Search for A_{CP} in $D^+_{(s)} \rightarrow \eta h^+$ & Br measurement in $D^+_{(s)} \rightarrow \eta K^+$ at Belle II

Jaeyoung Kim¹, Youngjoon Kwon¹

¹Yonsei University in Seoul, Korea

Lab meeting

(Recap)Introduction

Decays

- $D^+ \rightarrow \eta \pi^+$: Singly Cabibbo-suppressed (SCS)
- $D^+ \rightarrow \eta K^+$: Doubly Cabibbo-suppressed (DCS)
- $D_s^+
 ightarrow \eta \pi^+$: Cabibbo favoured (CF)
- $D_s^+ \rightarrow \eta K^+$: SCS
- Using both $\eta \to \gamma \gamma, \eta \to \pi^+ \pi^- \pi^0$

Target measurements with Belle II data

- A_{CP} of $D^+_{(s)} \rightarrow \eta h^+(h = \pi, K)$
- Branch fraction of $D^+_{(s)} o \eta K^+$ normalized by $D^+_{(s)} o \eta \pi^+$

Analysis methodology

Basic ideas

- Direct reconstruction and fit to $M(\eta_{\gamma\gamma}h^+)$: no D^{*+} tagging
- Train BDT(XGboost lightgbm) with grid search: $(\eta_{\gamma\gamma}, \pi^+), (\eta_{\gamma\gamma}, K^+), (\eta_{3\pi}, \pi^+), (\eta_{3\pi}, K^+)$
- Before: BDT signal: $D^+ \rightarrow \eta h^+$, bkg: $D_s^+ \rightarrow \eta h^+$ subtracted generic background
- Now: BDT signal: $D^+_{(s)} \rightarrow \eta h^+$, bkg: other generic background
 - ${\scriptstyle \bullet }$ To improve FoM of $D_s^+
 ightarrow \eta h^+$
- BDT value is used to optimize with FoM

Branch fraction

• Ratio: $\frac{D_{(s)}^+ \to \eta K^+}{D_{(s)}^+ \to \eta \pi^+}$, expect to minimize systematics as Belle did

 A_{CP}

• Plan: might use control modes, $D^+_{(s)} o K^0_S h^+$ to correct $A_{\epsilon_{h^+}}$

This talk: MC15rd(Last talk: MC15ri)

Selection criteria

Before MVA,

Hard π^+ : In CDC acceptance, dr<1, |dz|<3, $L_{\pi} > 0.6$ π^+ : In CDC acceptance, dr<1, |dz|<3, $L_{\pi} > 0.1$ Hard K^+ : In CDC acceptance, dr<1, |dz|<3, $L_K > 0.6$, $L_{\pi} < 0.01$ γ for η : clusterNHits>1.5, 0.2967< clusterTheta<2.6180, E>0.1 γ for π^0 : clusterNHits>1.5, 0.2967< clusterTheta<2.6180, E>0.055, beamBackgroundSuppression > 0.5, fakePhotonSuppression > 0.1

 π^{0} for η : 0.12<M<0.145, -1.5<daughterDiffOfPhi(0,1)<1.5, daughterAngle(0,1)<1.4 $\eta_{\gamma\gamma}$: 0.52 < M < 0.57, p > 0.4 GeV $\eta_{3\pi}$: 0.535 < M < 0.57, p>0.4 GeV

 D^+ : $p_{CMS} > 2.5$, treefit chiProb > 0.001 (π^0 , η mass constraint)

particles	selection criteria
γ_{ROE}	clusterTiming < 200 ns
	$\left \frac{\text{clusterTiming}}{\text{clusterErrorTiming}} ight < 2.0$
	clusterNHits > 1.5
	$E > 55 \mathrm{MeV}$
	beamBackgroundSuppression > 0.5
	fakePhotonSuppression > 0.1

particles	selection criteria
$ M(\gamma\gamma_{ROE}) - m_{\pi^0} $	$> 0.011 \mathrm{GeV/c^2}$

MVA(BDT) study

Trained BDTs among different final states: $(\eta_{\gamma\gamma}, \pi^+), (\eta_{\gamma\gamma}, K^+), (\eta_{3\pi}, \pi^+), (\eta_{3\pi}, K^+)$

• $D_{(s)}^+ \rightarrow \eta_{3\pi} h^+$: 4 variables $dr(\pi^+), \cos \theta_{XY}(D^+),$ $p(\eta) + p(\pi^+),$ $\cos Helicity Angle Momentum(D^+)$

No significant correlations(in backup slides) Performed grid search $D^+ \rightarrow \eta_{\gamma\gamma}\pi^+, D^+ \rightarrow \eta_{3\pi}\pi^+, D^+ \rightarrow \eta_{\gamma\gamma}K^+, D^+ \rightarrow \eta_{3\pi}K^+$

Cut optimization

Optimized variable: BDT in D^+ signal region(might not be optimal to D_s^+) $D^+ \rightarrow \eta_{\gamma\gamma}\pi^+, D^+ \rightarrow \eta_{3\pi}\pi^+, D^+ \rightarrow \eta_{\gamma\gamma}K^+, D^+ \rightarrow \eta_{3\pi}K^+$

Before vs. after cut

$M(\eta h^+)$ distribution

Full MC15rd: $D^+ \rightarrow \eta_{\gamma\gamma}\pi^+, D^+ \rightarrow \eta_{3\pi}\pi^+, D^+ \rightarrow \eta_{\gamma\gamma}K^+, D^+ \rightarrow \eta_{3\pi}K^+$

Last talk(MC15ri study)

Signal efficiency

(%), MC15rd is more optimzed

- pionIDNN on $D^+_{(s)} \to \eta \pi^+$ and $\eta \to \pi^+ \pi^- \pi^0) \to$ increase efficiency for π^+ modes
- Put D_s^+ as signal in BDT training ightarrow increase a bit for D_s modes

	Belle II(MC15rd)			
Mode	more optimized	Belle II(MC15ri)	Belle (2011)	Belle (2021)
$D^+ o \eta_{\gamma\gamma} K^+$	3.41 ± 0.01	$\textbf{3.42}\pm\textbf{0.01}$		
$D^+ o \eta_{\pi\pi\pi} K^+$	3.55 ± 0.01	$\textbf{3.28} \pm \textbf{0.01}$	1.35 ± 0.01	
$D^+_s o \eta_{\gamma\gamma} K^+$	2.37 ± 0.01	2.04 ± 0.01		$\textbf{7.42} \pm \textbf{0.05}$
$D_s^+ o \eta_{\pi\pi\pi} K^+$	2.15 ± 0.01	2.02 ± 0.01		4.04 ± 0.02
$D^+ o \eta_{\gamma\gamma} \pi^+$	9.50 ± 0.01	8.85 ± 0.02		
$D^+ o \eta_{\pi\pi\pi}\pi^+$	8.06 ± 0.01	6.17 ± 0.02	1.68 ± 0.02	
$D_s^+ \to \eta_{\gamma\gamma} \pi^+$	8.47 ± 0.01	7.54 ± 0.02		10.84 ± 0.02
$D_s^+ o \eta_{\pi\pi\pi}\pi^+$	7.08 ± 0.01	5.29 ± 0.02		6.50 ± 0.03

Fitting

Simultaneous fit $(D^+_{(s)} + D^-_{(s)})$

• Set fitting range to cover D^+ and D_s^+

Fit method

- Signals: $D^+_{(s)} \rightarrow \eta h^+$
 - pdf: double-sided cystall ball convoluted with gaussian(mean=0)
 - MC fixed: double-sided cystall ball
 - Floating: gaussian
- Backgrounds
 - $M(\eta \pi^+)$: $D_s^+ \to (\rho^+ \to \pi^+ \pi^0)\eta$, fixed shape with Novosibirsk function(next slide)
 - Other combinatorial
 - $M(\eta\pi^+)$: exponential
 - $M(\eta K^+)$: exponential

$$D_s^+
ightarrow (
ho^+
ightarrow \pi^+ \pi^{0}) \eta$$
 pdf

Extract pdf in real data(now in MC)

- Pdf is non-trivial and hard to discriminate from other combinatorial
- Pre-selection with $M(\eta \pi^+)$
- With additional π^0 , reconstruct $M(\eta \pi^+ \pi^0)$
- Cut on $M(\pi^+\pi^0)$ and $M(\eta\pi^+\pi^0)$ to satisfy $m(\rho^+)$ and $m(D_s^+)$ peak region respectively
- Cuts: $|M(\pi^+\pi^0) m(\rho^+))| < 250 MeV \& (1.94 GeV < M(\pi^+\pi^0\eta) < 1.99 GeV)$
- Apply BDT

Pdf

Jaeyoung Kim

Nov.19, 2024, Lab meeting

Fit result

Acp fit result

(a) $A_{CP,raw}(D^+ \rightarrow \eta \pi^+)$

(c) $A_{CP,raw}(D^+ \rightarrow \eta K^+)$

(e) $A_{CP,raw}(D_s^+
ightarrow \eta \pi^+)$

(f) Stat. unc.

(g) $A_{CP,raw}(D_s^+ \to \eta K^+)$ (h) Stat. unc.

Acp fit result

Comparison to most precise single experiment.

(Might be worse after corrected, but not change order)

•
$$A_{CP,raw}(D^+ \to \eta \pi^+)$$
: $(0.21 \pm 0.53)\%$

• Most precise: $\sigma_{\rm stats.} = 0.66\%$ at LHCb(2023), 25% improved

•
$$A_{CP,raw}(D_s^+ o \eta \pi^+)$$
: $(0.11 \pm 0.33)\%$

 ${\scriptstyle \bullet}\,$ Most precise: $\sigma_{\rm stats.}=$ 0.3% at Belle(2021), comparable

•
$$A_{CP,raw}(D^+ o \eta K^+)$$
: $(1.70 \pm 6.06)\%$

• Most precise: $\sigma_{\text{stats.}} = 11\%$ at LHCb(2021), 82% improved(but still large uncertainty)

•
$$A_{CP,raw}(D_s^+ \to \eta K^+)$$
: $(1.30 \pm 2.17)\%$

• Most precise: $\sigma_{\text{stats.}} = 2.1\%$ at Belle(2021), comparable

Note: Belle analysis(2021) found data/MC discrepancy of generic background level, about 1.4 \sim 1.5 times larger than for both $M(\eta\pi^+)$ and $M(\eta\kappa^+)$.

According to Belle note, Belle analysis estimated 10% better precision during MC study.

Branch fraction fit result

To normalize with $\frac{D_{(s)}^{+} \rightarrow \eta K^{+}}{D_{(s)}^{+} \rightarrow \eta \pi^{+}}$, BDTs trained by $D^{+} \rightarrow \eta_{\gamma\gamma} K^{+}$, $D^{+} \rightarrow \eta_{3\pi} K^{+}$ are applied to normalized channels($D^{+} \rightarrow \eta_{\gamma\gamma} \pi^{+}$, $D^{+} \rightarrow \eta_{3\pi} \pi^{+}$)

In terms of statistical uncertainties,

- $Br(D^+ \rightarrow \eta K^+)$: 54% improved compared to Belle(2011).
- $Br(D_s^+ \to \eta K^+)$: comparable to Belle(2021).

Jaeyoung Kim

Nov.19, 2024, Lab meeting

ToyMC study of $D^+ \rightarrow \eta \pi^+$

ToyMC study of $D^+ \rightarrow \eta K^+$

Linearity test

• Performed linearity test between $\pm 3\sigma$ with respect to fitted N_{sig}

• Each point: 1000 ToyMC

Examine experimental sensitivity?

Could we check and analyze full data to examine statistical sensitivity? Target measurements= $D^+_{(s)} \rightarrow \eta \pi^+$: A_{CP} , $D^+_{(s)} \rightarrow \eta K^+$: A_{CP} , Br

- $M(\eta \pi^+)$: full region with blinded central value of $A_{CP,raw}$
 - To check statistical significance
 - To validate fitting method(ex. data driven pdf)
- $M(\eta K^+)$: sideband region(not $M(D_{(s)}^+)$ region) due to Br measurement
 - To check statistical significance

A_{CP} control modes

Candidates of A_{CP} control modes(PDG values)

Mode	A _{CP}	Br	Decay types
$D^+ o K^0_S \pi^+$	-0.0041 ± 0.0009	$(1.562 \pm 0.031)\%$	CF
$D^+_s o K^0_S \pi^+$	0.0020 ± 0.0018	$(1.09\pm0.05)\cdot10^{-3}$	SCS
$D^+ o K^0_S K^+$	-0.0001 ± 0.0007	$(3.04\pm0.09)\cdot10^{-3}$	SCS
$D^+_s ightarrow K^{ar 0}_S K^+$	0.0009 ± 0.0026	$(1.450\pm 0.035)\%$	CF
$D_s^+ o \phi \pi^+$	-0.0038 ± 0.0027	$(2.21 \pm 0.06)\%$	CF

A_{CP} control modes

Mode	A _{CP}	Br	Decay types
$egin{array}{lll} D^+ & ightarrow K^0_S \pi^+ \ D^+_s & ightarrow K^0_S \pi^+ \end{array}$	$\begin{array}{c} -0.0041 \pm 0.0009 \\ 0.0020 \pm 0.0018 \end{array}$	$\begin{array}{c}(1.562\pm0.031)\%\\(1.09\pm0.05)\cdot10^{-3}\end{array}$	CF SCS
$egin{array}{lll} D^+ & ightarrow K^0_S K^+ \ D^+_s & ightarrow K^0_S K^+ \end{array}$	$\begin{array}{c} -0.0001 \pm 0.0007 \\ 0.0009 \pm 0.0026 \end{array}$	$\begin{array}{c} (3.04\pm0.09)\cdot10^{-3} \\ (1.450\pm0.035)\% \end{array}$	SCS CF
$D_s^+ o \phi \pi^+$	-0.0038 ± 0.0027	$(2.21 \pm 0.06)\%$	CF

• Current ongoing study & same BDT per signal will be applied

 $\begin{aligned} A_{CP}(D_{s}^{+} \rightarrow \eta\pi^{+}) &= A_{raw} + A_{CP, raw}(D_{s}^{+} \rightarrow \phi\pi^{+}) - A_{raw, ref} \\ A_{CP}(D^{+} \rightarrow \eta\pi^{+}) &= A_{raw} + A_{CP, raw}(D^{+} \rightarrow K_{S}^{0}\pi^{+}) - A_{raw, ref}' \\ A_{CP}(D_{s}^{+} \rightarrow \etaK^{+}) &= A_{raw} + A_{CP, raw}(D_{s}^{+} \rightarrow K_{S}^{0}K^{+}) - A_{raw, ref}' \\ A_{CP}(D^{+} \rightarrow \etaK^{+}) &= A_{raw} + A_{CP, raw}(D_{s}^{+} \rightarrow K_{S}^{0}K^{+}) - A_{raw, ref}' \\ A_{CP, raw}(D_{s}^{+} \rightarrow \phi\pi^{+}) + A_{raw, \phi\pi^{+}} + A_{CP, raw}(D^{+} \rightarrow K_{S}^{0}\pi^{+}) - A_{raw, K_{S}^{0}\pi^{+}}' \end{aligned}$ $\begin{aligned} A_{raw} \approx A_{CP} + A_{FB} + A_{e_{h}^{+}} \\ A_{raw, ref} \approx A_{CP, ref} + A_{FB, ref} + A_{e_{h}^{+}, ref} \\ A_{CP} = A_{raw} + A_{CP, ref} - A_{raw, ref} \\ & \text{`indicates } A_{K_{mix}} \approx (0.070) \% \text{ corrected} \end{aligned}$

Nov.19, 2024, Lab meeting

A_{CP} control mode of $D^+ \rightarrow \eta K^+$

- Two options(3 CF decays or 1 SCS decay)
 - 3 CF decays A_{CP}(D⁺ → ηK⁺) = A_{raw} + A_{CP, raw}(D⁺_s → K⁰_SK⁺) - A[']_{raw,K⁰_SK⁺} - A_{CP, raw}(D⁺_s → φπ⁺) + A_{raw,φπ⁺} + A_{CP, raw}(D⁺ → K⁰_Sπ⁺) - A[']_{raw,K⁰_Sπ⁺}
 1 SCS decay(D⁺ → K⁰_SK⁺) alone A_{CP}(D⁺ → ηK⁺) = A_{raw} + A_{CP, raw}(D⁺ → K⁰_SK⁺) - A[']_{raw,K⁰_SK⁺}
- $A_{CP}(D^+ \rightarrow \eta K^+)$ has low statistics since it's DCS.
 - MC15rd study(scaled to 427/fb): $\sigma_{A_{CP,raw}} = (6.08)\%$
 - May fine to use $D^+ \to K^0_S K^+$. We will check statistical precision for both cases.

A_{CP} control modes, $D^+ \rightarrow \eta_{\gamma\gamma} \pi^+$ vs. $D^+ \rightarrow K_S^0 \pi^+$

After applying BDT

Some control modes will be reweighted with sPlot technique.

Jaeyoung Kim

Nov.19, 2024, Lab meeting

Summary & Plans

Backup

Jaeyoung Kim

Nov.19, 2024, Lab meeting

1

BDT

Variable correlations $D^+ \rightarrow \eta_{\gamma\gamma}\pi^+, D^+ \rightarrow \eta_{3\pi}\pi^+, D^+ \rightarrow \eta_{\gamma\gamma}K^+, D^+ \rightarrow \eta_{3\pi}K^+$

Variable importance

Jaeyoung Kim

Nov.19, 2024, Lab meeting

Experimental histories

Decay Mode	Experiment	A _{CP}	Br
$D^+ o \eta \pi^+$ (SCS)	LHCb (2023)	$(0.34\pm0.66\pm0.16\pm0.05)\%$	-
	LHCb (2021)	$(0.13\pm 0.50\pm 0.18)\%$	-
	BESIII (2018)	-	$(37.90 \pm 0.70 \pm 0.68) \cdot 10^{-4}$
	Belle (2011, 791/fb)	$(1.74 \pm 1.13 \pm 0.19)\%$	-
	CLEO (2010)	$(-2.0\pm2.3\pm0.3)\%$	$(35.4\pm0.8\pm1.8\pm0.8)\cdot10^{-4}$
$D^+ o \eta K^+$ (DCS)	LHCb (2021)	$(-6\pm 10\pm 4)\cdot 10^{-2}$	-
	BESIII (2018)	-	$(0.151 \pm 0.025 \pm 0.014) \cdot 10^{-3}$
	Belle (2011, 791/fb)	-	$(1.08\pm0.17\pm0.08)\cdot10^{-4}$
$D_s^+ o \eta \pi^+$ (CF)	LHCb (2023)	$(0.32\pm 0.51\pm 0.12)\%$	-
	LHCb (2021)	$(0.8\pm0.7\pm0.5)\%$	-
	Belle (2021, 921/fb)	$(0.2\pm0.3\pm0.3)\%$	$(19.00\pm0.10\pm0.59\pm0.68)\cdot10^{-3}$
			More experiments
$D_s^+ o \eta K^+$ (SCS)	LHCb (2021)	$(0.9\pm 3.7\pm 1.1)\%$	-
	Belle (2021, 921/fb)	$(2.1 \pm 2.1 \pm 0.4)\%$	$(1.75\pm0.05\pm0.5\pm0.06)\cdot10^{-3}$
	BESIII (2020)	-	$(1.62\pm0.10\pm0.03\pm0.05)\cdot10^{-3}$