Interpreting Belle II excess with light dark matter

jongkukkim@cau.ac.kr

Based on arXiv: 2401.10112 In collaboration with Shu-Yu Ho (Academia Sinica), Pyungwon Ko (KIAS)

2025. 2. 22 (Sat)

Evidences – Dark Matter

• There are undeniable evidences for dark matter in a wide range of distance scales

- The $B^+ \rightarrow K^+ \nu \bar{\nu}$ process is known with high accuracy in the SM:
 - $Br(B^+ \to K^+ \nu \bar{\nu}) = (5.58 \pm 0.37) \times 10^{-6}$ HPQCD, PRD 2023

$$\mathcal{L}_{b \to s \nu \bar{\nu}} = -C_{\nu} \bar{s}_{L} \gamma^{\mu} b_{L} \bar{\nu} \gamma^{\mu} \nu$$

$$C_{\nu} = \frac{g_{W}^{2}}{M_{W}^{2}} \frac{g_{W}^{2} V_{ts}^{*} V_{tb}}{16\pi^{2}} \bigg[\frac{x_{t}^{2} + 2x_{t}}{8(x_{t} - 1)} + \frac{3x_{t}^{2} - 6x_{t}}{8(x_{t} - 1)^{2}} \ln x_{t} \bigg],$$

$$\text{where } x_{t} = m_{t}^{2} / M_{W}^{2}.$$

- Two ways of tagging
 - HTA: Better resolution, purity
 - ITA: Better efficiency

Belle II, 2311.14647

 $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})_{\text{HTA}} = (1.1^{+0.9+0.8}_{-0.8-0.5}) \times 10^{-5}$ $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu})_{\text{ITA}} = (2.7 \pm 0.5 \pm 0.5) \times 10^{-5}$

• $Br(B^+ \to K^+ \nu \bar{\nu})_{Exp} = (2.3 \pm 0.7) \times 10^{-5}$

- Prob(null signal from $B^+ \rightarrow K^+ \nu \bar{\nu}) = 0.012\%$
- \rightarrow Significance of observation: 3.5 σ
- $\operatorname{Prob}(B^+ \to K^+ \nu \bar{\nu})_{SM} = 0.17\%$ (2.8 σ tension with the SM prediction)
- $Br(B^+ \to K^+ E_{\text{mis}})_{NP} = (1.8 \pm 0.7) \times 10^{-5}$
 - Indirect NP effects: The presence of heavy NP particles
 - Direct NP effects: the presence of new invisible particles

Solutions: EFT-approach

• Real/Complex scalar DM

$$\mathcal{O}_{q\phi}^{S,sb} = (\overline{s}b)(\phi^{\dagger}\phi),$$

X. He et al, 2309.12741

 $\mathcal{O}_{q\phi}^{V\!,sb} = (\overline{s}\gamma^{\mu}b)(\phi^{\dagger}i\overleftrightarrow{\partial_{\mu}}\phi),\,(\times)$

- Majorana/Dirac fermion DM $\mathcal{O}_{q\chi 1}^{S,sb} = (\overline{s}b)(\overline{\chi}\chi),$ $\mathcal{O}_{q\chi 2}^{S,sb} = (\overline{s}b)(\overline{\chi}i\gamma_5\chi),$ $\mathcal{O}_{q\chi 1}^{V,sb} = (\overline{s}\gamma^{\mu}b)(\overline{\chi}\gamma_{\mu}\chi), (\times)$ $\mathcal{O}_{q\chi 2}^{V,sb} = (\overline{s}\gamma^{\mu}b)(\overline{\chi}\gamma_{\mu}\gamma_5\chi),$ $\mathcal{O}_{q\chi 1}^{T,sb} = (\overline{s}\sigma^{\mu\nu}b)(\overline{\chi}\sigma_{\mu\nu}\chi), (\times)$ $\mathcal{O}_{q\chi 2}^{T,sb} = (\overline{s}\sigma^{\mu\nu}b)(\overline{\chi}\sigma_{\mu\nu}\gamma_5\chi), (\times)$
- Real/Complex vector DM

