

Search for $B \rightarrow X_s \nu \bar{\nu}$ decay at Belle II experiment

Junewoo Park ^A, Akimasa Ishikawa ^B, Youngjoon Kwon ^C, Yutaka Ushiroda ^{A,B}, The University of Tokyo ^A, KEK ^B, Yonsei University ^C 2025.02.22

Belle II Experiment

- Electrons and positrons are accelerated up to 7 GeV and 4 GeV respectively by SuperKEKB accelerator
- Its energy correspond to the resonance of $\Upsilon(4S)$ which mainly decays into B meson pair
- Belle II detector consists of several sub-detector components

Belle II Experiment

- Entire information of initial states is known in Belle II experiment.
 - \rightarrow Belle II has an advantage on the decay modes with invisible particles, like neutrinos
- $B \qquad e^+ \qquad B \qquad e^+$

3

• The target integrated luminosity: $50 ab^{-1}$

• Currently, 575.5 fb^{-1} data is recorded. The target sample is 364 $fb^{-1} \Upsilon(4S)$ on-resonance data for this analysis

Motivation

- $B \rightarrow X_s \nu \bar{\nu}$ decay
 - Flavour-changing neutral currents process
 - BR = $(2.9 \pm 0.3) \times 10^{-5}$ at SM [JHEPO2(2015)184]
- This decay can give a clue for the new physics
 - Ieptoquark [PhysRevD.95.035027]
 - invisible light scalar [Eur. Phys. J. C (2017) 77: 650]
 - fermion dark matter [arXiv:2405.06742]
- Previous study
 - $UL(B \to X_s \nu \bar{\nu}) = 6.4 \times 10^{-4}$ (90% CL) by ALEPH[†] [Eur.Phys.J.C 19 (2001) 213-227]
 - ^D There is no $B \to X_S \nu \bar{\nu}$ results from Belle or Belle II because $\nu \bar{\nu}$ makes it challenging
 - $BR(B^+ \to K^+ \nu \bar{\nu}) = (2.3 \pm 0.7) \times 10^{-5}$ by BELLE II [‡] [PhysRevD.109.112006]

‡ combined result for inclusive and hadronic tagging analysis

Analysis Strategy

- One side of B meson is hadronically reconstructed
 - Hierarchical reconstruction technique is used [Comput Softw Big Sci 3, 6 (2019)]
 - This B meson is called as tag side B meson, B_{tag}
- For signal side B meson, sum of exclusive method is used
 - 30 decay modes are reconstructed for X_s

	$B^0 \bar{B}^0$			B^{\pm}		
\overline{K}	K_S^0			K^{\pm}		
$K\pi$	$K^{\pm}\pi^{\mp}$	$K^0_S \pi^0$		$K^{\pm}\pi^0$	$K^0_S \pi^{\pm}$	
$K2\pi$	$K^{\pm}\pi^{\mp}\pi^{0}$	$K^0_S \pi^{\pm} \pi^{\mp}$	$K^0_S\pi^0\pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}$	$K^0_S \pi^{\pm} \pi^0$	$K^{\pm}\pi^0\pi^0$
$K3\pi$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$	$K^0_S \pi^{\pm} \pi^{\mp} \pi^0$	$K^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{0}$	$K^0_S \pi^{\pm} \pi^{\mp} \pi^{\pm}$	$K^0_S \pi^\pm \pi^0 \pi^0$
$K4\pi$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}\pi$	${}^{0}K^{0}_{S}\pi^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\pm}$	$^{\mp}K^0_S\pi^{\pm}\pi^{\mp}\pi^0\pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}\pi$	${}^{\pm}\!K^0_S \pi^{\pm} \pi^{\mp} \pi^{\pm} \pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{0}\pi^{0}$
3K	$K^{\pm}K^{\mp}K^0_S$			$K^{\pm}K^{\mp}K^{\pm}$		
$3K\pi$	$ K^{\pm}K^{\mp}K^{\pm}\pi^{\mp}$	$K^{\pm}K^{\mp}K^0_S\pi^0$		$K^{\pm}K^{\mp}K^{\pm}\pi^{0}$	$K^0_S K^\pm K^\mp \pi^\pm$	

• It covers ~92% of entire X_s sample, with assuming K^0 equally decays into K_s^0 or K_L^0

Event Generation

- We produce $B \to K \nu \bar{\nu}$, $B \to K^* \nu \bar{\nu}$, and non-resonant $B \to X_s \nu \bar{\nu}$ MC sample separately
- For $B \to K \nu \bar{\nu}$ and $B \to K^* \nu \bar{\nu}$ Monte-Carlo (MC) samples, the SM form factors are used [Phys.Rev.D 107 (2023) 1, 014511] [JHEP02(2015)184] [JHEP02(2015)184]

Decay amplitude for $B \to K \nu \bar{\nu}$: $\mathcal{M}(b \to s \nu \bar{\nu}) \propto f_+(s) \left\{ (p_B + p)_\mu - \frac{m_B^2 - m_K^2}{s} q_\mu \right\} (\bar{\nu} \gamma^\mu (1 - \gamma_5) \nu)$

Decay amplitude for $B \to K^* \nu \bar{\nu}$: $\mathcal{M}(b \to s \nu \bar{\nu}) \propto \mathcal{T}_{\mu} \left(\bar{\nu} \gamma^{\mu} (1 - \gamma_5) \nu \right)$

$$\mathcal{T}_{\mu} = (m_B + m_{K^*})A_1(s)\epsilon_{\mu}^* - A_2(q^2)\frac{\epsilon^* \cdot q}{m_B + m_{K^*}}(p + p_{K^*})_{\mu} + i\frac{2V(s)}{m_B + m_{K^*}}\epsilon_{\mu\nu\rho\sigma}\epsilon^{*\nu}p^{\rho}p_{K^*}^{\sigma}$$

6

Event Generation

- Non-resonant $B \to X_s \nu \bar{\nu}$ MC sample is produced by the following distribution $(\mu EPO4(2009)022)$ $\frac{d\Gamma}{dq^2} \propto \sqrt{\lambda(1, \hat{m}_s^2, s_b)} \left[3s_b(1 + \hat{m}_s^2 - s_b - 4\hat{m}_s) + \lambda(1, \hat{m}_s^2, s_b) \right]$
- To determine the mass of X_s , Fermi motion model is adopted [PhysRevD.55.4105]
 - In Fermi motion model, quarks have some velocity inside B meson
 - Also, $M_{X_s} > 1.1 \text{ GeV/c}^2$ is required for non-resonant $X_s \nu \bar{\nu}$ MC sample
- Hadronization is done by PYTHIA

- Preselection
 - To reduce combinatorial backgrounds
 - reconstructed X_s mass, $M_{X_s}^{\text{reco}} < 2.0 \text{ GeV/c}^2$

To reject backgrounds with additional particles, outside of $B_{tag}X_s$ candidates

- the number of tracks [‡] = 0
- the number of π^0 candidates = 0
- the number of K_S^0 candidates = 0

- Several selections are applied
 - $M_{bc}^{\text{tag}} > 5.27 \text{ GeV/c}^2$
 - $|\Delta E^{tag}| < 0.2 \text{ GeV}$
 - $E_{ecl} < 1.3 \, {\rm GeV}$

 $\approx E_{ecl}$: remaining energy deposited in the calorimeter 9

 $X M_{X_c}^{reco}$: mass of reconstructed X_s candidate

schematic view of Belle II detector

- Boosted Decision Tree (BDT) is used as multivariate analysis (MVA) method
- 32 variables are used
 - Variables are selected based on discriminant power and goodness of data/MC agreement on sideband
 - Example of powerful variables: E_{ecl} and event shape variable [Nucl. Phys. B 149, 413 (1979)]

- BDT has several hyperparameters
 - Grid search is done to achieve high performance and low overtraining

hyper parameter	tested values	selected value
nTrees	100, 500, 1000, 1500, 2000	2000
depth	2,3,4	3
$\operatorname{shrinkage}$	0.05,0.1,0.15,0.2	0.05
subsample	0.3,0.4,0.5,0.6,0.7	0.5
binning	6,7,8,9	6

- AUC and BDT output is checked
 - AUC value for training sample: 0.966
 - AUC value for test sample: 0.964

12

- BDT output > 0.86 is applied
 - Because it is used as a fitting variable, deliberately loose cut is applied
 - Figure of merit $\left(=\frac{S}{\sqrt{S+B}}\right)$ is used to select this criteria

• Finally, signal efficiency is about 0.11%

* $M_{X_c}^{\text{reco}}$: mass of reconstructed X_s candidate

Corrections - $B \rightarrow K^{(*)} n \overline{n}$

- $B \rightarrow K^{(*)} n \overline{n}$ mismodeling correction
 - $B \to K^{(*)} n \bar{n}$ MC sample is not modeled well, even though it can mimic $B \to K^{(*)} \nu \bar{\nu}$
 - Produce $B \to K^{(*)}n\bar{n}$ MC with flat $M_{n\bar{n}}$ distribution and reweight it!
 - use $B \to K^{(*)} p \bar{p}$ study result to obtain $M_{n\bar{n}}$ distribution for $B \to K^{(*)} n \bar{n}$ decay
 - use exponential function or 2^{nd} order polynomial to get a form of $M_{n\bar{n}}$ distribution

Corrections - $B \rightarrow F$

- $B \rightarrow K K_L^0 K_L^0$ mismodeling correction
 - $B \rightarrow K K_L^0 K_L^0$ MC sample is not modeled well
 - need to correct Dalitz plot
 - use $B \rightarrow KK_S^0K_S^0$ study result to obtain PDF [Physical Review D 85.11 (2012): 112010] [Physical Review D 85.5 (2012): 054023]

$$F_{j}^{L}(s_{12}, s_{23}) = R_{j}(m) X_{L}(|\overrightarrow{p}^{*}|r') T_{j}(L, \overrightarrow{p}, \overrightarrow{q})$$

$$F_{j}^{L}(s_{\min}, s_{\max}, L) = R_{j}(m) X_{L}(|\overrightarrow{p}^{*}|r') X_{L}(|\overrightarrow{q}|r) T_{j}(L, \overrightarrow{p}, \overrightarrow{q})$$

2 4 6 8 10 12 14 16 18 20 22

2 4 6 8 10 12 14 16 18 20 2

-0.0

0.0

0.0 0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

22

Off-resonance sample

- Off-resonance
 - Off-resonance samples are analyzed for the correction and validation
- M_{bc}^{tag} and ΔE^{tag} are calculated as follows, when analyze the off-resonance sample:

$$M_{bc,corrected}^{tag} = \sqrt{\left(E_{beam}^{off}\right)^2 - \left(p_B^*\right)^2} + \left(E_{beam}^{on} - E_{beam}^{off}\right)$$

 $\Delta E^{tag} = E_B^* - E_{beam}^{off}$

• this correction is applied to use the same M_{bc} and ΔE cut

Off-resonance sample

• Off-resonance

Off-resonance samples are analyzed

- This result is used to correct the continuum MC sample in on-resonance
 - Overall normalization factor is obtained for each $M_{X_s}^{reco}$ region
- Also, systematic uncertainty from the shape of variables is estimated by off-resonance sample

Control Channel

- $B \rightarrow X_s J/\psi$ analysis is also done
 - Analysis method is almost same
 - after reconstruction of $B \rightarrow X_s J/\psi$, ignore μ

Control Channel

• $B \rightarrow X_s J/\psi$ analysis is also done

- This result is used to obtain correction/systematic uncertainty
 - BDT Efficiency correction
 - Systematic uncertainty from the Efficiency for B_{tag}

Systematics

Several systematics are estimated

some major sources:

Background normalization

- apply $\pm 20\%$ uncertainties on each backgrounds
- motivated by the data/MC of sideband

MC Statistics

- comes from statistical uncertainty of MC sample

BR of main B meson decays

- uncertainty of BR which is obtained from PDG
- for major B decays, uncertainties are applied

$q\overline{q}$ background shape

- estimated by training another BDT with 60 MeV lower E_{beam} sample

$\sigma_{\!\mu}$ at each	$M_{X_s}^{\text{true}}$	region
--------------------------	-------------------------	--------

	mass region $[GeV]$		
Source	$0.0 < M_{X_s}^{\rm true} < 0.6$	$0.6 < M_{X_s}^{ m true} < 1.0$	$1.0 < M_{X_s}^{\rm true}$
Background normalization	$^{+1.19}_{-1.14}$	$^{+2.29}_{-2.13}$	$^{+4.01}_{-4.07}$
MC statistics	$^{+0.98}_{-0.77}$	$^{+1.68}_{-1.37}$	$^{+3.93}_{-3.31}$
BR of main B meson decays	$^{+0.30}_{-0.14}$	$^{+0.62}_{-0.49}$	$^{+1.28}_{-0.69}$
$q\bar{q}$ shape	$^{+0.29}_{-0.27}$	$^{+0.24}_{-0.24}$	$^{+0.71}_{-0.69}$
statistical uncertainty	$^{+1.78}_{-1.65}$	$+2.98 \\ -2.79$	$+5.94 \\ -5.68$

binning and fitting range

• Probability density function is constructed from each bins

$$\mathcal{P} = \prod_{b \in \text{bins}} \text{Pois}(n_b | v_b) \cdot \prod_p f_p(a_p | \alpha_p)$$

Poisson distributionConstraint term for systematic uncertaintyfor each bin/channel(nuisance parameters)

- extended maximum likelihood fit is done
- Fitting parameter μ (signal strength):
 a factor relative to the SM expectation

Toy MC study

- Toy MC study is done
 - Generate 10000 toy MC sample with fluctuating nuisance parameter
 - Fit and obtain the MINOS asymmetric error for each toys
 - Pull is calculated from the fitting result:

if (fit result) \leq (true value)

otherwise,

(true value)-(fit result)

(positive MINOS error)

(fit result) – (true value)

(negative MINOS error)

pull =

Toy MC study

- Toy MC study is done
 - Signal strength through all $M_{X_s}^{\text{true}}$ can be easily obtained: $\mu = \frac{BR_1 \times \mu_1 + BR_2 \times \mu_2 + BR_3 \times \mu_3}{BR}$
 - Pull is calculated with the signal strength through all $M_{X_s}^{true}$ region

Linearity Test

- Linearity is done
 - do toy MC study for different input µ values
 - check the output µ distributions and median value is selected, because error is asymmetric
 - Some bias can be found. This fitter bias is included in systematic uncertainty

Linearity Test

- Linearity is done
 - Signal strength through all $M_{X_s}^{\text{true}}$ can be easily obtained: $\mu = \frac{BR_1 \times \mu_1 + BR_2 \times \mu_2 + BR_3 \times \mu_3}{BR}$
 - The linearity test is done with the signal strength through all $M_{X_s}^{\text{true}}$ region
 - Some bias can be found. This fitter bias is included in systematic uncertainty

Upper Limit

- Upper limit of branching ratio is calculated by CLs method (with $364 fb^{-1}$)
 - MC sample is used to calculate the upper limit of the branching ratio

 $\underset{X_s}{\times} M_{X_s}^{\text{true}}$: mass of X_s recorded by MC information

Upper Limit

- Upper limit of branching ratio is calculated by CLs method (with $364 fb^{-1}$)
 - MC sample is used to calculate the upper limit of the branching ratio

 $\overset{\text{true}}{\times} M_{X_s}^{\text{true}}$: mass of X_s recorded by MC information

Conclusion

- $B \rightarrow X_s \nu \overline{\nu}$ is interesting decay because it can give a clue for several new physics
 - Ieptoquark [PhysRevD.95.035027]
 - invisible light scalar [Eur. Phys. J. C (2017) 77: 650]
 - fermion dark matter [arXiv:2405.06742]
- Several selection, including MVA, are used to suppress background
- Background normalization and MC statistic are dominant systematic sources
- Most of analysis procedures are done
 - With 364 *f b*⁻¹, MC expectation is

$$UL(B \to X_{s}\nu\bar{\nu}) = \begin{cases} 2.4 \times 10^{-5} & (0.0 < M_{X_{s}}^{\text{true}} < 0.6 \text{ GeV/c}^{2}), \\ 7.2 \times 10^{-5} & (0.6 < M_{X_{s}}^{\text{true}} < 1.0 \text{ GeV/c}^{2}), \\ 28.3 \times 10^{-5} & (1.0 \text{ GeV/c}^{2} < M_{X_{s}}^{\text{true}}). \end{cases}$$

$$UL(B \to X_s \nu \bar{\nu}) = 27.9 \times 10^{-5}$$
 (all $M_{X_s}^{\text{true}}$ region) at 90% confidence level

Backup