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Continuum Supression

« Continuum background (ee = qq)

« Event-shape variables are regularly used to
suppress qq background.

« Combined with BDT/NN algorithms, e.g.
FastBDT.

» These algorithms use high-level variables.
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Continuum Supression using high-level variables

https://software.belle2.org/development/sphinx/online book/basf2/cs.html

« Parameters usually used at Belle Il: Variatie Abbrevistion
CleoConeCS(5) CleoC1
KSFWVariables(hoo3) KSFWV1
. CleoConeCS(T7) CleoC2
- KSFWVariables(hsold) KSFWV2
. Ratio of the second and zeroth Fox-Wolfram moment: R, = —2 Chotmecie ) G
Ho CleoConeCS(8) Cleo(C4
. . CleoConeCS(4) CleoC5
- Total thrust magnitude of both B candidate and ROE KSFWVariables(hool) ~ KSFWV3
CleoConeCS(9) CleoC6
. KSFWVariables(hood KSFWV4
* cosBg, angle b/w thrust axes of B candidate and ROE ROVt athod)  KSEWYS
KSFWVariables(mm2) KSFWVG6
° 1 1 KSFWVariables(hso24) KSFWVT
cos6, polar angle of thrust axis of B candidate KSFWVariablohecs0) KSEWVS
KSFWVariables(hso0O0) KSFWV9
. CLEO cones thrustOm thrusl
KSFW Variables(hoo() KSFWV10
. KSFWVariables(et) KSFWwv11
« KSFW variables C]euGcmeGS(S){ CleoC7
thrustBm thrus2
° H . KSFWVariables(hso22) KSFWV12
All these variables aggregate particle momenta. KSFWVarisbles(hoo?)  KSETV1S
CleoConeCS(1) CleoC8
CleoConeCS(2) CleaC9
KSFWVariables(hso02) KSFWV14
KSFWVariables(hsol2) KSFWV15
cos T Bz cosTHB1
KSFWVariables(hsol0) KSFWV16
R2 R2
cos TBTO cosTB2
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https://software.belle2.org/development/sphinx/online_book/basf2/cs.html

Continuum Supression using low-level variables

* Aggregating information into high-level variables results in loss of information

contained in the low-level variables (particle momenta, etc.)

* Different approach: use low-level variables of each particle as an input, and let

the algorithm figure out how best to use them.

* The problem: BDT and various types of NN cannot incorporate a different number

of inputs (particles) in each event.
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Continuum Supression using Deep Sets

e What is Deep Sets?

https://arxiv.org/abs/1703.06114

« DeepSets is a NN architecture that takes as input an

Pool

unordered set X = {x;}, i = {1...n}with varying size

T
n, where each element has features xl] 5
« Each element is fed into the same NN ¢.

« The n outputs of ¢ are aggregated with a permutation-

Invariant pooling operation (Sum/Mean/Max). X}
« The aggregated representation is passed to another x2

neural network p to produce the final output p.
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https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1703.06114

Continuum Supression using Deep Sets

 MultiDeepSets (MDS)

« Our data contains different types of objects (tracks,

Pool

photons).

 MDS is a modification of Deep Sets (developed mostly
|

by Roy Hircsh and Emilie Bertholet) in an X(3872)

analysis.

« Can deal with multiple sets.

« Uses multiple ¢; NNs, each of which gets a different set
as an input.

* Pooling all ¢; output and proceeds the same as

DeepSets.
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Continuum Supression using Deep Sets

Architecture:

« 5 sets are fed as input: BSY9 | tracks, y-s (sig and ROE)
« Each set includes arrays of inputs for each particle i:

- B%Y (1 arrays)

 tracks (i =1,2... < 10)

Pool

 photons (i =1,2... < 20)
 To avoid correlation with M. and AE, for the By,
particles we use only:
 p: 6 and ¢ angles.