$$\begin{aligned} \mathcal{O}_{qX}^{S,sb} &= (\overline{s}b)(X_{\mu}^{\dagger}X^{\mu}), \\ \mathcal{O}_{qX1}^{T,sb} &= \frac{i}{2}(\overline{s}\sigma^{\mu\nu}b)(X_{\mu}^{\dagger}X_{\nu} - X_{\nu}^{\dagger}X_{\mu}), (\times) \\ \mathcal{O}_{qX2}^{T,sb} &= \frac{1}{2}(\overline{s}\sigma^{\mu\nu}\gamma_{5}b)(X_{\mu}^{\dagger}X_{\nu} - X_{\nu}^{\dagger}X_{\mu}), (\times) \\ \mathcal{O}_{qX2}^{T,sb} &= (\overline{s}\gamma_{\mu}b)\partial_{\nu}(X^{\mu}X^{\nu} + X^{\nu\dagger}X^{\mu}), (\times) \\ \mathcal{O}_{qX3}^{V,sb} &= (\overline{s}\gamma_{\mu}b)(X_{\nu}^{\dagger}\overleftarrow{\partial_{\mu}}X^{\nu}), (\times) \\ \mathcal{O}_{qX5}^{V,sb} &= (\overline{s}\gamma_{\mu}b)(X_{\nu}^{\dagger}\overleftarrow{\partial_{\mu}}X^{\nu}), (\times) \\ \mathcal{O}_{qX5}^{V,sb} &= (\overline{s}\gamma_{\mu}b)i\partial_{\nu}(X^{\mu\dagger}X^{\nu} - X^{\nu\dagger}X^{\mu}), (\times) \\ \mathcal{O}_{qX5}^{V,sb} &= (\overline{s}\gamma_{\mu}b)i\partial_{\nu}(X^{\mu\dagger}X^{\sigma})\epsilon^{\mu\nu\rho\sigma}. (\times) \\ \mathcal{O}_{qX5}^{V,sb} &= (\overline{s}\gamma_{\mu}b)i\partial_{\nu}(X^{\mu\dagger}X_{\sigma})\epsilon^{\mu\nu\rho\sigma}. (\times) \\ \mathcal{O}_{qX5}^{V,sb} &= (\overline{s}\gamma_{\mu}b)i\partial_{\nu}(X^{\dagger}_{\rho}X_{\sigma})\epsilon^{\mu\nu\rho\sigma}. (\times) \\ \mathcal{O}_{qX5}^{V,sb} &= (\overline{s}\gamma_{\mu}b)i\partial_{\nu}(X^{\mu\dagger}X^{\sigma})\epsilon^{\mu\nu\rho\sigma}. (\times) \\ \mathcal{O}_{qX5}^{V,sb} &= (\overline{s}\gamma_{\mu}b)i\partial_{\nu}(X^{\mu\dagger}X^{\sigma})\epsilon^{\mu\nu\rho\sigma}. (\times) \\ \mathcal{O}_{qX5}^{V,sb} &= (\overline{s}\gamma_{\mu}b)i\partial_{\nu}(X^{\dagger}_{\rho}X_{\sigma})\epsilon^{\mu\nu\rho\sigma}. (\times) \\ \mathcal{O}_{qX5}^{V,sb} &= (\overline{s}\gamma_{\mu}b)i\partial_{\mu}(X^{\dagger}_{\rho}X_{\sigma})\epsilon^{\mu\nu\rho\sigma}. (\times) \\ \mathcal{O}_{qX5}^{V,sb} &= (\overline{s}\gamma_{\mu}b)i\partial_{\mu}(X^{\dagger}_{\rho}X_{\sigma})\epsilon^{$$

- Belle II provides information on the q_{rec}^2 spectrum
 - q_{rec}^2 : mass squared of the neutrino pair
 - A peak localized around $q_{rec}^2 = 4 \text{GeV}^2$
 - Two-body decay $(B \rightarrow KX)$, $m_X = 2 \text{ GeV}$

W. Altmannshofer et al, 2311.14629

- Belle II provides information on the q_{rec}^2 spectrum
 - q_{rec}^2 : mass squared of the neutrino pair
 - A peak localized around $q_{rec}^2 = 4 \text{GeV}^2$
 - Two-body decay $(B \rightarrow KX)$, $m_X = 2 \text{ GeV}$

W. Altmannshofer et al, 2311.14629

- 2.8 σ tension under the assumption of heavy new physics
- No excess was found in the BaBar measurements of $B \to K^* \nu \bar{\nu}$
- A global analysis of the Bellell and BaBar data leads to $Br(B \rightarrow KX) = (5.1 \pm 2.1) \times 10^{-6}$ with a reduced significane of $\approx 2.4\sigma$

- Belle II provides information on the q_{rec}^2 spectrum
 - q_{rec}^2 : mass squared of the neutrino pair
 - A peak localized around $q_{rec}^2 = 4 \text{GeV}^2$
 - Two-body decay $(B \rightarrow KX)$, $m_X = 2 \text{ GeV}$

W. Altmannshofer et al, 2311.14629

• Three-body decay $(B \rightarrow KXX)$, $m_X < 0.6 \text{ GeV}$ K. Fridell et al, 2312.12507

• Light particle X

W. Altmannshofer et al, 2311.14629

- Light neutral vector boson Z'
- Flavoured axions and ALPs
- Light \rightarrow on-shell: $m_X < m_B m_K$: $m_X = 2 \text{ GeV}$
- Undetected particle X is stable, long-lived or decays invisibly
 - Couplings to electrons, muons, and light quarks should be absent or sufficiently small
- For $B \to K^* \nu \overline{\nu}$, only BaBar data is available, there is no excess seen
 - Use the $B \to K^* \nu \bar{\nu}$ measurements of BaBar to set an upper limit on Br $(B \to K^* \nu \bar{\nu})$

• $B \rightarrow KZ'$ decay rate

•
$$m_{Z'} = 2 \text{GeV}$$

$$\Gamma_{B \to KZ'}^{(4)} = \frac{|g_V^{(4)}|^2}{64\pi} \frac{m_B^3}{m_{Z'}^2} \lambda^{\frac{3}{2}} f_+ ,$$

$$\Gamma_{B \to KZ'}^{(5)} = \frac{|g_V^{(5)}|^2}{16\pi} \frac{m_B m_{Z'}^2}{\Lambda^2} \left(1 + \frac{m_K}{m_B}\right)^{-2} \lambda^{\frac{3}{2}} f_T ,$$

$$\Gamma_{B \to KZ'}^{(6)} = \frac{|g_V^{(6)}|^2}{64\pi} \frac{m_B^3 m_{Z'}^2}{\Lambda^4} \lambda^{\frac{3}{2}} f_+ ,$$

