Study of D⁰ decays to the invisible final states at Belle II

Yonsei University Chanho Kim

ckh424@yonsei.ac.kr

Introduction to analysis

• In SM, heavy (B or D) decays to $\nu\bar{\nu}$ is helicity suppressed with an expected branching fraction of $Br(D^0 \rightarrow \nu\bar{\nu}) = 1.1 \cdot 10^{-30}$, which is beyond the reach of current collider experiments.

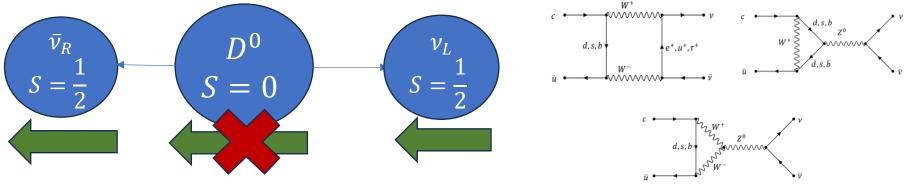
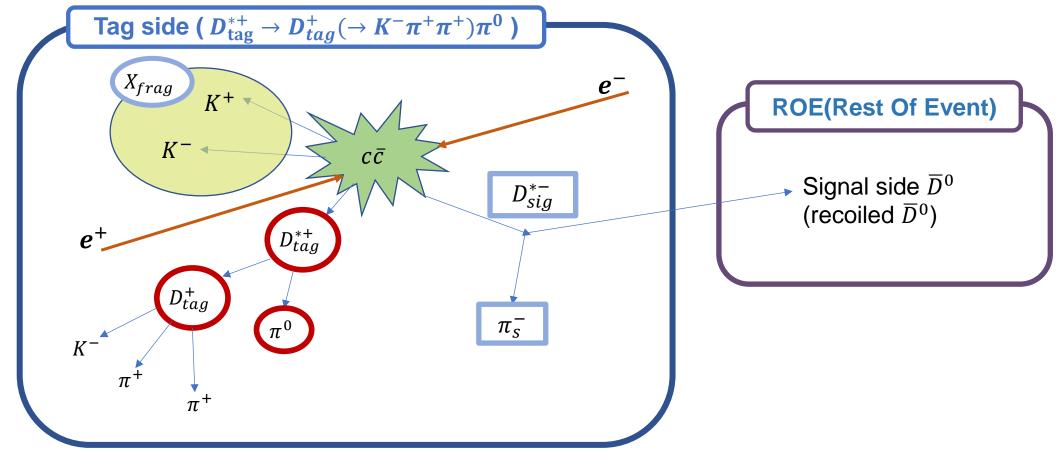


Figure1: Scheme of helicity suppressing

Figure2: Feynman diagram for $D^0 \rightarrow \nu \bar{\nu}$

- Therefore, search for $D^0 \rightarrow$ invisible final states is sensitive to new physics
- The previous result is $BR_{UL} = 9.4 \times 10^{-5}$ on 924 fb^{-1} data samples at 90% CL at belle [Phys. Rev. D 95, 011102(R)]


MC simulation samples

- 20M signal MC samples were used
- Signal Event used for simulation :

$$\begin{array}{ccc} e^+e^- \rightarrow c\bar{c} \rightarrow D_{tag} X_{frag} D_{sig}^{*+} \\ D_{sig}^{*+} \rightarrow D_{sig}^0 \pi^+ \\ D_{sig}^0 \rightarrow \nu \bar{\nu} \end{array}$$

- MC15ri generic MC($1ab^{-1}$) is used as generic background MC sample
 - Will move on run dependent MC soon
- 20M Control sample $(D^0 \rightarrow K^- \pi^+)$
 - $D^0 \rightarrow K^+K^-, K^+\pi^-, K^-\pi^+\pi^0$ MC is also used as background for control sample study

Analysis Method : Charm Tagger

Figure3: schematics of signal event with tag side decay $D_{tag}^{*+} \rightarrow D_{tag}^{+} (\rightarrow K^{-}\pi^{+}\pi^{+})\pi^{0}$

Description of Charm tagging Procedure

Reconstruction D_{tag} , D_{tag}^*

- 1. Reconstruct D_{tag} using the pre-chosen decay channels
- 2. Reconstruct D_{tag}^*

Recoil part 1 (D^{*+})

- 1. Calculate $M_{miss}(D_{tag}^{(*)}X_{frag})$ which is regarded as mass of D_{sig}^{*+}
- 2. Apply kinematic mass constrained Fit on $M_{miss}(D_{tag}^{(*)}X_{frag})$ to $m_{D^{*+}}$
- 3. BCS of D_{sig}^{*+} by using chiProb from step 2

Recoil part 2 (D^0)

- 5. Using slow pion, calculate $M_{miss}(D_{tag}^* X_{frag} \pi_s^+)$ which is regarded as mass of signal side D^0
- 6. BCS of D^0 by using angle between D_{sig}^0 and tag side hadron in cm frame

