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• Continuum background (𝑒𝑒 → 𝑞 ത𝑞)

• Event-shape variables are regularly used to 

suppress 𝑞 ത𝑞 background.

• Combined with BDT/NN algorithms, e.g. 

FastBDT. 

• These algorithms use high-level variables.

Continuum Supression
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• Parameters usually used at Belle II:

• Ratio of the second and zeroth Fox-Wolfram moment: 𝑅2 =
𝐻2

𝐻0

• Total thrust magnitude of both B candidate and ROE

• 𝑐𝑜𝑠𝜃𝐵0 angle b/w thrust axes of B candidate and ROE

• 𝑐𝑜𝑠𝜃𝑝 polar angle of thrust axis of B candidate

• CLEO cones 

• KSFW variables 

• All these variables aggregate particle momenta.

Continuum Supression using high-level variables
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https://software.belle2.org/development/sphinx/online_book/basf2/cs.html

https://software.belle2.org/development/sphinx/online_book/basf2/cs.html


• Aggregating information into high-level variables results in loss of information 

contained in the low-level variables (particle momenta, etc.)

• Different approach: use low-level variables of each particle as an input, and let 

the algorithm figure out how best to use them.

• The problem: BDT and various types of NN cannot incorporate a different number 

of inputs (particles) in each event.

Continuum Supression using low-level variables
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• What is Deep Sets?

• DeepSets is a NN architecture that takes as input an 

unordered set 𝑋 = {𝑥𝑖}, 𝑖 = {1 … 𝑛} with varying size 

𝑛, where each element has features 𝑥𝑖
𝑗
.

• Each element is fed into the same NN 𝜙.

• The n outputs of 𝜙 are aggregated with a permutation-

invariant pooling operation (Sum/Mean/Max).

• The aggregated representation is passed to another 

neural network 𝜌 to produce the final output 𝑝𝑠.

 Continuum Supression using Deep Sets
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• MultiDeepSets (MDS)

• Our data contains different types of objects (tracks, 

photons).

• MDS is a modification of Deep Sets (developed mostly 

by Roy Hircsh and Emilie Bertholet) in an X(3872) 

analysis.

• Can deal with multiple sets.

• Uses multiple 𝜙𝑖 NNs, each of which gets a different set 

as an input.

• Pooling all 𝜙𝑖 output and proceeds the same as 

DeepSets.

 Continuum Supression using Deep Sets
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• Architecture:

• 5 sets are fed as input: 𝐵𝑠𝑖𝑔 , tracks, 𝛾-s (sig and ROE)

• Each set includes arrays of inputs for each particle 𝑖:

• 𝑩𝒔𝒊𝒈 (1 arrays)

• tracks (𝑖 = 1,2 … ≤ 10)

• photons (𝑖 = 1,2 … ≤ 20)

• To avoid correlation with 𝑀𝑏𝑐 and Δ𝐸, for the 𝐵𝑠𝑖𝑔

particles we use only: 

• Ƹ𝑝: 𝜃 and 𝜙 angles.

• 𝑝𝑠𝑐𝑎𝑙𝑒: normalized momenta of tracks and gammas 

relative to the highest momentum.

 Continuum Supression using Deep Sets
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• Architecture:

• Feed inputs into MLP 𝜙 (independently for each set).

• Repeated block sizes: [20,50,100]

• Calculate mean value of the 𝜙 outputs (size 150 each).
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• Architecture:

• Feed mean (size 150) into MLP 𝜌, which gives output 𝑝𝑠.

• Repeated block sizes: [100,50]
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• The architecture I just presented uses early fusion, as it combines information from 

all sets immediately after the 𝜙 transformation.

• We tried different approaches:  

Other possible architectures
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Pool 2

• Architecture:

• Pooling each set separately.

• Combining information from all the sets only after 

the first pooling.

• Pool 1 ≠ Pool 2 

 Late Fusion
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Pool

• Architecture:

• An attention layer enables the model to focus on 

relevant interactions between elements.

• Here it captures the interactions of all the particles, as 

we give as an input all the different sets together.

 Early Fusion with an Attention Layer
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• FEI hadronic skims, for convenience and to have a variety of decay modes (although missing 2-body 

charmless decays)

Sample used
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𝑳[𝒂𝒃−𝟏] # evnets

𝐵+𝐵− 0.01215 752038

𝑢 ത𝑢 0.00259 296246

𝑑 ҧ𝑑 0.00259 73450

𝑐 ҧ𝑐 0.00259 327108

𝑠 ҧ𝑠 0.00259 53648

• For training and validation: ~750K signal events and ~750K bg events.

• For inference: independent 75K signal events and 75K bg events.

• 𝐵𝑠𝑖𝑔 is reconstructed, and we keep up to 10 tracks and 20 photons (for 𝐵𝑠𝑖𝑔 and ROE).



Results
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Fast BDT

MultiDeepSets 
with attention



Results
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• R = Background 
efficiency for 90% 
signal efficiency 
benchmark 

0.9

For benchmark of 

90% signal 

efficiency, we 

reduce background 

by 31%!

Fast BDT

MultiDeepSets 
with attention



Results - correlation
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FEI decay modes
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Decay Mode # events 
(ouf of 
150K)

FastBDT MultiDeepSets 
(with attention)

Background 
reduction for 90% 
signal

AUC R AUC R

𝐵+ → ഥ𝐷0𝜋+𝜋+𝜋− 31196 0.9074 0.2946 0.9394 0.1863 36.76%

𝐵+ → ഥ𝐷0𝜋+𝜋0 30503 0.9237 0.2261 0.9360 0.1956 13.4%

𝐵+ → ഥ𝐷0𝜋+ 17200 0.9271 0.2230 0.9452 0.1683 24.52%

𝐵+ → ഥ𝐷0𝜋+𝜋+𝜋−𝜋0 15112 0.8886 0.3541 0.9370 0.2008 43.29%

𝐵+ → ഥ𝐷0𝜋+𝜋0𝜋0 8208 0.9087 0.2821 0.9273 0.2295 18.64%

𝐵+ → ഥ𝐷∗0𝜋+𝜋+𝜋− 8046 0.9060 0.2930 0.9274 0.2223 24.13%

𝐵+ → ഥ𝐷∗0𝜋0 5568 0.9246 0.2166 0.9372 0.1895 12.51%

Other modes 34215 0.9094 0.2884 0.9411 0.1799 37.62%



Summary
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• We wanted check if low-level variables would yield better continuum suppression.

• We used FEI to reconstruct many signal modes. 

• We used all tracks and photons (in the ROE with Ԧ𝑝 and in the signal B with Ƹ𝑝) plus Ƹ𝑝 and thrust axis of the 

signal B as input to a DeepSets-based NN.

• For a benchmark of 90% signal efficiency, the background efficiency is:

• 26.5% with FastBDT 

• 18.3% with DeepSets 

• Multibody modes have a bigger improvement (because there is more information for the classifier to use).

• It highlights the importance of correct distributions in the MC, probably more so in the signal simulation.

31% less background



Next Steps
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• Experiencing with a second attention layer.

• Study signal-mode dependence, particularly 2-body charmless signal.

• Check performances with and without retraining for the specific signal mode.

• Compare performance on data (using 𝐵 → 𝐷∗𝜋 for signal and off-resonance 

data for continuum).

• Make the code available for Belle II use in basf2.



Thank You!
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Backup
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 Early Fusion - Pooling Comparison
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 Late Fusion - Pooling Comparison
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 Early Fusion + Attention Fusion - Pooling Comparison
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 Training testing comparison (old numbers)
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 Roc curves for all tests
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 Correlation using 𝐵𝑡𝑎𝑔 momentum
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Signal Background



FastBDT vs. DeepSets using FastBDT data 
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Decay

1 𝐵0 → 𝜋0𝜋0

2 𝐵0 → 𝐽/𝜓𝜋0

3 𝐵0 → 𝐾∗ 892 𝛾

4 𝐵0 → 𝛾𝛾

5 𝐵0 → 𝜂′𝐾𝑆
0

6 𝐵± → 𝐷𝐾±

𝐵± → 𝐷𝜋±

7 𝐵− → 𝐷0𝜌−DeepSets 90% signal eff: 77.87% bg rejection

FastBDT 90% signal eff: 74.36% bg rejection

https://authors.belle2.org/dir.pl?p=57
https://authors.belle2.org/dir.pl?p=59
https://authors.belle2.org/dir.pl?p=53
https://authors.belle2.org/dir.pl?p=51
https://authors.belle2.org/dir.pl?p=35
https://authors.belle2.org/dir.pl?p=27
https://authors.belle2.org/dir.pl?p=27
https://authors.belle2.org/dir.pl?p=47


• In the last talk, we presented almost perfect classifier.

• We noticed that we used Ԧ𝑝 of 𝐵𝑠𝑖𝑔 instead of ො𝑝.

• Hence classifier output was highly correlated with 𝑀𝑏𝑐

• We fixed that by using ො𝑝 ,but it required adding signal side information (similar to 

KSFW) due to decrease of AUC.

 Important note about previous results
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Old Results
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Decay

1 𝐵0 → 𝜋0𝜋0

2 𝐵0 → 𝐽/𝜓𝜋0

3 𝐵0 → 𝐾∗ 892 𝛾

4 𝐵0 → 𝛾𝛾

5 𝐵0 → 𝜂′𝐾𝑆
0

6 𝐵± → 𝐷𝐾±

𝐵± → 𝐷𝜋±

7 𝐵− → 𝐷0𝜌−

https://authors.belle2.org/dir.pl?p=57
https://authors.belle2.org/dir.pl?p=59
https://authors.belle2.org/dir.pl?p=53
https://authors.belle2.org/dir.pl?p=51
https://authors.belle2.org/dir.pl?p=35
https://authors.belle2.org/dir.pl?p=27
https://authors.belle2.org/dir.pl?p=27
https://authors.belle2.org/dir.pl?p=47


 Fox-Wolfram moments
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Fox-Wolfram moments are rotationally-invariant parametrisations of the distribution of particles in an event. They are 
defined by:

with the momenta p i,j, the angle θ i,j between them, the total energy in the event E event and the Legendre Polynomials 
P l.



 CLEO cones
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• 9 variables corresponding to the 
momentum flow around the 
thrust axis of the B candidate, 
binned in nine cones of 10◦ 
around the thrust axis



 KSFW
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 FEI skims
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Skim Skim Code Available MC Collections Available Data Collections

(362.2 𝑓𝑏−1 of on-resonance data)

Off-Resonance Data Collections

feiHadronic

WITHOUT the ECL 
cut

11180500 All MC:

/belle/collection/MC/11180500_MC15
ri_noEcl

(2.8 ab-1 of BB and 1 ab-1 of qqbar)

Continuum only:

/belle/collection/MC/11180500_MC15
ri_continuum_noEcl

( 1 ab-1 of qqbar)

Off-resonance:

/belle/collection/MC/11180500_MC15
ri_offres_noEcl

/belle/collection/Data/proc13prompt_s
kim_11180500_noEcl

/belle/collection/Data/proc13prompt_skim
_11180500_noEcl_offres
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