W. Altmannshofer et al, 2311.14629

Including couplings up to dimension 6, the interaction Lagrangian is 47

$$\mathcal{L}_{Z'} \supset \left\{ g_L^{(4)} Z'_{\mu} (\bar{s} \gamma^{\mu} P_L b) + \frac{g_L^{(5)}}{\Lambda} Z'_{\mu\nu} (\bar{s} \sigma^{\mu\nu} P_R b) + \frac{g_L^{(6)}}{\Lambda^2} \partial^{\nu} Z'_{\mu\nu} (\bar{s} \gamma^{\mu} P_L b) + \text{h.c.} \right\} + \{L \leftrightarrow R\}, \quad (2)$$

$$g_V^{(d)} = g_R^{(d)} + g_L^{(d)} \text{ and } g_A^{(d)} = g_R^{(d)} - g_L^{(d)}.$$

FIG. 2: Left: Correlations between $B \to KZ'$ and $B \to K^*Z'$ (colored lines) for the different $\bar{s}bZ'$ operators considered in this work. These are compared to the experimental data stemming from the combination of Belle-II, Babar and Belle measurements, which is represented by the red regions corresponding to $\Delta\chi^2 = 2.3$ and $\Delta\chi^2 = 6.18$. Belle's upper limit (hatched region at 2σ) and the new Belle II measurement (blue vertical band at 1σ and 2σ). Right: preferred regions in the $g_L - g_R$ plane. One can see that (approximately) vectorial couplings of the order of 10^{-8} are suggested by current data.

• Dark Higgs on-shell decay or three-body decay McKeen et al, 2312.00982

• Dark Higgs on-shell decay or three-body decay McKeen et al, 2312.00982

Extremely large relic density

•
$$\Omega h^2 \simeq 10^{20} \left(\frac{10^{-4}}{y_D}\right)^2 \left(\frac{\sin \theta}{10^{-3}}\right)^2 \left(\frac{m_{\chi}}{100 \text{ MeV}}\right)^2 \left(\frac{1 \text{GeV}}{m_{H_1}}\right)^2$$
: overclose the Universe

- Either introduce a new DM annihilation or allow DM to decay
- In that sense, fermion DM does not work...

ALP portal

Lorenzo Calibbi et al, 2502.04900

$$\mathcal{L}_{aff} = \frac{\partial_{\mu}a}{2f_a} \bar{f}_i \gamma^{\mu} \left(C^V_{f_i f_j} + C^A_{f_i f_j} \gamma_5 \right) f_j \quad + \mathcal{L}_{a\chi\chi} = \frac{\partial_{\mu}a}{2f_a} \bar{\chi} C^A_{\chi\chi} \gamma^{\mu} \gamma_5 \chi_5$$

• DM freeze-in production: $\Gamma(b \rightarrow sa), \sigma(b\bar{b} \rightarrow ag), \sigma(bg \rightarrow ba)$

Dark Photon portal through kinetic mixing ^{Lorenzo Calibbi et al, 2502.04900}

$$\mathcal{L} \supset \frac{1}{2}\overline{\psi}(i\partial \!\!\!/ - m_R)\psi + \frac{g_X}{2}\overline{\psi}X\gamma_5\psi - \frac{y_R}{2\sqrt{2}}\overline{\psi}\psi\varphi - \frac{y_R}{2\sqrt{2}}\overline{\psi}i\gamma_5\psi a$$

- BelleII excess (B \rightarrow K + Dark Photon with 2GeV)
 - The partial decay widths for decays to SM particles: suppressed by kinetic mixing
 - The partial width for decays of the dark photon to DMs: Not suppressed by the kinetic mixing

DM freeze-out production

- The relevant process is the DM annihilation into dark Higgs bosons, $\psi\psi \rightarrow \phi\phi$, which subsequently decay to SM particles
- The annihilation process is **p-wave** suppressed
- To satisfy BBN constraints, we require the dark Higgs lifetime to be shorter than $\tau \phi \lesssim 0.1$ s $\rightarrow m_{\Phi} > 4$ MeV
- Relic density: $\Omega_{\psi}h^2 \approx 0.1 \times \left(\frac{0.5 \,\text{GeV}}{m_{\text{DM}}}\right)^2 \left(\frac{0.002}{\alpha_X}\right)^2$

solid blue line corresponds to a dark Higgs with mass $m_{\varphi} = 4 \text{ MeV}$ and the blue shaded region displays the range $m_{\varphi} \in [4 \text{ MeV}, m_{\text{DM}}]$.