Table1. Tag reconstruction channels

D^0 decay	Br(%)	D^+ decay	Br(%)	Λ_c^+ decay	Br(%)	D_s^+ decay	Br(%)
$K^-\pi^+$	3.9	$K^-\pi^+\pi^+$	9.4	$pK^{-}\pi^{+}$	5.0	$K^+K^-\pi^+$	5.5
$K^-\pi^+\pi^0$	13.9	$K^-\pi^+\pi^+\pi^0$	6.1	$pK^{-}\pi^{+}\pi^{0}$	3.4	$K^0_S K^+$	1.5
$K^-\pi^+\pi^+\pi^-$	8.1	$K_S^0 \pi^+$	1.5	pK_s^0	1.1	$K^0_S K^0_S \pi^+$	5.4
$K^-\pi^+\pi^+\pi^-\pi^0$	4.2	$K_S^0 \pi^+ \pi^0$	6.9	$\Lambda^0 \pi^+$	1.1	$K^+K^-\pi^+\pi^0$	5.6
$K_S^0 \pi^+ \pi^-$	2.9	$K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}$	3.1	$\Lambda^0 \pi^+ \pi^0$	3.6	$K_{S}^{0}K^{-}\pi^{+}\pi^{+}$	1.5
$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	5.4	$K^+K^-\pi^+$	1.0	$\Lambda^0 \pi^+ \pi^+ \pi^-$	2.6	$K^{+}\pi^{-}\pi^{+}K^{0}_{S}$	1.0
$K^-\pi^+\pi^0\pi^0$	8.9	$K^-K^+\pi^+\pi^0$	0.7	$p^+\pi^-\pi^+$	0.5	$\pi^+\pi^-\pi^+$	1.0
$\pi^{-}\pi^{+}$	0.1	$\pi^-\pi^+\pi^+$	0.3	$p^+K^-K^+$	0.1	$\pi^+ K_S^0$	0.1
$\pi^-\pi^+\pi^-\pi^+$	0.8	$\pi^-\pi^+\pi^+\pi^0$	1.2	$p^{+}K^{-}\pi^{+}\pi^{0}\pi^{0}$	0.1	$\pi^+\pi^0 \tilde{K}^0_S$	0.5
$\pi^-\pi^+\pi^0$	1.5	$K^{+}K^{0}_{S}K^{0}_{S}$	0.3	$p^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}$	0.2	$K^-K^+\pi^+\pi^-\pi^+$	0.7
$\pi^-\pi^+\pi^0\pi^0$	1.0	$\pi^+\pi^0$	0.1	$p^{+}K^{0}_{S}\pi^{0}$	2.0		
K^-K^+	0.4			$p^{+}K^{0}_{S}\pi^{+}\pi^{-}$	1.6		
$K^-K^+\pi^0$	0.3			$\pi^+\pi^-\Sigma^+$	4.5		
$K^{-}K^{+}K^{0}_{S}$	0.4			$\pi^+\pi^-\pi^0\Sigma^+$	1.2		
$\pi^0 K^0_S$	1.2			$\pi^0 \Sigma^+$	1.2		
sum	53.1	sum	30.5	sum	28.2	sum	22.8

D_{tag}^* reconstruction channels and fragmentations for each tag particle

D^{*+} decay	Br(%)	D^{*0} decay	Br(%)	D_s^{*+} decay	Br(%)
$D^0\pi^+$	67.7	$D^0\pi^0$	61.9	$D_s^+\gamma$	93.5
$D^+\pi^0$	30.7	$D^0\gamma$	38.1		
sum	98.4	sum	100.0	sum	93.5

Table3: D_{tag}^* channel

$\boxed{D^{*+} or D^+}$	$D^{*0} or D^0$	Λ_c^+	$D_s^{*+} \text{ or } D_s^+$
nothing (K^+K^-)	$\pi^+(K^+K^-)$	$\pi^+ \bar{p}$	K_S^0
$\pi^{0}(K^{+}K^{-})$	$\pi^+\pi^0(K^+K^-)$	$\pi^+\pi^0\bar{p}$	$\pi^0 K_S^0$
$\pi^{+}\pi^{-}(K^{+}K^{-})$	$\pi^{+}\pi^{+}\pi^{-}(K^{+}K^{-})$	$\mid \pi^+\pi^-\pi^+\bar{p}\mid$	$\pi^+ K^-$
$ \pi^{+}\pi^{-}\pi^{0}(K^{+}K^{-}) $			$\pi^{+}\pi^{-}\pi^{0}K_{S}^{0}$
			$\pi^+ K^-$
			$\pi^+\pi^0 K^-$
			$\pi^+\pi^-\pi^+K^-$

Table4: *X_{frag}* channel (total 24 channels)

fastBDT training for Charm Tagging

Input Variables of fastBDT

(reduce # of input variables according to high correlation and low importance)

• For D_{tag} training

M, xp, dr(flight length), dz, chiProb, cosToThrustOfEvent,

cosAngleBetweenMomentumAndVertexVectorInXYPlane,

PID of daughters, cosHelicityAngle(2 body or 3 body decays),

angle between 2 daughters of $\pi^0(\to \gamma\gamma)$, $K^0_S(\to \pi^+\pi^-)$, $\Lambda^0(\to p^+\pi^-)$, $\Sigma^+(\to p^+\pi^0)$,

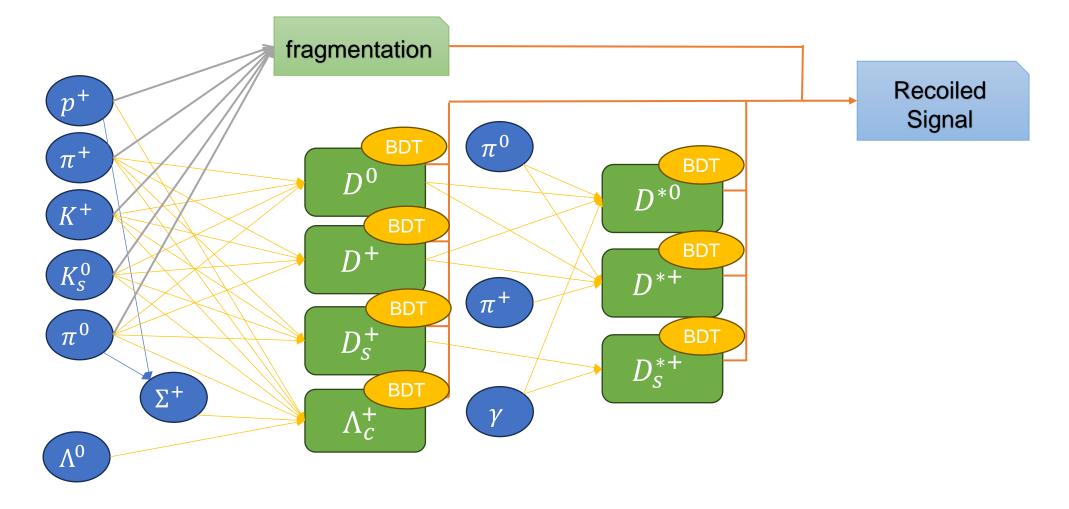
$$\frac{E_{d_1}-E_{d_2}}{E_{d_1}+E_{d_2}} | \text{ of } \pi^0(\to\gamma\gamma), K_S^0(\to\pi^+\pi^-), \Lambda^0(\to p^+\pi^-), \Sigma^+(\to p^+\pi^0) \text{ etc...}$$