Pscale- NOrmalized momenta of tracks and gammas

relative to the highest momentum.
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Continuum Supression using Deep Sets

 Architecture:

* Feed inputs into MLP ¢ (independently for each set).
* Repeated block sizes: [20,50,100]

« Calculate mean value of the ¢ outputs (size 150 each). 5 I RO Bsig
Bsig Ptrack 14 Ptrack
Linear
) Pcm
Relu X3 Pcm
A . q
n _ Pcm q Dcm
Batch Norm. e PIDs
7 Nthrust PIDs Pscale
dr,dz
Linear vy 02
Pscale
Ori Fogel 8 BSig ROE ROE Bsig Bsig
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Continuum Supression using Deep Sets

 Architecture:

* Feed mean (size 150) into MLP p, which gives output p;.

» Repeated block sizes: [100,50]

ROE ROE Bsig Bsig
¢Bsig Py Ptrack

Linear
9 Pem
Relu Pcm
7} X q
_ Pcm q Pcm
Batch Norm. ) Bem PIDs
Nihrust PIDs Pscale
dr,dz
Pscale
Ori Fogel 9 BSig ROE ROE Bsig Bgig

tracks photons tracks photons



Other possible architectures

« The architecture | just presented uses early fusion, as it combines information from

all sets immediately after the ¢ transformation.

« We tried different approaches:
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Late Fusion

 Architecture:

* Pooling each set separately.

Pool 1 Pool 1 Pool 1

Pool 1 Pool 1

« Combining information from all the sets only after

the first pooling.

Pcm
 Pool 1l # Pool 2 q A
Dcm q Pcm
Dem PIDs
ﬁthrust PIDs Pscale
dr,dz
dr,dz
Pscale
ROE ROE Byig Byig

Ori Fogel 11 Bsig
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Early Fusion with an Attention Layer

Architecture:

« An attention layer enables the model to focus on

relevant interactions between elements.

» Here it captures the interactions of all the particles, as

we give as an input all the different sets together.
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Sample used

« FEI hadronic skims, for convenience and to have a variety of decay modes (although missing 2-body

charmless decays)

— Liab

BB~ 0.01215 752038
uil 0.00259 296246
dd 0.00259 73450
cC 0.00259 327108
5 0.00259 53648

« For training and validation: ~750K signal events and ~750K bg events.

« For inference: independent 75K signal events and 75K bg events.

« BSY is reconstructed, and we keep up to 10 tracks and 20 photons (for B9 and ROE).
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Results

MultiDeepSets
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Signal efficiency
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with attention

Fast BDT

-

FBDT, auc = 0.9146, ci =[0.9132, 0.9160], R = 0.2652

MDS Early Fusion Sum, auc = 0.9364, ci =[0.9353, 0.9376], R = 0.1924

MDS Late Fusion Sum Max, auc = 0.9377, ci = [0.9366, 0.9388], R = 0.1892
MDS Early Fusion + Att Max, auc = 0.9399, ci =[0.9387, 0.9410], R = 0.1832
MDS BDT parameters, auc = 0.9244, ci = [0.9231, 0.9257], R = 0.2329
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Results
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MultiDeepSets
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For benchmark of
90% signal
efficiency, we
reduce background
by 31%!



Results - correlation

FastBDT
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MultiDeepSets (attention)
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FEIl decay modes

FastBDT MultiDeepSets

(with attention)

# events
(ouf of

Decay Mode Background

reduction for 90%
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BT - DYrtntn~
Bt - DOrtr0

Bt - DOx*

Bt - Drtntn—n©

B+—>50

+ 0.0

/[

Bt - D0ntrptn—
Bt - D*0x0

Other modes

150K)

31196
30503
17200
15112

8208
8046
5568
34215

AUC

0.9074
0.9237
0.9271
0.8886

0.9087
0.9060
0.9246
0.9094

0.2946
0.2261
0.2230
0.3541

0.2821
0.2930
0.2166
0.2884
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AUC

0.9394
0.9360
0.9452
0.9370

0.9273
0.9274
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0.9411

0.1863
0.1956
0.1683
0.2008
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0.2223
0.1895
0.1799

signal

36.76%
13.4%

24.52%
43.29%

18.64%
24.13%
12.51%
37.62%



Summary

« We wanted check if low-level variables would yield better continuum suppression.

« We used FEI to reconstruct many signal modes.

« We used all tracks and photons (in the ROE with p and in the signal B with p) plus p and thrust axis of the
signal B as input to a DeepSets-based NN.