- DM scattering off a Xenon nucleus: five orders of magnitude below the DM direct detection limit
- DM self-interaction cross section

$$\frac{\sigma_{\rm SI}}{m_{\rm DM}} = \frac{16\pi\alpha_X^2 v_{\rm DM}^2}{m_X^3} \frac{x_{\rm DM}(3 - 20x_{\rm DM}^2 + 40x_{\rm DM}^4)}{(1 - 4x_{\rm DM}^2)^2} \\ \approx 1.1 \times 10^{-14} \left(\frac{\alpha_X}{10^{-2}}\right)^2 \left(\frac{v}{10^3 \,\rm km/s}\right)^2 \frac{x_{\rm DM}(3 - 20x_{\rm DM}^2 + 40x_{\rm DM}^4)}{(1 - 4x_{\rm DM}^2)^2} \frac{\rm cm^2}{\rm g}$$

• $B \to (K, K^*) \chi \bar{\chi}$ decays via a scalar mediator A. Berezhnoyet al, 2502.14313

Figure 2: The Belle II data on the decay $B \to KM_X$ fitted by the DM model considered for different parameter values: $M_{\phi} = 2.8 \text{ GeV}, \Gamma_{\phi}^0 = 2.8 \text{ GeV}$ and $m_{\chi} = 0 \text{ GeV}$ (red solid curve); $M_{\phi} = 20 \text{ GeV}, \Gamma_{\phi}^0 = 0 \text{ GeV}$ and $m_{\chi} = 0 \text{ GeV}$ (green solid curve). The corresponding predictions for $B \to K^*M_X$ are also shown, assuming the same detection efficiency (red dashed and green dashed curves). Only excess events over the SM expectations are shown.

Can we find the integrated solution of DM relic density and $B^+ \rightarrow K^+ \nu \bar{\nu}$ at Belle II?

$U(1)_{L_{\mu}-L_{\tau}}$ -charged DM + Dark Higgs

- $U(1)_{dark} \equiv U(1)_{L_{\mu}-L_{\tau}}$
 - Let's call $Z', U(1)_{L_{\mu}-L_{\tau}}$ gauge boson, dark photon since it couple to DM

- UV complete $U(1)_{L_{\mu}-L_{\tau}}$ -charged scalar DM model
- Dark photon Z' gets massive through $U(I)_{L_{\mu}-L_{\tau}}$ breaking
- A new singlet scalar (Dark Higgs), which mixes with the SM Higgs

Evidences – Muon g-2

Muon g-2 collaboration, PRL 2023
 Muon g-2 experiment improves the precision of their previous result by a factor of 2

Evidences – Hubble tension

- Large difference between early and late H_0 measurement
 - Late-time: $H_0 = 73.2 \pm 1.3 \text{ kms}^{-1} \text{Mpc}^{-1}$
 - Early-time: $H_0 = 67.4 \pm 0.5 \text{ kms}^{-1} \text{Mpc}^{-1}$
- The discrepancy either arises because
 - Our distance measurements are incorrect (ΔG_N)
 - Cosmological model we use to fit all those distances is incorrect (ΔN_{eff})

Gauged $U(1)_{L_{\mu}-L_{\tau}} Z'$ model

- Gauge one of the differences of two lepton-flavor numbers
 - $L_e L_\mu, L_\mu L_\tau, L_e L_\tau$: anomaly free without extension of fermion contents X. G. He et al, PRD 1991
 - Symmetry including L_e is strongly constrained
 - Charge assignments: $\widehat{\mathcal{Q}}_{\mathsf{L}_{\mu}-\mathsf{L}_{\tau}}(\nu_{\mu},\nu_{\tau},\mu,\tau)=(1,-1,1,-1)$
- No kinetic mixing between Z' and B @ high-energy
 - Kinetic mixing is generated through

Flavor Physics Mini-Workshop 2025 (Feb 22, 2025)

Gauged $U(1)_{L_{\mu}-L_{\tau}} Z' \mod$

Hubble tension

M. Escudero et al, JHEP 2019

- $\sim 10 \text{MeV} Z'$ reached thermal equilibrium in the early Universe and decays, heating the neutrino population.
- The expansion rate of the universe departed from the predictions of standard ACDM cosmology at early times

$$U(1)_{L_{\mu}-L_{\tau}}$$
-charged DM + Dark Higgs

• After electroweak and $U(1)_{L_{\mu}-L_{\tau}}$ symmetry breaking

$$\mathcal{H} = \frac{1}{\sqrt{2}} (0 \ v_H + h)^{\mathsf{T}} \ , \ \Phi = \frac{1}{\sqrt{2}} (v_\Phi + \phi)$$

- Dark photon Z' gets massive: $m_{Z'} = g_X |Q_{\Phi}| v_{\Phi}$
- Two CP-even neutral scalar bosons mix each other due to non-zero of $\lambda_{H\Phi}$

$$U(1)_{L_{\mu}-L_{\tau}}$$
-charged DM + Dark Higgs

• Additional interactions with the dark Higgs

$$\mathcal{L}_{\phi} \supset \frac{1}{2} g_X^2 Q_{\Phi}^2 Z^{\prime \mu} Z^{\prime}_{\mu} \phi^2 \left(+ g_X^2 Q_{\Phi}^2 v_{\Phi} Z^{\prime \mu} Z^{\prime \mu}_{\mu} \phi - \lambda_{\Phi} v_{\Phi} \phi^3 - \lambda_H v_H h^3 - \frac{\lambda_{\Phi H}}{2} v_{\Phi} \phi h^2 - \frac{\lambda_{\Phi H}}{2} v_H \phi^2 h \right)$$

