^{-2} \times \text{GeV}^3$ ) |
| $\Lambda_c^+$ | c[ud]     | $1/2^+$ | 0     | 2.28646    | 0.835                                        |
| $\Sigma_c^0$  | $c\{dd\}$ | $1/2^+$ | 1     | 2.45375    | 1.125                                        |
| $\Xi_c^+$     | c[us]     | $1/2^+$ | 0     | 2.46771    | 1.021                                        |
| $\Omega_c^0$  | $c\{ss\}$ | $1/2^+$ | 1     | 2.6952     | 2.325                                        |

Table 2: Classification of the relevant mesons: quantum numbers, masses, and leptonic decay constants, extracted from Ref. [38].

| Notation  | Content   | $J^P$ | Mass (GeV) | Decay constant $f_M$ (GeV) |
|-----------|-----------|-------|------------|----------------------------|
| $\pi^-$   | $dar{u}$  | 0-    | 0.13957    | 0.1302                     |
| $K^{-}$   | $sar{u}$  | 0-    | 0.493677   | 0.1557                     |
| $K^0$     | $dar{s}$  | 0-    | 0.497611   | 0.1557                     |
| $ar{K}^0$ | $s ar{d}$ | 0-    | 0.497611   | 0.1557                     |

# Event selection

We propose to:

- Reconstruct a proton  $(\lambda_{113}'')$  and at least 3 tracks that form a DV  $(\lambda_{212}'')$ 
  - With 2 tracks we expect too much background, extrapolated from our HNL search at Belle, 2402.02580
- DV radial displacement:  $r_{\rm DV} > 1$  cm
  - Removes prompt background, keeps high efficiency
- Invariant mass of the DV daughters  $m_{\rm DV} > 1 \text{ GeV}$ 
  - Removes background from  $K_S \to \pi^+\pi^-$ ,  $K_L \to \ell^\pm \pi^\mp \nu$ ,  $K_L \to \pi^+\pi^-\pi^0$ , etc.
  - Suppresses background from misreconstructed tracks and material interactions

# Applying the calculation



# Estimating the efficiency

E. Bertholet, A. Soffer, 2501.00857, to appear in Int. J. Mod. Phys. A

- GEANT4 MC can't be used in a pheno paper  $\rightarrow$  hard to obtain efficiency of displaced tracks
- Solution: a truth-based package <u>B2Track</u> written by Emilie Bertholet:
  - A track is reconstructed if it has at least 20 drift-chamber hits (user-tunable)
  - The number of hits is estimated geometrically with simplified CDC cells.
  - A cell produces a hit if the track passes a minimal distance inside the cell



33

Tuned the model parameters with published Belle II tracking efficiency:

y [cm]

# Efficiency results



# Estimated sensitivity



We also estimate the sensitivity for fully reconstructing the neutralino decay in a specific mode.

The resulting sensitivity to  $\lambda_{212}^{\prime\prime}/m_{\tilde{q}}^2$  is weaker by a factor of 10.

# Applying the reconstruction idea to other models

- The same can be done with
  - $B^+ \rightarrow K^+ + a \text{ scalar or pseudoscalar}$
  - $B^+ \rightarrow \ell^+ +$  a heavy neutral lepton
- Submitted a grant to explore this together with Uli Nierste, Monika Blanke, Felix Kahlhoefer.
- Others welcome to join as well!

# Summary

#### SUSY hasn't been found at LHC

But it has an allowed parameter space accessible at B factories: GeV-scale neutralino with RPV

We proposed 2 methods for 2 cases:

- Only  $\lambda_{ij3}'' \neq 0 \rightarrow B \rightarrow$  baryon + missing
- $\lambda_{ij3}^{\prime\prime}$  and  $\lambda_{212}^{\prime\prime} \neq 0 \rightarrow B \rightarrow \text{baryon} + \text{DV}$  partial reconstruction

The partial reconstruction method can be used for (pseudo)scalar or heavy-neutral-lepton searches, but the models need to be refined.



# Backup slides

Considerations on  $B^0 \to \tilde{\chi}_1^0 \Sigma^0$  and  $B^+ \to \tilde{\chi}_1^0 \Sigma^+$ 

• These probe  $\lambda_{123}^{\prime\prime}$  with larger form factors than  $B^0 \rightarrow \tilde{\chi}_1^0 \Lambda$ : So potentially advantageous.



- But:
  - $-\Sigma^0 \rightarrow \Lambda \gamma \sim 100\%$  of the time with a soft photon that is hard to detect
  - Σ<sup>+</sup> →  $p\pi^0$  and  $n\pi^+$ , each ~50%, with low efficiency and high background
- $\rightarrow$  harder than  $\mathbb{B}^0 \rightarrow \tilde{\chi}_1^0 \Lambda$  with no advantage

### Greater suppression for charmed baryons:



We didn't follow up on  $\Sigma_c^0$ ,  $\Sigma_c^+$ ,  $\Xi_c'^+$ 

### Considerations on $B^+ \rightarrow \tilde{\chi}_1^0 \Lambda_c^+ / \Xi_c^+$

- The best decay mode for  $\Lambda_c^+$  is  $\Lambda_c^+ \to pK^-\pi^+$ , BR = 6.3%
- The squared form factor is 0.02 0.08 that of  $B^+ \rightarrow \tilde{\chi}_1^0 p$
- Most of the background is from random combinations of  $pK^-\pi^+$ . We estimate its level to be similar to that of  $B^+ \rightarrow \tilde{\chi}_1^0 p$
- $\rightarrow$  Expect ~15-35 weaker limits on  $\lambda_{213}''$  than for  $B^+ \rightarrow \tilde{\chi}_1^0 p (\lambda_{113}'')$
- Reconstruct  $\Xi_c^+$  in , e.g.,  $\Xi_c^+ \to \Xi^- \pi^+ \pi^+$ ,  $\Xi^- \to \Lambda \pi^-$ ,  $\Lambda \to p \pi^-$ , BR = 2.9% × 100% × 64%
- Form factor similar to that of  $B^+ \rightarrow \tilde{\chi}_1^0 \Lambda_c^+$
- We estimate the background to be similar
- $\rightarrow$  Expect ~2.5 weaker limits on  $\lambda_{223}^{\prime\prime}$  than for  $B^+ \rightarrow \tilde{\chi}_1^0 \Lambda_c^+ (\lambda_{213}^{\prime\prime})$

# Hadronization of the cds final state

- We consider 2-body decays to a charmed baryon plus meson:
- We ignore decays to  $D_{(s)}^{(*)}$ + baryon, which we find to have small form factors



$$\Gamma(\tilde{\chi}_1^0 \to BM) \propto \left(\frac{\lambda_{212}''}{m_q^2}\right)^2 \equiv G^2$$

$$\begin{aligned} \tilde{\chi}^0_1 \to \Sigma^0_c + \bar{K}^0 \,, \quad \tilde{\chi}^0_1 \to \Omega^0_c + K^0 \,, \\ \tilde{\chi}^0_1 \to \Lambda^+_c + K^- \,, \quad \tilde{\chi}^0_1 \to \Xi^+_c + \pi^- \,. \end{aligned}$$

**Table 1**: Classification of the relevant baryons: quantum numbers, masses, and couplingconstants, extracted from Refs. [49, 50].

| Notation      | Content   | $J^P$     | $S_d$ | Mass (GeV) | Coupling $\beta$                             |
|---------------|-----------|-----------|-------|------------|----------------------------------------------|
|               |           |           |       |            | (in units of $10^{-2} \times \text{GeV}^3$ ) |
| $\Lambda_c^+$ | c[ud]     | $1/2^{+}$ | 0     | 2.28646    | 0.835                                        |
| $\Sigma_c^0$  | $c\{dd\}$ | $1/2^{+}$ | 1     | 2.45375    | 1.125                                        |
| $\Xi_c^+$     | c[us]     | $1/2^{+}$ | 0     | 2.46771    | 1.021                                        |
| $\Omega_c^0$  | $c\{ss\}$ | $1/2^{+}$ | 1     | 2.6952     | 2.325                                        |

**Table 2**: Classification of the relevant mesons: quantum numbers, masses, and leptonic decay constants, extracted from Ref. [38].

| Notation  | Content   | $J^P$ | Mass (GeV) | Decay constant $f_M$ (GeV) |
|-----------|-----------|-------|------------|----------------------------|
| $\pi^{-}$ | $dar{u}$  | 0-    | 0.13957    | 0.1302                     |
| $K^-$     | $sar{u}$  | 0-    | 0.493677   | 0.1557                     |
| $K^0$     | $dar{s}$  | 0-    | 0.497611   | 0.1557                     |
| $ar{K}^0$ | $s ar{d}$ | 0-    | 0.497611   | 0.1557                     |

 $\tilde{\chi}_1^0$  decay branching fractions

• The width of the neutralino decay to a baryon and meson final state



parameterize the hadronic transition

# $m_{\tilde{\chi}_1^0}$ -dependent *cds* form factors

• Shown here in terms of  $\Gamma(\tilde{\chi}_1^0 \to BM) \times 10^5$  $/G_0^2$ 

$$G_0 = \frac{\lambda_{212}^{\prime\prime}}{m_q^2/\text{TeV}^2}$$



**Figure 1**: Two-body decay rates of the light bino multiplied by the factor  $10^5/G^2$ :  $\tilde{\chi}_1^0 \rightarrow \Sigma_c^0 + \bar{K}^0$  and  $\tilde{\chi}_1^0 \rightarrow \Omega_c^0 + K^0$  transitions (left panel);  $\tilde{\chi}_1^0 \rightarrow \Lambda_c^+ + K^-$  and  $\tilde{\chi}_1^0 \rightarrow \Xi_c^+ + \pi^-$  transitions (right panel).

• The form factors and phase space also impact the neutralino lifetime:



**Figure 2**: The proper decay length  $c\tau_{\tilde{\chi}_1^0}$  of the light bino multiplied by the factor  $G^2$ , as a function of  $m_{\tilde{\chi}_1^0}$ .  $c\tau_{\tilde{\chi}_1^0}$  is saturated by the four dominant decay modes shown in Fig. 1.