* For a benchmark of 90% signal efficiency, the background efficiency is:

e 26.5% with FastBDT

> 31% less background
» 18.3% with DeepSets

« Multibody modes have a bigger improvement (because there is more information for the classifier to use).

« It highlights the importance of correct distributions in the MC, probably more so in the signal simulation.
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Next Steps

* EXxperiencing with a second attention layer.

« Study signal-mode dependence, particularly 2-body charmless signal.

» Check performances with and without retraining for the specific signal mode.

« Compare performance on data (using B — D*m for signal and off-resonance
data for continuum).

« Make the code available for Belle Il use in basf2.
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Early Fusion - Pooling Comparison
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Late Fusion - Pooling Comparison

1.0 A -
0.8 A ///’
CICJ L
S 0.6 A /’/,
=
@ Jtad
T
N —— MDS Late Fusion Mean Sum, auc = 0.9325, ci =[0.9313, 0.9337], R = 0.2028
——— MDS Late Fusion Max Sum, auc = 0.9327, ci = [0.9315, 0.9339], R = 0.2022
024 — MDS Late Fusion Mean Max, auc = 0.9360, ci = [0.9349, 0.9372], R = 0.1924
—— MDS Late Fusion Sum Max, auc = 0.9377, ci = [0.9366, 0.9388], R = 0.1892
—— MDS Late Fusion Max Mean, auc = 0.9320, ci =[0.9308, 0.9332], R = 0.2065
—— MDS Late Fusion Sum Mean, auc = 0.9355, ci =[0.9343, 0.9366], R = 0.1940
00 - I T T T
0.0 0.2 0.4 0.6 0.8 1.0

Background efficiency

Ori Fogel 23



Early Fusion + Attention Fusion - Pooling Comparison
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Training testing comparison (old numbers)
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FBDT-test, auc = 0.9147, R = 0.2654, ci =[0.9133, 0.9161]
MDS-test, auc = 0.9316, R = 0.2072, ci =[0.9304, 0.9328]

FBDT-train, auc = 0.9155, R = 0.2585, ci =[0.9151, 0.9160]
MDS-train, auc = 0.9452, R = 0.1644, ci = [0.9448, 0.9455]
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Roc curves for all tests
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FBDT, auc = 0.9161, R = 0.2591, ci = [0.9148, 0.9175]

FBDT_no_KSFW, auc = 0.9047, R = 0.2925, ci = [0.9032, 0.9062]

MDS all vars w. p-rank, auc = 0.9451, R = 0.1665, ci =[0.9441, 0.9462]
MDS all vars w. p-scale, auc = 0.9447, R = 0.1680, ci =[0.9436, 0.9457]
MDS no dr,dz, auc = 0.9245, R = 0.2325, ci =[0.9232, 0.9258]

MDS no pid, auc = 0.9221, R = 0.2408, ci =[0.9208, 0.9234]

MDS no p-rank, auc = 0.9340, R = 0.2018, ci =[0.9328, 0.9352]

MDS no sig trk/gamma, auc = 0.8883, R = 0.3324, ci =[0.8867, 0.8899]
MDS no Btag, auc = 0.9224, R = 0.2387, ci =[0.9211, 0.9237]

MDS Btag full-p, auc = 0.9744, R = 0.0493, ci =[0.9737, 0.9751]

Ori Fogel

0.2 0.4 0.6 0.8

Background efficiency

26

1.0



Correlation using B;,, momentum
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FastBDT vs. DeepSets using FastBDT data
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https://authors.belle2.org/dir.pl?p=57
https://authors.belle2.org/dir.pl?p=59
https://authors.belle2.org/dir.pl?p=53
https://authors.belle2.org/dir.pl?p=51
https://authors.belle2.org/dir.pl?p=35
https://authors.belle2.org/dir.pl?p=27
https://authors.belle2.org/dir.pl?p=27
https://authors.belle2.org/dir.pl?p=47

Important note about previous results

In the last talk, we presented almost perfect classifier.

We noticed that we used p of B;, instead of p.

Hence classifier output was highly correlated with M,

We fixed that by using # ,but it required adding signal side information (similar to

KSFW) due to decrease of AUC.

Ori Fogel 29



Old Results
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https://authors.belle2.org/dir.pl?p=57
https://authors.belle2.org/dir.pl?p=59
https://authors.belle2.org/dir.pl?p=53
https://authors.belle2.org/dir.pl?p=51
https://authors.belle2.org/dir.pl?p=35
https://authors.belle2.org/dir.pl?p=27
https://authors.belle2.org/dir.pl?p=27
https://authors.belle2.org/dir.pl?p=47

Fox-Wolfram moments

Fox-Wolfram moments are rotationally-invariant parametrisations of the distribution of particles in an event. They are
defined by:

P3| |p;]
H, = Z 32 = Py(cos8; ;)
1,] event

with the momenta p ; , the angle 6 ;; between them, the total energy in the event E .. and the Legendre Polynomials
P,
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CLEO cones

* Q9variables corresponding to the
momentum flow around the
thrust axis of the B candidate,
binned in nine cones of 10°
around the thrust axis
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h+

Figure 9.3.1. A graphical illustration of the CLEO Fisher
discriminant, from (Asner et al., 1996). The h*, '~ arrows
indicate the momenta of the two charged hadronic tracks in
a B’ - h*th'~ candidate; the momentum of ROE particles
within each cone (the first three cones around its thrust axis
being drawn in the figure) are summed and combined to give
the Fisher discriminant.



KSFW

9.5.2 KSFW

To further improve the continuum suppression, a second
Fisher discriminant was developed by Belle:

4 4 N,
KSFW =Y Ri°+ Y R”+v Y _|(P)al, (9.5.3)
=0

=0 n=1

where Rj° and Rj° are modified Fox-Wolfram moments
similar to h;° and h{° in Eq. (9.5.2), respectively; the third
term is the scalar sum of the transverse momentum of
each particle multiplied by a free parameter v and N; is
the total number of particles. The expressions of R;° and
R}° are described as follows:
— R
In constructing R;°, the missing momentum of an event
is treated as an additional particle and the moment is
decomposed into three categories: a charged particle
part (c), neutral particle part (n), and missing particle
part (m). The variable R7° is expressed as

CECIH:!O + Otn;H;f + amgHz‘}

S0 __
Rj° = B — AR (9.5.4)
For odd I, we have
=H3=0 and (9.5.5)
&= QiQixlpix|Pilcosix), (9.5.6)

T gx

Ori Fogel
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where 7 runs over the B daughters; jx indexes the ROE
in the category x (x = ¢, n, m); Q; and Qjx are the
charges of particle ¢ and jx, respectively; p;x is the
momentum of particle jz; and P;(cos8; jx) is the I-th
order Legendre polynomial of the cosine of the angle
between particles 7 and jx.

For even [,

HE =3 IpixlPi(cosbizx),  (9.5.7)

i gx

which is similar to Eq. (9.5.6) except for the charge
factors. There are two free parameters for [ = 1,3 and
nine (3 x 3) for [ =0, 2,4.

Ry°

The definition of the second term of Eq. (9.5.3) is sim-
pler.

For odd I, we have

R = Z Z Bi1Q;Qr|p;l|pk|Pi(cos 8jk),(9.5.8)
i ok

where j and k run over the ROE and other variables
are the same as used in Eq. (9.5.6).
For even [, we have

R = ZZ Bilp;i||pk|Pi(cos8;1).  (9.5.9)
ik
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FEI skims

WITHOUT the ECL
cut

/belle/collection/MC/11180500_MC15
ri_noEcl

(2.8 ab-1 of BB and 1 ab-1 of qqgbar)

Continuum only:

/belle/collection/MC/11180500_MC15
ri_continuum_noEcl

(1 ab-1 of ggbar)

Off-resonance:

/belle/collection/MC/11180500_MC15
ri_offres_noEcl

kim_11180500_nokEcl

Skim Skim Code | Available MC Collections Available Data Collections Off-Resonance Data Collections
(362.2 fb-1 of on-resonance data)
feiHadronic 11180500 | All MC: /belle/collection/Data/procl3prompt_s

/belle/collection/Data/procl3prompt_skim
_11180500_nokEcl_offres
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