The SM-like Higgs invisible decay

- $H_2 \rightarrow H_1 H_1, Z'Z', XX^{\dagger}$
- SM Higgs mainly decays into dark photon and dark Higgs

$$\Gamma_{H_2 \to H_1 H_1} \simeq \Gamma_{H_2 \to Z'Z'} \propto \frac{\sin^2 \theta \, m_{H_2}^3}{v_{\Phi}^2} \gg \Gamma_{H_2 \to XX^{\dagger}} \propto \frac{\sin^2 \theta \, \lambda_{\Phi X}^2 \, v_{\Phi}^2}{m_{H_2}}$$

$$\cdot \operatorname{Br}(H_2 \to \operatorname{inv.}) = \frac{\Gamma_{H_2}^{ZZ^* \to 4\nu} + \Gamma_{H_2}^{H_1 H_1} + \Gamma_{H_2}^{Z'Z'} + \Gamma_{H_2}^{XX^{\dagger}}}{\Gamma_{H_2}^{SM} + \Gamma_{H_2}^{H_1 H_1} + \Gamma_{H_2}^{Z'Z'} + \Gamma_{H_2}^{XX^{\dagger}}} < 13\%$$

$$\cdot \sin\theta \leq 0.01 \text{ to satisfy the Higgs invisible decay}$$

$$= \operatorname{Flavor Physics Mini-Workshop 2025 (Feb 22, 2025)} = \operatorname{Flavor Physics Physics Mini-Workshop 2025 (Feb 22, 2025)} = \operatorname{Flavor Physics P$$

m_{Z'} [MeV]

$$U(1)_{L_{\mu}-L_{\tau}}$$
-charged DM + Dark Higgs

• UV-complete $U(1)_{L_{\mu}-L_{\tau}}$ -charged scalar DM model Baek, JK, Ko, 2204.04889

$$\mathcal{L}_{\rm DM} = |D_{\mu}X|^2 - m_X^2 |X|^2 - \lambda_{\Phi X} |X|^2 \left(|\Phi|^2 - \frac{v_{\Phi}^2}{2} \right)$$

• DM annihilation channels

רומיטו דוואטונג ויוווו-זייטוגאוטף בטבט (רפט בב, בטבט)

$$U(1)_{L_{\mu}-L_{\tau}}$$
-charged DM + Dark Higgs

Thermal WIMP DM relic density

Baek, JK, Ko, 2204.04889

$$\Omega_{ extsf{WIMP}} \hat{h}^2 = 2 \Omega_X \hat{h}^2 \simeq rac{1.75 imes 10^{-10} ext{GeV}^{-2} x_f}{\sqrt{g_*} \left< \sigma v
ight>}$$

DM direct detection

- $U(1)_{L_{\mu}-L_{\tau}}$ DM model without dark Higgs boson, DM-nucleon/electron scattering is highly suppressed: $\sigma_{\rm el}^{X-p} \simeq 10^{-46} {\rm cm}^2$, $\sigma_{\rm el}^{X-e} \simeq 10^{-51} {\rm cm}^2$
- We can have a sizable DM-nucleon scattering

$$\begin{split} \sigma_{\rm el} &\simeq \frac{4\mu_n^2 f_n^2 \lambda_{\Phi X}^2 \sin^2 \theta}{\pi} \left(\frac{m_n}{m_X}\right)^2 \left(\frac{\upsilon_{\Phi}}{\upsilon_H}\right)^2 \left(\frac{1}{m_{H_1}^2} - \frac{1}{m_{H_2}^2}\right)^2 \\ \sigma_{\rm el}^{X-n} &\simeq \frac{\mu_n^2}{\pi} \frac{e^2 g_X^2 Z^2 \epsilon^2}{A^2 m_{Z'}^4} \end{split}$$

Bellell excess: 2- or 3-body decay

• When
$$m_{H_1} < m_B - m_K$$
, H_1 is on-shell
 $\Gamma_{B^+ \to K^+ H_1} \simeq \frac{|\kappa_{cb}|^2 \sin^2 \theta}{64\pi m_{B^+}^3} \left(\frac{m_{B^+}^2 - m_{K^+}^2}{m_b - m_s}\right)^2 \frac{[f_0(m_{H_1}^2)]^2}{\text{form factor}} \sin \theta \ll 1$
 $\times \sqrt{\mathcal{K}(m_{B^+}^2, m_{K^+}^2, m_{H_1}^2)}$

$$|\kappa_{cb}|\simeq 6.7 imes 10^{-6} ~~ \mathcal{K}(a,b,c)=a^2+b^2+c^2-2(ab+bc+ca)$$

• When $m_{H_1} > m_B - m_K$, H_1 is off-shell \rightarrow three-body decay

Bellell excess: 2-body decay

- When $m_{H_1} < m_B m_K$, H_1 is on-shell
- The gray shaded area is excluded by Bellell $B^0 \to K^{*0}\nu\bar{\nu}$, KOTO $K_L^0 \to \pi^0\nu\bar{\nu}$ & NA62 $K^+ \to \pi^+ + \text{ inv.}$

Bellell excess : 2- or 3-body decay

- When $m_{H_1} > (<) m_B m_K$, H_1 is off(on)-shell $\rightarrow 3(2)$ -body decay
 - Two-body decay: $m_X \lesssim 1.2 \text{ GeV} (m_{H_1} < m_B m_K)$
 - Three-body decay: $20 \text{MeV} < m_X \lesssim 60 \text{MeV} (m_{H_1} > m_B m_K)$

- Any injection of ionizing particles modifies the ionization history of hydrogen and helium gas, perturbing CMB anisotropies
 - DM annihilations to the charged SM particles
- Measurements of these anisotropies provide robust constraints on production of ionizing particles from DM annihilation products.