• For D_{tag}^* training

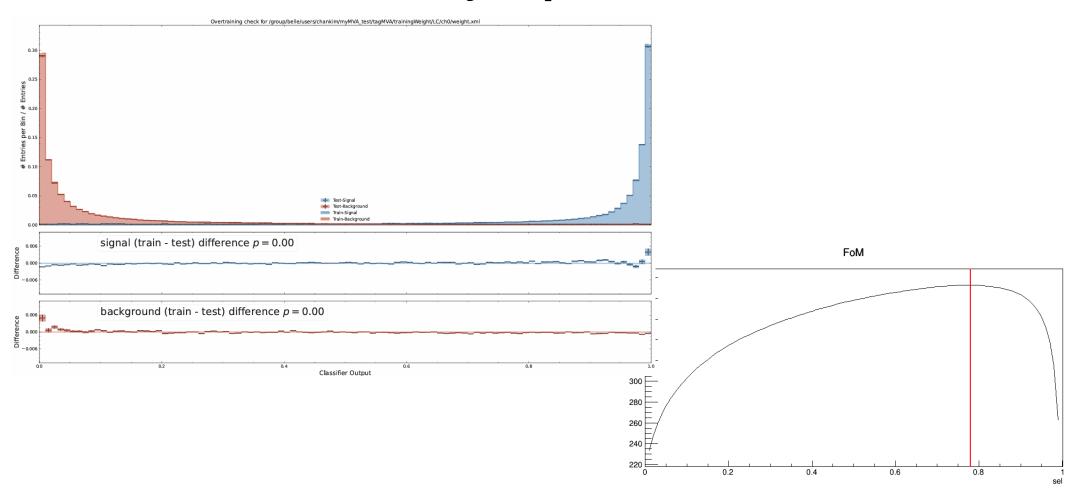
 $\Delta M (= M_{D_{tag}^*} - M_{D_{tag}}), \text{ momentum of } \pi_s^{\pm}, \gamma, \pi^0,$ angle between D_{tag} and $\pi_s^{\pm}, \gamma, \pi^0$ etc...

• Hyper Parameters of BDT was optimized by applying grid search for each tag training

Preselection of Charm Tagger

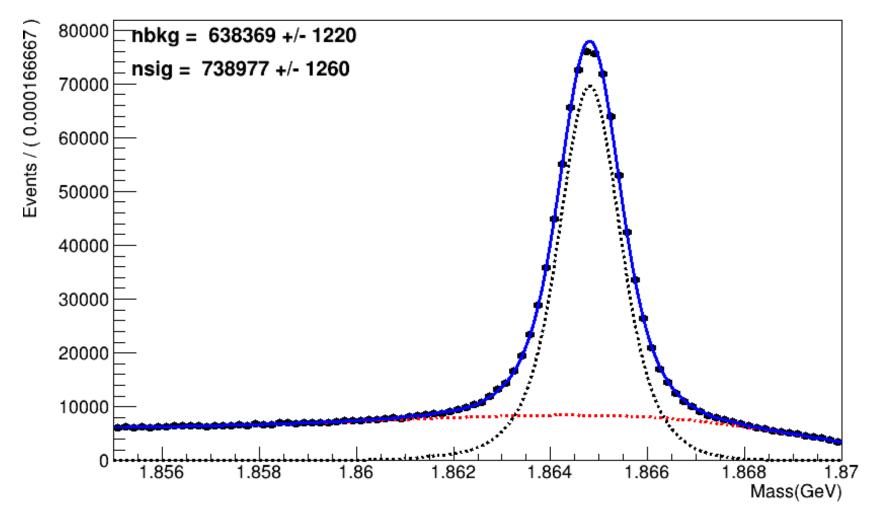

- For tracks : dr < 1.0 , |dz| < 3.0 and InCDCAcceptance
- π^{\pm} : 15 candidates with Highest pionID after pionID > 0.01
- K^{\pm} : 10 candidates with Highest kaonID after kaonID > 0.1
- p^{\pm} : 10 candidates with highest protonID after protonID > 0.1
- γ : beamBackgroundSuppression > 0.5 & fakePhotonSuppression > 0.1 (E > 0.1 for γ in $D_s^{*+} \rightarrow D_s^+ \gamma$, $D^{*0} \rightarrow D^0 \gamma$)
- for fragmentations, PID selection of π^{\pm} , K^{\pm} , p^{\pm} is on 0.1, 0.9, 0.9 and additionally require p > 0.1 GeV

• K_S^0, Λ^0 :


- mass and dr and χ^2 and angle between Momentum and Vertex Vector selection on Λ^0
- goodBelleKshort for K_S^0 (similar selection to Λ^0)

```
• \Sigma^+ : reconstructed from \Sigma^+ \rightarrow p^+ \pi^0 and mass cut (1.08 < M < 1.28)
```

Flow of Charm Tagger



One example about training : $\Lambda_c^+ \rightarrow p^+ K^- \pi^+$

Reconstructed D^0 from charm tagger on generic MC

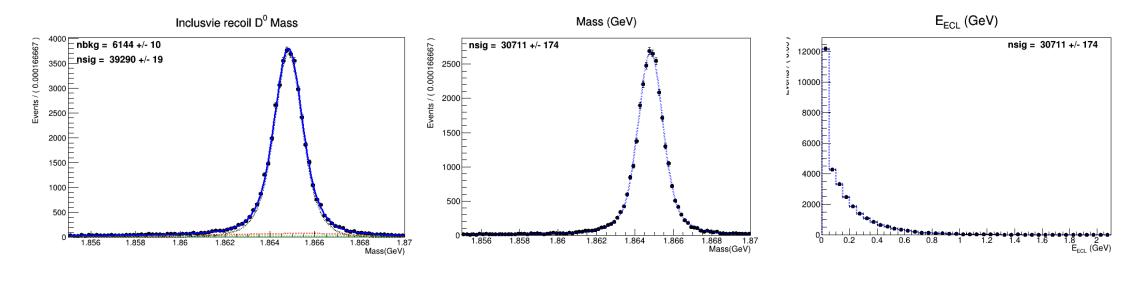
Inclusvie recoil D⁰ Mass

Variables for extracting signal side D

- Recoil mass $(M_{miss}(D_{tag}^*X_{frag}\pi_s^{\pm}) \text{ or } M_{recoil}(D^0))$
 - $e^+e^- \rightarrow D^*_{tag}X_{frag}\pi^+_sD^0$
 - $p^{\mu}(e^{+}) + p^{\mu}(e^{-}) \left(p^{\mu}(D^{*}_{tag}) + p^{\mu}(X_{frag}) + p^{\mu}(\pi^{+}_{s})\right) = p^{\mu}(D^{0}_{sig})$

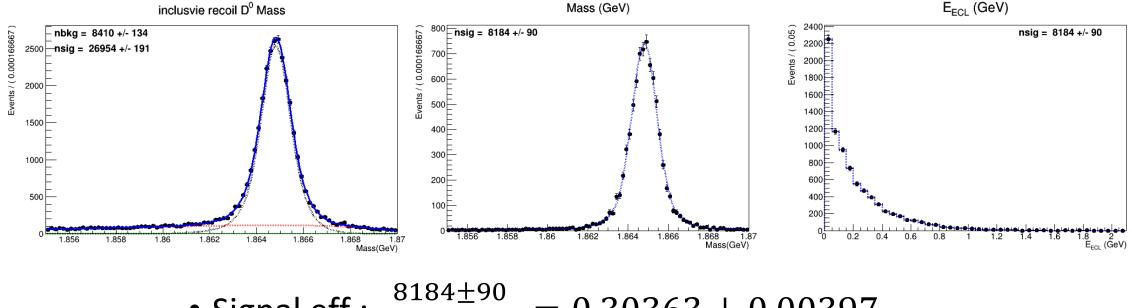
•
$$M_{recoil}(D^0) = \sqrt{p^{\mu}(D^0) * p_{\mu}(D^0)}$$

- Inclusive D^0 : recoiled D^0 (no requirement on signal side) => 1D fit on signal side recoil M_{D^0}
- E_{ECL} : sum of energies from roe of tag side remained in electromagnetic calorimeter(ECL) cluster
 - Exclusive D^0 : recoiled D^0 (requirement on signal side)
 - => 2D fit on signal side (M_{D^0}, E_{ECL})

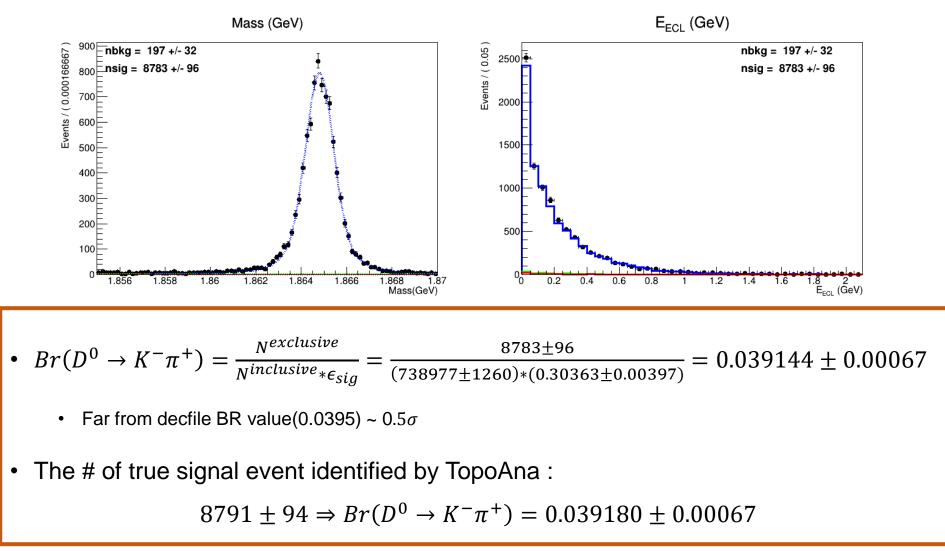

Fitting strategy

- Inclusive D fitting
 - 1D fitting : M_{D^0}
 - Signal pdf: 2 gaussians + 1 bifurcated gaussian
 - Shape fixed on inclusive D fit result of $D^0 \rightarrow \nu \bar{\nu}$ signal MC
 - Background pdf : argus + linear
- Exclusive D fitting
 - 2D fitting : (M_{D^0}, E_{ECL})
 - Signal pdf :
 - For M_{D^0} , signal pdf from exclusive D fitting
 - For E_{ECL} , histogram pdf from signal MC study
 - Background pdf :
 - Flat: Argus + linear & histogram PDF from MC study
 - Peak: 3 gaussians & histogram PDF from MC study

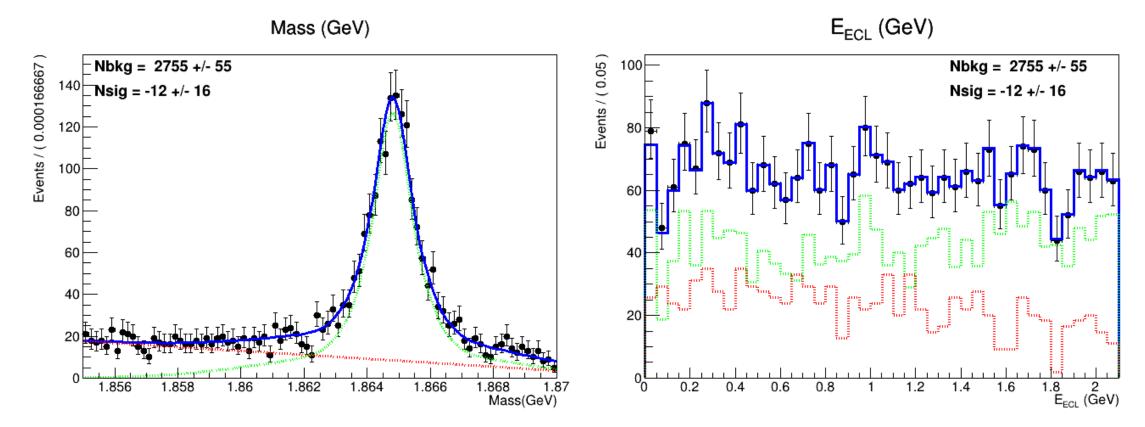
Exclusive D requirement (signal extraction)


- Exclusive : D^0 with selection on signal side fit on the 1.855 GeV < M_{D^0} < 1.870 GeV & E_{ECL} < 2.1 GeV
 - Selection for exclusive D^0 on Signal MC $(D^0 \rightarrow \nu \bar{\nu})$
 - no remaining tracks, π^0 , K_L^0 , K_S^0 , Λ^0
 - Selection for exclusive D^0 on Control sample $(D^0 \rightarrow K^- \pi^+)$
 - 2 remaining tracks and 1 reconstructed $D^0(K^-\pi^+)$
 - no π^0 , K_L^0 , K_S^0 , Λ^0
 - $|\Delta E| < 0.1 \text{ GeV} (\Delta E \equiv E (\text{recoil } D^0) E_{K\pi})$

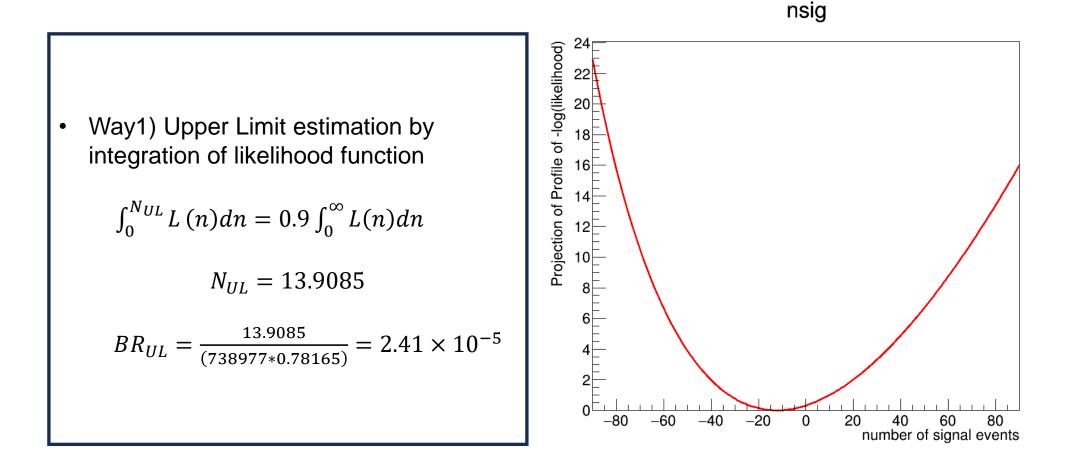
Signal efficiency on signal MC


• Signal eff : $\frac{30711 \pm 174}{39290 \pm 19} = 0.78165 \pm 0.00444$

Signal efficiency on control sample

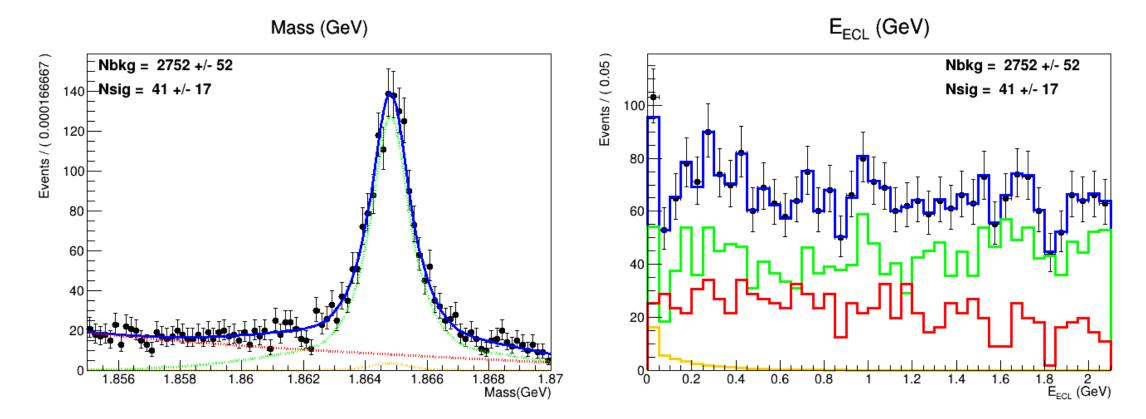


• Signal eff : $\frac{8184 \pm 90}{26954 \pm 191} = 0.30363 \pm 0.00397$


BR measurement on generic MC(uds/mixed/charged)

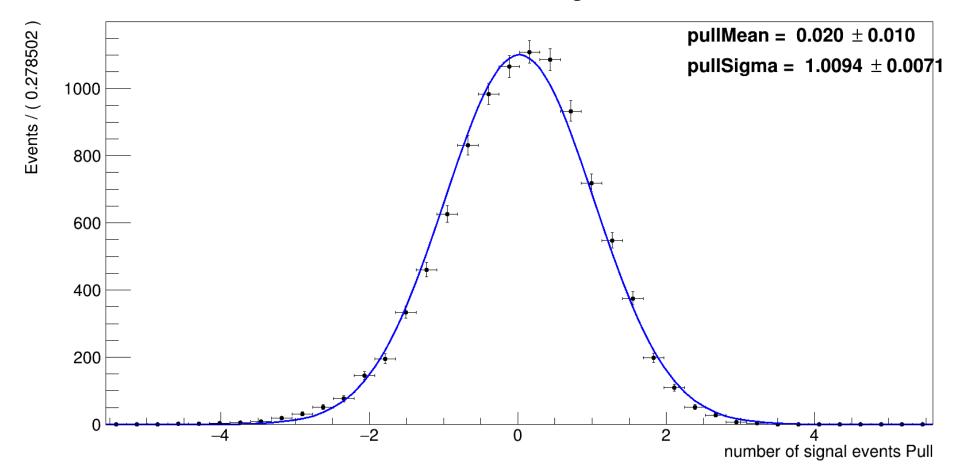
2D fit on generic MC for $D^0 \rightarrow$ invisibles (no signals)

Upper limit estimation of $D^0 \rightarrow$ invisibles

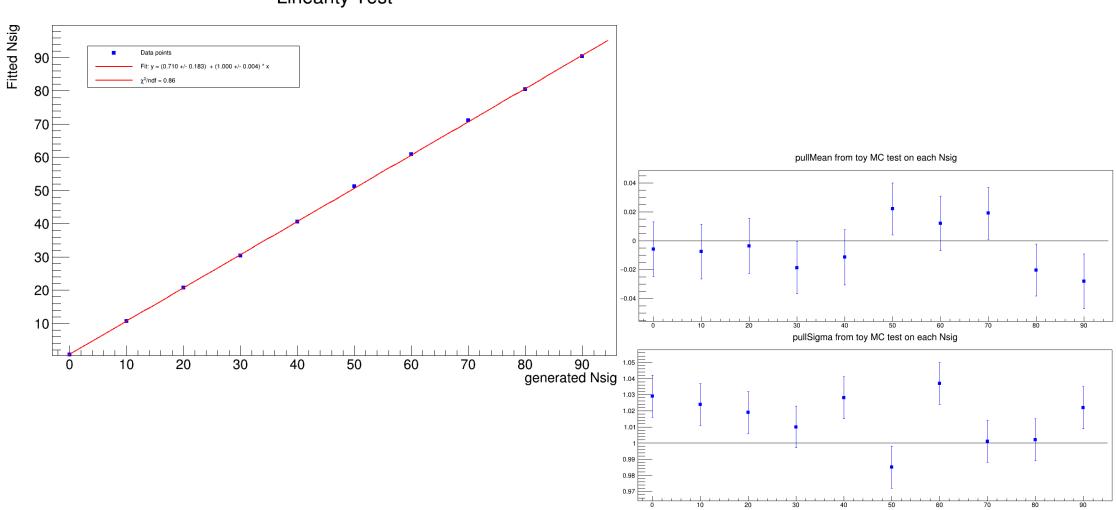


Upper limit estimation of $D^0 \rightarrow invisibles$

HypoTest Scan Result

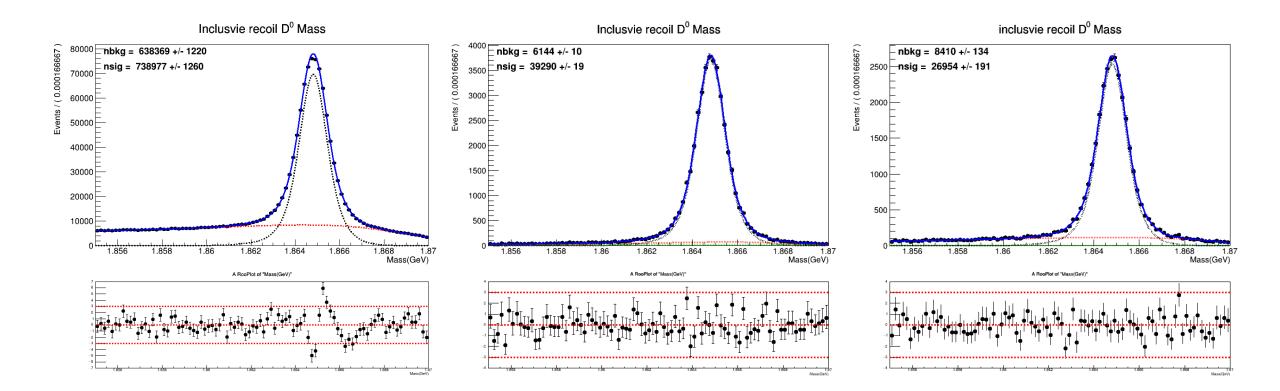

p value Observed CLs+b Observed CLb Way2) Upper limit estimation Expected CLs - Median 0.8 Expected CLs \pm 1 σ by CLs method Expected CLs $\pm 2 \sigma$ $N_{UL} = 16.4465$ 0.6 $BR_{UL} = \frac{16.4465}{(738977*0.78165)} = 2.85 \times 10^{-5}$ 0.4 0^L 20 30 10 50 60 70 90 40 80 Nsig

2D fit on generic MC for $D^0 \rightarrow \text{invisibles}$ (with signal embedding $\#(D^0 \rightarrow \text{invisibles}) = 50$)



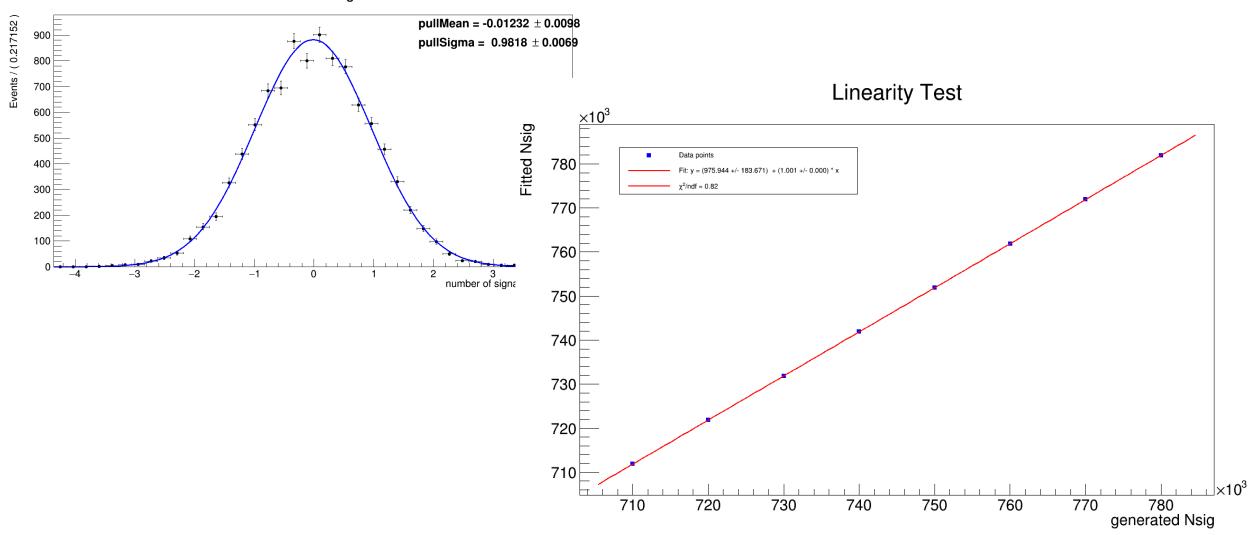
ToyMC test of 2D fit about exclusive $D^0 \rightarrow$ invisible

A RooPlot of "number of signal events Pull"



Linearity test of 2D fit about exclusive $D^0 \rightarrow$ invisible

Linearity Test


Check fit result with pull distribution for inclusive D

Left : generic MC, middle : signal MC, right : control sample

Inclusive D fit result check with ToyMC on generic MC

A RooPlot of "number of signal events Pull"

Next plan

• Study systematic uncertainty

- Naively thinking, the 1st priority of systematics is systematic uncertainty from charm tagger
 - \Rightarrow so, I would like to ask whether it is okay to see data for getting systematics

Decay	BF [%]
$D^0 \to K^- \pi^+$	3.948 %
$D^0 \rightarrow K^- \pi^+ \pi^0$	14.4 %
$D^0 \to K_S^0 \pi^+ \pi^-$	2.80 %
$D^0 \to K^- \pi^+ \pi^- \pi^+$	8.22 %
Total BF	29.368 %

Table: Decay channels to get systematic uncertainty about charm tagger

- Rough procedure:
 - Measure BF of each decays on Data(run-dependent) and MC
 - Check the Data/MC difference on measured BF of each decays
- May study semi-leptonic mode such as K I nu in future
- Systematics from fit strategy, model and gamma selection and tracking efficiency and K_S^0 , K_L^0 and Λ^0 selection efficiency in exclusive veto conditions

Backup : check on correlation between previous BDT variables

	d2Asy	d3Asy	d0pro	٩	chiPr	d1kao	d1pro	ц,	d1pio	d0ka.o	mpac	cosAn	d0pio	cosTo	Σ	dx	d2 d0 1	d3d01	d2 Asy	d3Asy	d0 pro	٩	chiPr	d1kao	d1pro	Ъ	d1 pio	d0ka.o	mpac	cosAn	d0pio	cosTo	Σ	dx	d2 d0 1	d3d01
d3d01	43	8	2	-26	0	7	6	-0	1	-6	-0	1	7	-201	2	-12	-@	100	-23	-1	5	-243	0	6	6	-0	-23	-8	-2	2	6	-243	-@	-6	- -	100
d2d01	1	2	æ	-7	0	5	5	쏍	5	-43	-2	1	4	T	2	-14	100	-8	-7	2	6	-0	0	5	6	-0	2	æ	-2	2	3	11	ন্ম	-20	100	-8 -
хр	- 2	-2	3	77	0	2	4	-0	6	-5	-2	7	7	-L	7	100	-114	-12	2	-8	5	69	1	Ø	7	-0	1	-8	-2	7	1	-2	8	100	-10	-8
м	- =0	-0	0	8	0	1	1	n	1	=0	17	6	0	-0	100	7	2	2	۲	0	-0	3	-0	-0	0	5	-11	0	11	1	-0	-0	100	8	ചി	-0 -
cosTo	9	10	4	52	0	4	41	-0	8	3	-0	ની	-6	100	-0	ୟ	7	-221	7	8	-3	59	0	-7	-2	41	10	19	-11	-0	-111	100	-0	-L	11	-203 -
d0 pio	1	긟	12	-l	0	1	-0	-0	-8	-76	-0	1	100	4	0	7	4	7	-2	-1	10	-13	-11	3	-2	2	-8	-78	1	æ	100	-111	-0	1	3	6
	-	-0																																7		1
	-	-0																																ୟ		- 1
	-	1		_																														æ		1
	-	1																																1		1
	-	۵																																•0		
		-@																																T		
		-1																																4		1
		٩																																1		
		6																																69		1
	r	1																																5		
	-	100																																-8		1
d2Asy	100	1	0	8	-0	-1	-0	-0	1	1	-0	0	-11	2	-0	2	ની	-43	100	-0	-2	8	-0	-2	ની	-0	2	8	-0	۲	-22	7	0	2	-7	-22 -

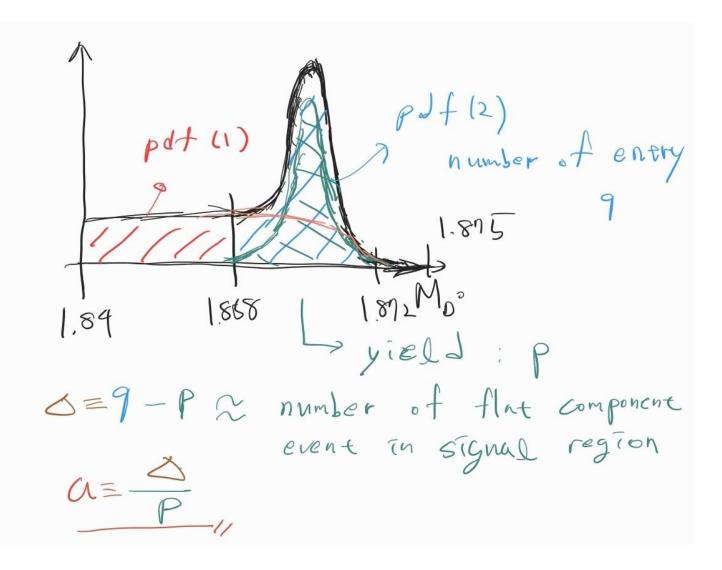
Signal

Background

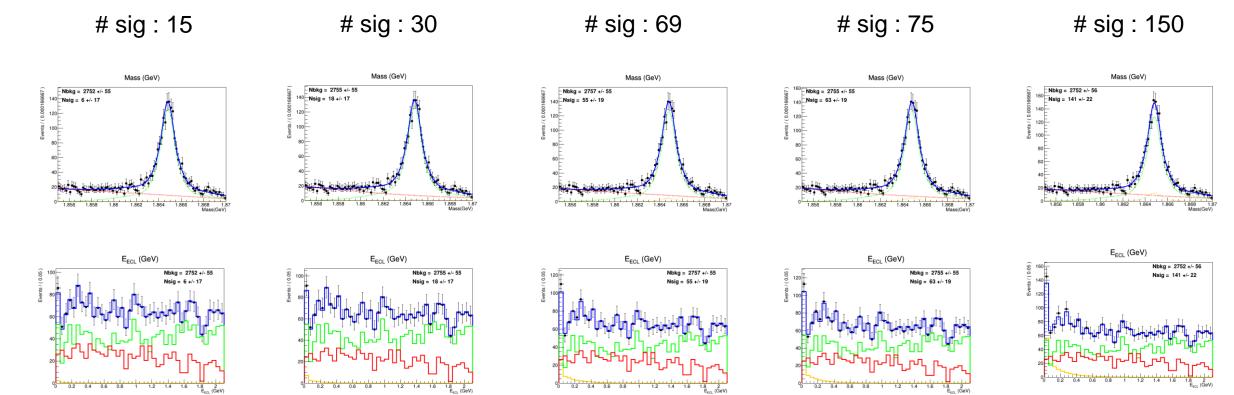
Backup: Check on correlation between BDT variables

	qz	d2Asy	d3Asy	chiPr	dIpio	þ	cosAn	dOkao	cosTo	Σ	dx	d2d01	10PEp	dz	d2Asy	daAsy	chiPr	dIpio	þ	cosAn	d0kao	cosTo	Σ	dx.	d2d01	109Eb
d3d01	-0	43	1	0	1	-@	2	-6	-201	2	-12	-8	100		-2	-a		-2	-@	2	48	-28	-@	-5	-8	100
d2d01	۲	ની	1	0	5	-@	2	-4	7	1	ন্মও	100	•@ -	- 0	Ŵ	2	0	8	۲	2	ୟ	11	-L	-30	100	-8
xp	0	2	-8	0	8	-@	V	÷	솅	V	100	-143	-12 -12	- 0	2	æ	1	2	a()	V	-2	ની	T	100	-20	- B
м	20	0	-@	0	0	15	6	40	-0	100	7	1	22 -	- - 9	0	۲	-0	ą	V	1	0	40	100	7	셸	- (1)
cosTo	1	ø	30	0	8	-0	-1	ą	100	-0	ą	7	-20	- 2	7	8	۲	10	-1	0	13	100	-0	-1	11	-20
d0kao -	0	1	1	-@	4	0	-@	100	Ø	-0	æ	æ	-3	- 0	3	1	1	20	ංනු	8	100	13	0	-8	æß	-8
cosAn -	2	-0	-@	8	6	କ୍ଷ	100	-0	ą	6	V	2	2	- <u>1</u>	-0	0	5	8	ച്	100	5	0	l	7	2	2 -
dr	10	-0	-@	8	ગ્રી	100	-2	0	-0	15	-0	-0	•	- 5	-0	-0	1	~2	100	ની	શ્ચ	ની	7	-0	0	-0
dlpio	۲	1	1	0	100	ą	Ø	Ø	8	۲	6	B	2	- 0	2	1	1	100	-28	8	20	10	ą	Я	3	-2
chiPr -	0	0	-@	100	0	L	2	-0	۲	۲	۲	۲	® -	- 0	-0	۲	100	<u>1</u>	2	5	2	0	-@	2	0	0 -
d3Asy	0	2	100	-@	1	-@	-0	1	10	-0	R	1	2	®	0	100	۲	L	-0	0	2	8	0	ą	2	- S
d2Asy	0	100	2	0	2	-@	-0	1	Ø	0	2	ച്		- 0	100	0	-0	2	-0	-®	8	V	0	2	Ð	-8
dz	100	0	0	0	0	10	2	0	1	23	۲	۲	- 	100	0	-0	۲	۲	B	1	0	2	9	0	0	- 0

Signa

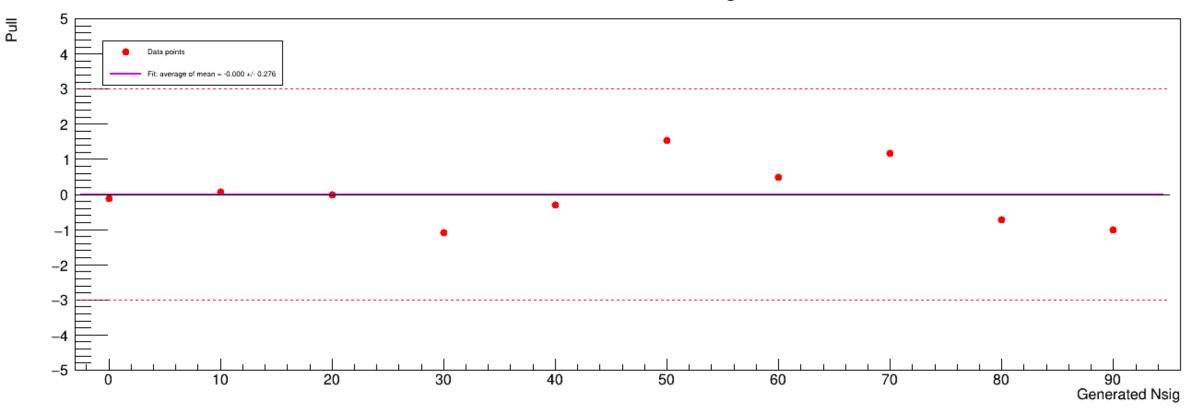

Background

Backup : details of fit procedure

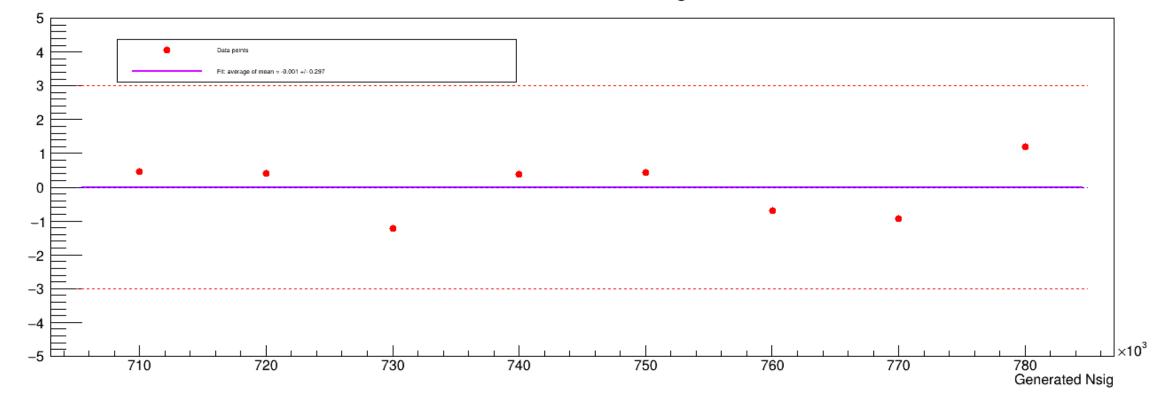

- Fit inclusive D0 on signal MC
- Fixed the signal PDF
- E_{ECL} histogram PDF
 - Signal PDF from signal MC
 - Background PDF is from E_{ECL} histogram on background events
 - Flat background PDF is from E_{ECL} on $1.855 < M_{D^0} < 1.860 - (1)$
 - Peak background PDF : histogram PDF from E_{ECL} on $1.860 < M_{D^0} < 1.870 - - (2)$ => peak background PDF : $(2)^*(1 + a) - (1)^*a$

Backup : variable a

- The value of a can be roughly estimated
- a is floating number with small range around the estimated value



Backup : signal embedded fit result (15,30,69,75,150)


Backup: checking linearity test result about exclusive D fit with $Z(=\frac{N_{fitted}-N_{expected}}{\sigma})$

Pull vs Generated Nsig

Backup: checking linearity test result about inclusive D fit with $Z(=\frac{N_{fitted}-N_{expected}}{\sigma})$

Pull vs Generated Nsig