- For $m_X \leq 20$ GeV, CMB bound (DM annihilation @ $T \sim eV$) excludes the thermal DM freeze-out determined by <u>s-wave</u> annihilation
 - DM annihilation should be mainly in p-wave
 - ...
- Dominant DM annihilation channel
 - $XX^{\dagger} \rightarrow Z'Z'$, H_1H_1 : **s-wave** annihilation
 - $XX^{\dagger} \rightarrow Z'H_1$: **p-wave** annihilation
- Z' decay
- H_1 decay

10

 10^{-2}

 10^{-28}

CMB

 10^{3}

 10^{2}

 m_{χ} [GeV]

- For $m_X \leq 20$ GeV, CMB bound (DM annihilation @ $T \sim eV$) excludes the thermal DM freeze-out determined by <u>s-wave</u> annihilation
 - DM annihilation should be mainly in p-wave
 - ...
- Dominant DM annihilation channel
 - $XX^{\dagger} \rightarrow Z'Z'$, H_1H_1 : s-wave annihilation
 - $XX^{\dagger} \rightarrow Z'H_1$: **p-wave** annihilation
- Z' decay
 - A pair of ν
- H_1 decay
 - A pair of DM (open when $m_{H_1} > 2m_X$)
 - A pair of $Z' (Z' \rightarrow \nu \nu)$
 - SM particles (suppressed due to small Yukawa coupling & $\sin \theta$)

- DM dominantly annihilates to neutrinos
- WIMPs of $m \le 20$ MeV will generically alter neutrino decoupling and hence impact ΔN_{eff}

- DM dominantly annihilates to neutrinos
- WIMPs of $m \le 20$ MeV will generically alter neutrino decoupling and hence impact ΔN_{eff}

Conclusions

- BelleII data shows a excess of $B^+ \to K^+ \nu \bar{\nu}$ over the SM prediction
- This excess can be interpreted as $B^+ \rightarrow K^+ + \text{dark sector}$ particles
- CMB constraints can be evaded because DM pair annihilations into $H_1H_1, H_1Z', Z'Z'$, all of which are invisible
- We can accommodate the muon g-2 and subsequently relax the tension in the Hubble constant with extra radiation

Conclusions

- Bellell data shows a excess of $B^+ \to K^+ \nu \bar{\nu}$ over the SM prediction
- Th Thank you
 Th Thank you
 CN int Very puch
 We can accommodate the muon g-z and subsequently relax
- the tension in the Hubble constant with extra radiation

Evidences – Muon g-2

- Muon g-2 experimental data from CMD-3 & BMW
 - consistent with the combined experimental data from BNL and Fermilab muon g-2.

Bellell excess : 2- or 3-body decay

• $m_{Z'} = 10$ MeV, $g_X = 10^{-4}$ ($m_{Z'} = g_X |Q_\Phi| v_\Phi$) \rightarrow Larger v_Φ)

- Hubble tension can be relaxed
- $\Delta a_{\mu} = 10^{-10}$ (BMW & CMD-3 collaboration)
- Belle II (2-body decay): $m_X \lesssim 1.2 \text{ GeV} (m_{H_1} < m_B m_K)$
- Belle II (3-body decay): ~90MeV < $m_X \le 450$ MeV ($m_{H_1} > m_B m_K$)

Evidences – Dark Matter

- Dark Matter as a particle must be
 - Non-baryonic
 - Massive
 - Have existed from early Universe up to now
 - Stable or lifetime longer than the age of Universe → new symmetry
 - Dark : No electromagnetic interaction → EM charge singlet
 - 27% of the present energy density of the Universe $\rightarrow \Omega h^2 = 0.12$

Planck 2018

 Cold : non-relativistic at the time of formation of the first structures

Cold Dark Matter

Weakly Interacting Massive Particle

$$U(1)_{L_{\mu}-L_{\tau}}$$
-charged DM model

•
$$U(1)_{dark} \equiv U(1)_{L_{\mu}-L_{\tau}}$$

quarks	Photon
Neutrinos	W boson
leptons	Zboson
Hig	gs

• Let's call Z', $U(1)_{L_{\mu}-L_{\tau}}$ gauge boson, dark photon since it couple to DM

$$U(1)_{L_{\mu}-L_{\tau}}$$
-charged DM model

• $U(1)_{L_{\mu}-L_{\tau}}$ -charged scalar DM model

$$\mathcal{L}_{\text{int}} = ig_X Z'_{\mu} \left(X^* \partial^{\mu} X - X \partial^{\mu} X^* \right)_{+} g_X Z'_{\alpha} \sum Q_{\ell} \bar{\ell} \gamma^{\alpha} \ell$$

- Free parameters: $\{m_{Z'}, g_X, m_X, Q_X\}$
- Dark Photon Z' plays a role of messenger particle between DM and the SM leptons
- Dark Photon mass is generated Proca or Stueckelberg mechanism

Only when $m_X > m_{Z'}$

- Consider Z' boson only & $g_X \sim (3-5) \times 10^{-4}$ for the muon g-2
 - $X\bar{X} \rightarrow f_{SM}\bar{f}_{SM}$: dominant annihilation channels

$U(1)_{L_{\mu}-L_{\tau}}$ -charged DM model

- $XX^{\dagger} \rightarrow Z'^* \rightarrow \nu \bar{\nu}$: dominant annihilation channels
 - $m_{Z'} \sim 2m_X$ with the s-channel Z' resonance only gives the correct relic density

• Large DM charges Asai, Okawa, Tsumura, JHEP 2021

44

$U(1)_{L_{\mu}-L_{\tau}}$ -charged DM model

- Muon g-2
 - $m_{Z'} \sim O(10)$ MeV, & $g_X \sim 10^{-4}$ is too small to get $\Omega h^2 = 0.12$
 - $m_{Z'} \sim 2m_X$ with the s-channel Z' resonance
 - Only sub-GeV DM available
 - Tight correlation between DM mass and Z' mass
- No DM direct detection bound
 - DM-nucleon scattering: $\sigma_{\rm el}^{X-p} \simeq 10^{-46} {\rm cm}^2$
 - DM-electron scattering: $\sigma_{\rm el}^{X-e} \simeq 10^{-45} {\rm cm}^2$

$U(1)_{L_{\mu}-L_{\tau}}$ -charged DM model

- Muon g-2
 - $m_{Z'} \sim O(10)$ MeV, & $g_X \sim 10^{-4}$ is too small to get $\Omega h^2 = 0.12$
 - $m_{Z'} \sim 2m_X$ with the s-channel Z' resonance
 - Only sub-GeV DM available
 - Tight correlation between DM mass and Z' mass
- No DM direct detection bound
 - DM-nucleon scattering: $\sigma_{\rm el}^{X-p} \simeq 10^{-46} {\rm cm}^2$
 - DM-electron scattering: $\sigma_{\rm el}^{X-e} \simeq 10^{-45} {\rm cm}^2$
- Bellell excess
 - B → KZ' (2-body decay)
 → disfavored by q² spectrum
 - $B \rightarrow KXX^{\dagger}$ (3-body decay)
 - → suppressed by kinetic mixing and $g_X \sim 10^{-4}$

Gauged $U(1)_{L_{\mu}-L_{\tau}} Z'$ model

Neutrino trident production

- Production of a muon pair from the scattering of a muon neutrino with heavy nuclei
- $R_{\rm CCFR} \equiv \frac{\sigma_{\rm CCFR}}{\sigma_{\rm SM}} = 0.82 \pm 0.28.$
- **NA64** Y. Andreev, 2401.01708
 - $\mu^- N \rightarrow \mu^- N Z'$, $(Z' \rightarrow \text{inv.})$
 - Upper limit on g_X for 1MeV $\leq m_{Z'} \leq 1$ GeV

ν_{μ} ν_{μ} ν_{μ} μ^+ γ

• ΔN_{eff}

M. Escudero et al, JHEP 2019

W. Altmannshofer et al, PRL 2014

- Z' will reheat the neutrino gas, resulting in a higher expansion rate
- Increase the effective number of neutrinos $N_{\rm eff}$
- $\Delta N_{\rm eff} < 0.5$

BOREXINO

• v - e scattering

R. Harnik et al, JCAP 2012

Flavor Physics Mini-Workshop 2025 (Feb 22, 2025)

BaBar, LHC 4μ channels

•
$$e^+e^- \rightarrow \mu^+\mu^- Z', Z' \rightarrow \mu^+\mu^-$$

BaBar Collaboration, PRD 2016

• Upper limit on g_X for 200MeV $\leq M_{Z'} \leq 10$ GeV

CMS Collaboration, PLB 2019

- The lowest order Z' production process at collider
 - Produce a charged lepton pair through Drell-Yan process
 - Z' is radiated from one of leptons

- Final states
 - two pair of charged-leptons
 - A pair of charged-lepton plus missing energy

Neutrino trident production

 Production of a muon pair from the scattering of a muon neutrino with heavy nuclei

•
$$R_{\rm CCFR} \equiv \frac{\sigma_{\rm CCFR}}{\sigma_{\rm SM}} = 0.82 \pm 0.28.$$

• The leading order Z' contribution:

Flavor Physics Mini-Workshop 2025 (Feb 22, 2025)

Borexino: $\nu - e$ scattering

- Borexino is a liquid scintillator experiment measuring solar neutrino scattering off electron
 - Probe non-standard interactions between neutrinos and target
 - Limits from Borexino for the $U(1)_{B-L}$ gauge boson have been derived.

R. Harnik et al, JCAP 2012

• Rescale the constraints on $U(1)_{B-L}$ boson as

$$\alpha_{B-L}^{2} \rightarrow \begin{cases} \left[\sum_{i,j=1}^{3} f_{i} \left| (U^{\dagger}Q_{\mu e}U)_{ij} \right|^{2} \right]^{1/2} \alpha_{\mu e}^{2}, & \text{for } U(1)_{L_{\mu}-L_{e}}, \\ \left[\sum_{i,j=1}^{3} f_{i} \left| (U^{\dagger}Q_{e\tau}U)_{ij} \right|^{2} \right]^{1/2} \alpha_{e\tau}^{2}, & \text{for } U(1)_{L_{e}-L_{\tau}}, \\ \left[\sum_{i,j=1}^{3} f_{i} \left| (U^{\dagger}Q_{\mu\tau}U)_{ij} \right|^{2} \right]^{1/2} \alpha \alpha_{\mu\tau} \epsilon_{\mu\tau}(q^{2}), & \text{for } U(1)_{L_{\mu}-L_{\tau}}, \\ Q_{\mu\tau} = \text{diag}(0, 1, -1) \end{cases}$$

CMB & Hubble tension

- Z' will reheat the neutrino gas
 - Resulting in a higher expansion rate
 - Increase the effective number of neutrinos $N_{\rm eff}$
- Taking into account kinetic mixing

M. Escudero et al, JHEP 2019

$$U(1)_{L_{\mu}-L_{\tau}}$$
-charged DM model

• Conventional $U(1)_{L_{\mu}-L_{\tau}}$ -charged fermion DM model

$$\mathcal{L} \supset \mathcal{L}_{\rm SM} - \frac{1}{4} Z'_{\alpha\beta} Z'^{\alpha\beta} + \frac{1}{2} m_{Z'}^2 Z'_{\alpha} Z'^{\alpha} + i\bar{\chi}\gamma^{\alpha}\partial_{\alpha}\chi - m_{\chi}\bar{\chi}\chi + g_X Q_{\chi} Z'_{\alpha}\bar{\chi}\gamma^{\alpha}\chi + g_X Z'_{\alpha} \sum Q_{\ell}\bar{\ell}\gamma^{\alpha}\ell$$

- Dark Photon Z' plays a role of messenger particle between DM and the SM leptons
- Dark Photon mass is generated by hand or Stueckelberg mechanism
- New parameters: $\{g_X, m_{Z'}, m_{\chi}, Q_{\chi}\}$
- Consider Z' boson only & $g_X \sim (3-5) \times 10^{-4}$ for the muon g-2
 - $\chi \bar{\chi}(X\bar{X}) \rightarrow f_{SM} \bar{f}_{SM}$: dominant annihilation channels
 - $g_X \sim 10^{-4}$ is too small to get $\Omega_{\chi} h^2 = 0.12$

• Two ways of tagging

- q_{rec}^2 : mass squared of the neutrino pair
- Inclusive tagging: It allows one to reconstruct inclusively the decay $B^+ \rightarrow K^+ \nu \bar{\nu}$ from the charged kaon

• Singlet scalar DM model ($m_s \leq 2.3 \text{GeV}$)

 $-\mathcal{L}_{S} = \frac{\lambda_{S}}{4} S^{4} + \frac{m_{0}^{2}}{2} S^{2} + \lambda S^{2} H^{\dagger} H$ $= \frac{\lambda_{S}}{4} S^{4} + \frac{1}{2} (m_{0}^{2} + \lambda v_{EW}^{2}) S^{2} + \lambda v_{EW} S^{2} h + \frac{\lambda}{2} S^{2} h^{2},$

• Belle $\longrightarrow \frac{C_{DM}}{C_{\nu}} \simeq \frac{4.4\lambda M_W^2}{g_W^2 m_h^2}$ • Relic density: $\sigma_{ann} v_{rel} = \frac{8v_{EW}^2 \lambda^2}{m_h^4} (\lim_{m_{\tilde{h}} \to 2m_S} m_{\tilde{h}}^{-1} \Gamma_{\tilde{h}X}).$

- λ should be large to fit the relic as well as Belle II
- $m_s \leq 1$ GeV is already excluded by BABAR limits (2004 data).

Solutions: 3-body decay Bird et al, PRL 2004 • Singlet scalar DM model ($m_s \leq 2.3 \text{GeV}$) W b $C = \frac{\lambda_s}{\kappa_s} s_4 + \frac{m_0^2}{\kappa_s} s_2^2 + \lambda s_2^2 \mu^{\dagger} \mu$ S • For $m_{\gamma} \lesssim 10 \text{GeV}$, CMB bound (DM annihilation @ $T \sim \text{eV}$) S excludes the thermal DM freeze-out determined by s-wave annihilation At that time, the authors did not consider the CMB bounds. This model does not work anymore. • λ should be large to fit the relic as well as Belle II • $m_s \leq 1$ GeV is already excluded by BABAR limits (2004 data). 10^{-2} ' III 10⁻³

Dark Higgs decays to dark Photon

- Dark Photon can be long-lived → appear missing energy at BelleII
- $\mathcal{L} \supset g_D^2 v_D A'_{\mu} A'^{\mu} (-h\sin\theta + h_D\cos\theta)$
- Two-regions for sub-GeV dark photon that unconstrained by existing experimental searches:

