Study of D^0 decays to the invisible final states at Belle II

Yonsei University Chanho Kim

ckh424@yonsei.ac.kr

Introduction to analysis

• In SM, heavy (B or D) decays to $\nu\bar{\nu}$ is helicity suppressed with an expected branching fraction of $Br(D^0 \to \nu\bar{\nu}) = 1.1 \cdot 10^{-30}$, which is beyond the reach of current collider experiments.

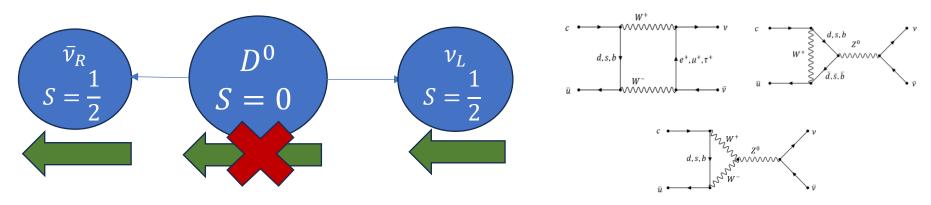
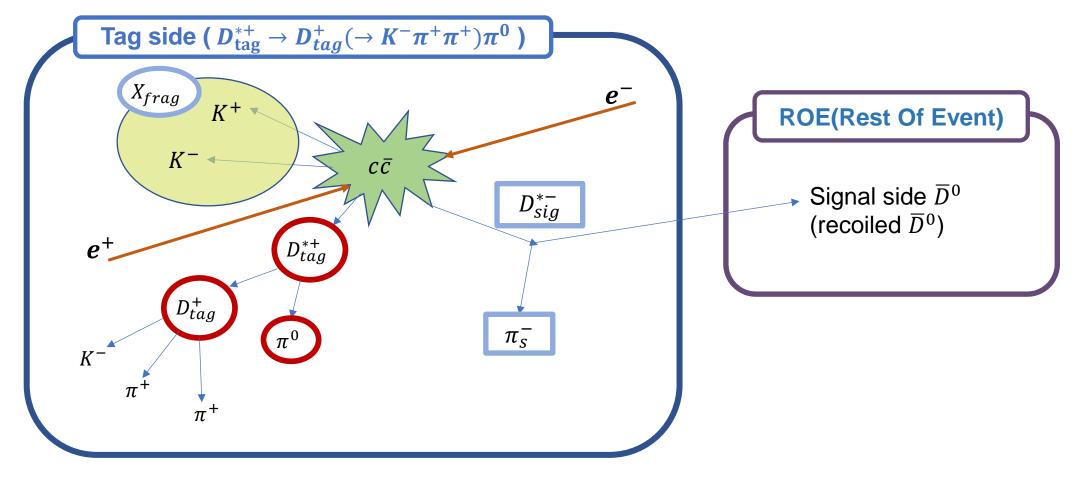


Figure1: Scheme of helicity suppresing

Figure2: Feynman diagram for $D^0 \rightarrow \nu \bar{\nu}$

- Therefore, search for $D^0 \rightarrow$ invisible final states is sensitive to new physics
- The previous result is $BR_{UL}=9.4\times10^{-5}$ on 924 fb^{-1} data samples at 90% CL at belle [Phys. Rev. D 95, 011102(R)]


MC simulation samples

- 20M signal MC samples were used
- Signal Event used for simulation :

$$e^+e^- \to c\bar{c} \to D_{tag}X_{frag}D_{sig}^{*+}$$

$$D_{sig}^{*+} \to D_{sig}^0\pi^+$$

$$D_{sig}^0 \to \nu\bar{\nu}$$

- MC15ri generic MC $(1ab^{-1})$ is used as generic background MC sample
- 20M Control sample $(D^0 \to K^-\pi^+)$
 - $D^0 \to K^+K^-, K^+\pi^-, K^-\pi^+\pi^0$ MC is also used as background for control sample study

Analysis Method: Charm Tagger

Figure3: schematics of signal event with tag side decay $D_{\text{tag}}^{*+} \to D_{tag}^+ (\to K^- \pi^+ \pi^+) \pi^0$

Description of Charm tagging Procedure

Reconstruction D_{tag} , D_{tag}^*

- 1. Reconstruct D_{tag} using the pre-chosen decay channels
- 2. Reconstruct D_{tag}^*

Recoil part 1 (D^{*+})

- 1. Calculate $M_{miss}(D_{tag}^{(*)}X_{frag})$ which is regarded as mass of D_{sig}^{*+}
- 2. Apply kinematic mass constrained Fit on $M_{miss}(D_{tag}^{(*)}X_{frag})$ to $m_{D^{*+}}$
- 3. BCS of D_{sig}^{*+} by using chiProb from step 2

Recoil part $2(D^0)$

- 5. Using slow pion, calculate $\mathrm{M}_{\mathrm{miss}}(D_{tag}^*X_{frag}\pi_s^+) \text{ which is regarded as }$ mass of signal side D^0
- 6. BCS of D^0 by using angle between D_{sig}^0 and tag side hadron in cm frame

Table1. Tag reconstruction channels

D^0 decay	Br(%)	D^+ decay	Br(%)	Λ_c^+ decay	Br(%)	D_s^+ decay	Br(%)
$K^-\pi^+$	3.9	$K^-\pi^+\pi^+$	9.4	$pK^-\pi^+$	5.0	$K^+K^-\pi^+$	5.5
$K^-\pi^+\pi^0$	13.9	$K^{-}\pi^{+}\pi^{+}\pi^{0}$	6.1	$pK^{-}\pi^{+}\pi^{0}$	3.4	$K_S^0K^+$	1.5
$K^-\pi^+\pi^+\pi^-$	8.1	$K_S^0\pi^+$	1.5	pK_s^0	1.1	$K_{S}^{0}K_{S}^{0}\pi^{+}$	5.4
$K^-\pi^+\pi^+\pi^-\pi^0$	4.2	$K_S^0 \pi^+ \pi^0$	6.9	$\Lambda^0\pi^+$	1.1	$K^{+}K^{-}\pi^{+}\pi^{0}$	5.6
$K_S^0 \pi^+ \pi^-$	2.9	$K_S^0 \pi^+ \pi^+ \pi^-$	3.1	$\Lambda^0\pi^+\pi^0$	3.6	$K_S^0 K^- \pi^+ \pi^+$	1.5
$K_S^0 \pi^+ \pi^- \pi^0$	5.4	$K^+K^-\pi^+$	1.0	$\Lambda^0\pi^+\pi^+\pi^-$	2.6	$K^{+}\pi^{-}\pi^{+}K_{S}^{0}$	1.0
$K^{-}\pi^{+}\pi^{0}\pi^{0}$	8.9	$K^{-}K^{+}\pi^{+}\pi^{0}$	0.7	$p^{+}\pi^{-}\pi^{+}$	0.5	$\pi^{+}\pi^{-}\pi^{+}$	1.0
$\pi^-\pi^+$	0.1	$\pi^-\pi^+\pi^+$	0.3	$p^+K^-K^+$	0.1	$\pi^{+}K_{S}^{0}$	0.1
$\pi^{-}\pi^{+}\pi^{-}\pi^{+}$	0.8	$\pi^{-}\pi^{+}\pi^{+}\pi^{0}$	1.2	$p^+K^-\pi^+\pi^0\pi^0$	0.1	$\pi^{+}\pi^{0}K_{S}^{0}$	0.5
$\pi^-\pi^+\pi^0$	1.5	$K^{+}K_{S}^{0}K_{S}^{0}$	0.3	$p^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}$	0.2	$K^{-}K^{+}\pi^{+}\pi^{-}\pi^{+}$	0.7
$\pi^-\pi^+\pi^0\pi^0$	1.0	$\pi^{+}\pi^{0}$	0.1	$p^{+}K_{S}^{0}\pi^{0}$	2.0		
K^-K^+	0.4			$p^{+}K_{S}^{0}\pi^{+}\pi^{-}$	1.6		
$K^-K^+\pi^0$	0.3			$\pi^+\pi^-\Sigma^+$	4.5		
$K^{-}K^{+}K_{S}^{0}$	0.4			$\pi^+\pi^-\pi^0\Sigma^+$	1.2		
$\pi^0 K_S^0$	1.2			$\pi^0\Sigma^+$	1.2		
sum	53.1	sum	30.5	sum	28.2	sum	22.8

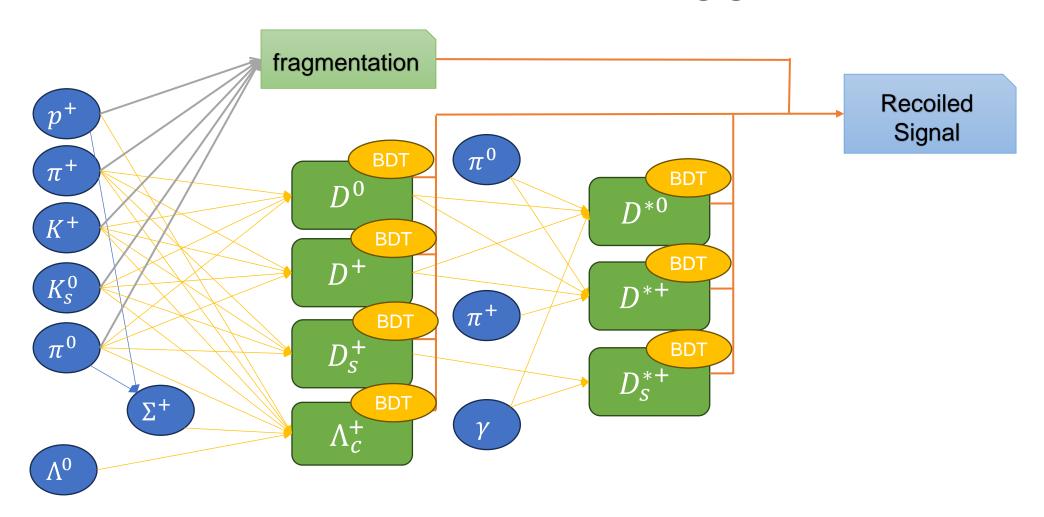
D_{tag}^* reconstruction channels and fragmentations for each tag particle

D^{*+} decay	$\operatorname{Br}(\%)$	D^{*0} decay	$\mathrm{Br}(\%)$	D_s^{*+} decay	$\mathrm{Br}(\%)$
$D^0\pi^+$	67.7	$D^0\pi^0$	61.9	$D^+\gamma$	93.5
		$D^0 \gamma$		D_s	30.0
$D^+\pi^0$	30.7	$D^{\circ}\gamma$	38.1		
sum	98.4	sum	100.0	sum	93.5

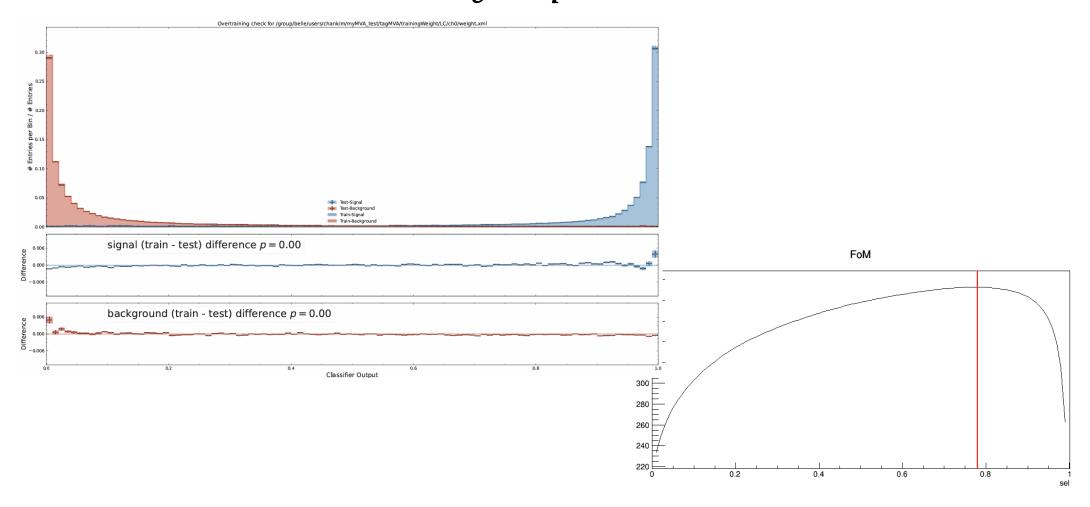
Table3: D_{tag}^* channel

D^{*+} or D^+	$D^{*0} \ or \ D^0$	Λ_c^+	D_s^{*+} or D_s^+
nothing (K^+K^-)	$\pi^{+}(K^{+}K^{-})$	$\pi^+ \bar{p}$	K_S^0
$\pi^0(K^+K^-)$	$\pi^+\pi^0(K^+K^-)$	$\pi^+\pi^0\bar{p}$	$\pi^0 \tilde{K}_S^0$
$\pi^{+}\pi^{-}(K^{+}K^{-})$	$\pi^{+}\pi^{+}\pi^{-}(K^{+}K^{-})$	$\pi^+\pi^-\pi^+\bar{p}$	$\pi^+ \tilde{K^-}$
$\pi^{+}\pi^{-}\pi^{0}(K^{+}K^{-})$			$\pi^{+}\pi^{-}\pi^{0}K_{S}^{0}$
			π^+K^-
			$\pi^{+}\pi^{0}K^{-}$
			$\pi^{+}\pi^{-}\pi^{+}K^{-}$

Table4: X_{frag} channel (total 24 channels)

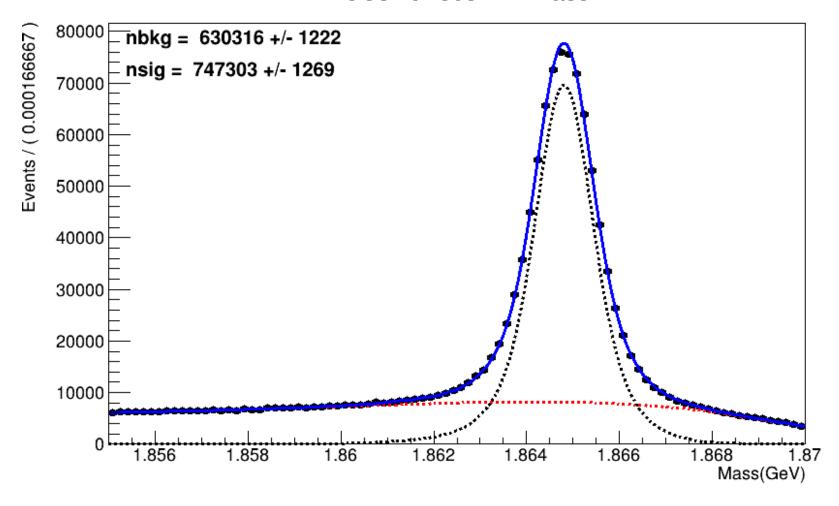

fastBDT training for Charm Tagging

- Input Variables of fastBDT (reduce # of input variables according to high correlation and low importance)
 - For D_{tag} training M, xp, dr(flight length), dz, chiProb, cosToThrustOfEvent, cosAngleBetweenMomentumAndVertexVectorInXYPlane, PID of daughters, cosHelicityAngle(2 body or 3 body decays), angle between 2 daughters of $\pi^0(\to \gamma\gamma)$, $K_S^0(\to \pi^+\pi^-)$, $\Lambda^0(\to p^+\pi^-)$, $\Sigma^+(\to p^+\pi^0)$, $|\frac{E_{d_1}-E_{d_2}}{E_{d_1}+E_{d_2}}|$ of $\pi^0(\to \gamma\gamma)$, $K_S^0(\to \pi^+\pi^-)$, $\Lambda^0(\to p^+\pi^-)$, $\Sigma^+(\to p^+\pi^0)$ etc...
 - For D_{tag}^* training $\Delta M (= M_{D_{tag}^*} M_{D_{tag}}), \text{ momentum of } \pi_S^{\pm}, \gamma, \pi^0,$ angle between D_{tag} and $\pi_S^{\pm}, \gamma, \pi^0$ etc...
- Hyper Parameters of BDT was optimized by applying grid search for each tag training


Preselection of Charm Tagger

- For tracks : dr < 1.0 , |dz| < 3.0 and InCDCAcceptance
- π^{\pm} : 15 candidates with Highest pionID after pionID > 0.01
- K^{\pm} : 10 candidates with Highest kaonID after kaonID > 0.1
- p^{\pm} : 10 candidates with highest protonID after protonID > 0.1
- γ : beamBackgroundSuppression > 0.5 & fakePhotonSuppression > 0.1 (E > 0.1 for γ in $D_s^{*+} \to D_s^+ \gamma$, $D^{*0} \to D^0 \gamma$)
- for fragmentations, PID selection of π^{\pm} , K^{\pm} , p^{\pm} is on 0.1, 0.9, 0.9 and additionally require p > 0.1 GeV
- K_S^0 , Λ^0 :
 - mass and dr and χ^2 and angle between Momentum and Vertex Vector selection on Λ^0
 - goodBelleKshort for K_S^0 (similar selection to Λ^0)
- Σ^+ : reconstructed from $\Sigma^+ \to p^+ \pi^0$ and mass cut (1.08 < M < 1.28)

Flow of Charm Tagger



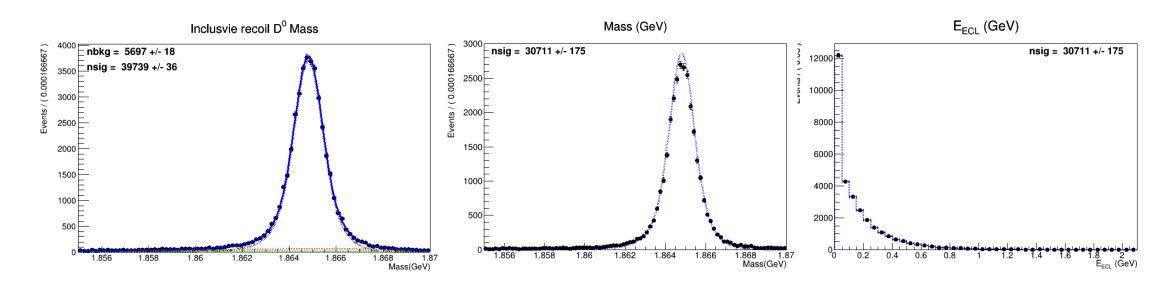
One example about training : $\Lambda_c^+ \to p^+ K^- \pi^+$

Reconstructed D^0 from charm tagger on generic MC

Inclusvie recoil D⁰ Mass

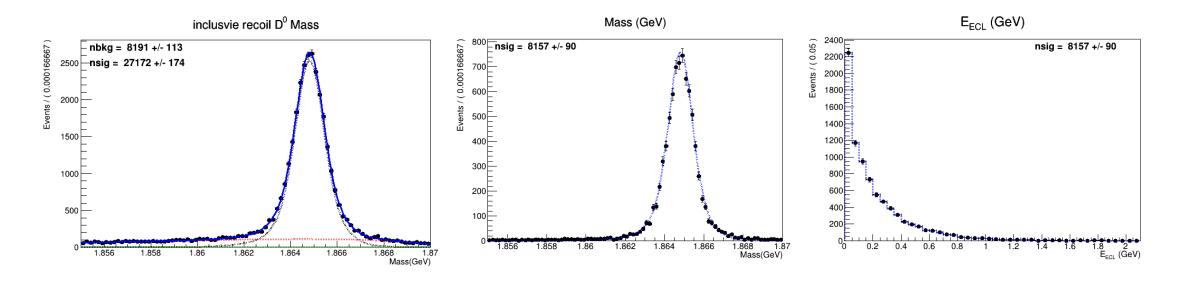
Variables for extracting signal side D

- Recoil mass $(M_{miss}(D_{tag}^*X_{frag}\pi_s^{\pm}) \ or \ M_{recoil}(D^0))$
 - $e^+e^- \rightarrow D_{tag}^* X_{frag} \pi_s^+ D^0$
 - $p^{\mu}(e^{+}) + p^{\mu}(e^{-}) \left(p^{\mu}(D_{tag}^{*}) + p^{\mu}(X_{frag}) + p^{\mu}(\pi_{s}^{+})\right) = p^{\mu}(D_{sig}^{0})$
 - $M_{recoil}(D^0) = \sqrt{p^{\mu}(D^0) * p_{\mu}(D^0)}$
 - Inclusive D^0 : recoiled D^0 (no requirement on signal side) => 1D fit on signal side recoil M_{D^0}
- E_{ECL} : sum of energies from roe of tag side remained in electromagnetic calorimeter(ECL) cluster
 - Exclusive D^0 : recoiled D^0 (requirement on signal side) => 2D fit on signal side (M_{D^0}, E_{ECL})

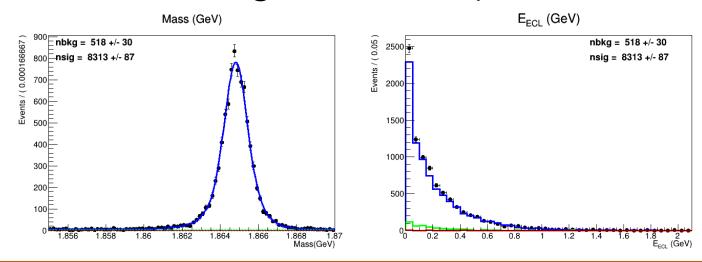

Fitting strategy

- Inclusive D fitting
 - 1D fitting : M_{D^0}
 - Signal pdf: 2 gaussians + 1 bifurcated gaussian
 - Background pdf: argus + linear
- Exclusive D fitting
 - 2D fitting : (M_{D^0}, E_{ECL})
 - Signal pdf: signal pdf from inclusive D fitting & histogram pdf from signal MC study
 - Background pdf:
 - Flat: Argus + linear & histogram PDF from MC study
 - Peak: 3 gaussians & histogram PDF from MC study

Exclusive D requirement (signal extraction)


- Exclusive : D^0 with selection on signal side fit on the 1.855 GeV < ${\rm M}_{D^0}$ < 1.870 GeV & E_{ECL} < 2.1 GeV
 - Selection for exclusive D^0 on Signal MC $(D^0 \to \nu \bar{\nu})$
 - no remaining tracks, π^0 , K_L^0 , K_S^0 , Λ^0
 - Selection for exclusive D^0 on Control sample $(D^0 \to K^-\pi^+)$
 - 2 remaining tracks and 1 reconstructed $D^0(K^-\pi^+)$
 - no π^{0} , K_{L}^{0} , K_{S}^{0} , Λ^{0}
 - $|\Delta E|$ < 0.1 GeV ($\Delta E \equiv E(\text{recoil } D^0)$ $E_{K\pi}$)

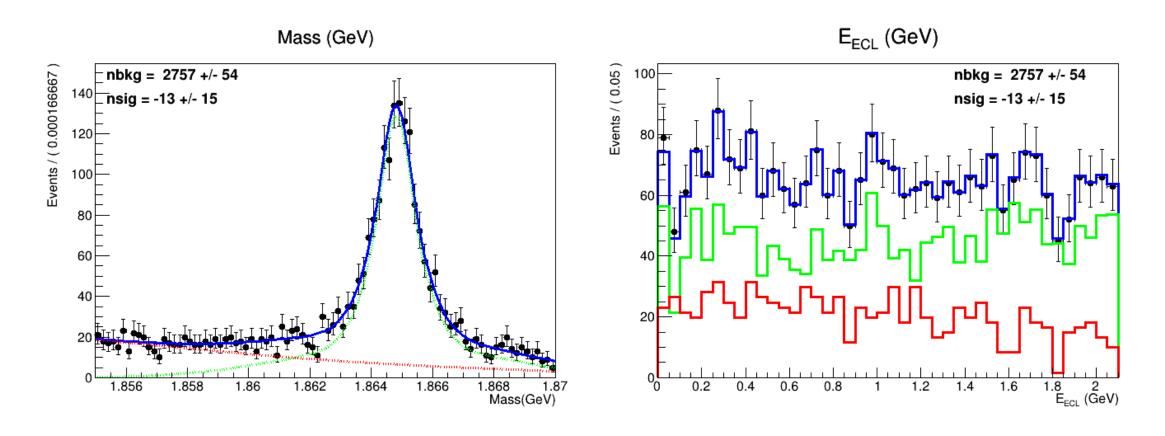
Signal efficiency on signal MC


• Signal eff:
$$\frac{30711\pm175}{39739\pm36} = 0.77282 \pm 0.00446$$

Signal efficiency on control sample

• Signal eff:
$$\frac{8157\pm90}{27172\pm174} = 0.30020 \pm 0.00383$$

BR measurement on generic MC(uds/mixed/charged)


•
$$Br(D^0 \to K^- \pi^+) = \frac{N^{exclusive}}{N^{inclusive} * \epsilon_{sig}} = \frac{8313 \pm 87}{(747303 \pm 1269) * (0.30020 \pm 0.00383)} = 0.03706 \pm 0.00061$$

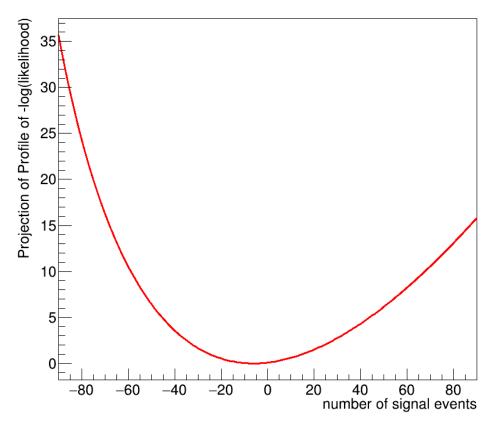
- Far from decfile BR value(0.0395) $\sim 4\sigma$
- The # of true signal event identified by TopoAna :

$$8757 \pm 94 \Rightarrow Br(D^0 \to K^-\pi^+) = 0.03903 \pm 0.00065$$

- This difference seems to be from similarity of E_{ECL} shape for the peaking background component
 - Main source is $D^0 \to K^+\pi^-, K^+K^-, K^-\pi^+\pi^0$ consists of 80% of background events
 - It seems to be irreducible error with current fitting strategy...
 - · For validation of charm tagger, it is also possible to apply other fit strategy only for signal extraction about this control sample study

2D fit on generic MC for $D^0 \rightarrow \text{invisibles}$

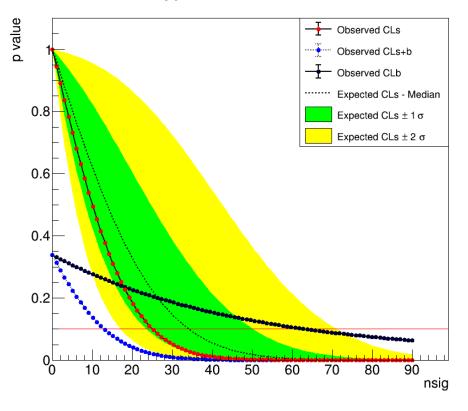
Upper limit estimation of $D^0 \rightarrow \text{invisibles}$


Way1) Upper Limit estimation by integration of likelihood function

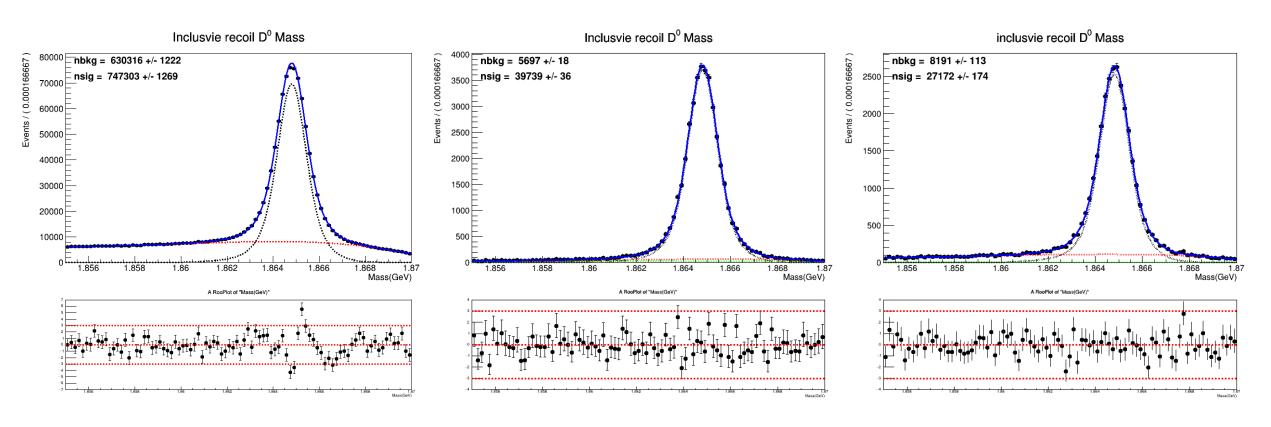
$$\int_0^{N_{UL}} L(n) dn = 0.9 \int_0^\infty L(n) dn$$

$$N_{UL} = 11.4984$$

$$BR_{UL} = \frac{11.4984}{(747303*0.77282)} = 2.0 \times 10^{-5}$$

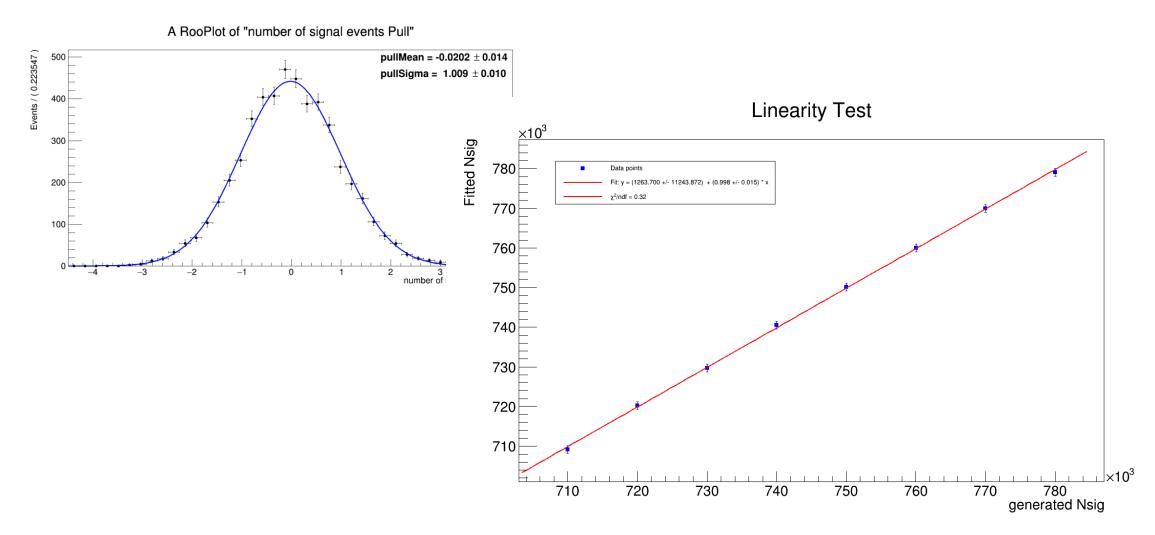

Upper limit estimation of $D^0 \rightarrow \text{invisibles}$

 Way2) Upper limit estimation by CLs method


$$N_{UL} = 22.0664$$

$$BR_{UL} = \frac{22.0664}{(747303*0.77282)} = 3.8 \times 10^{-5}$$

HypoTest Scan Result

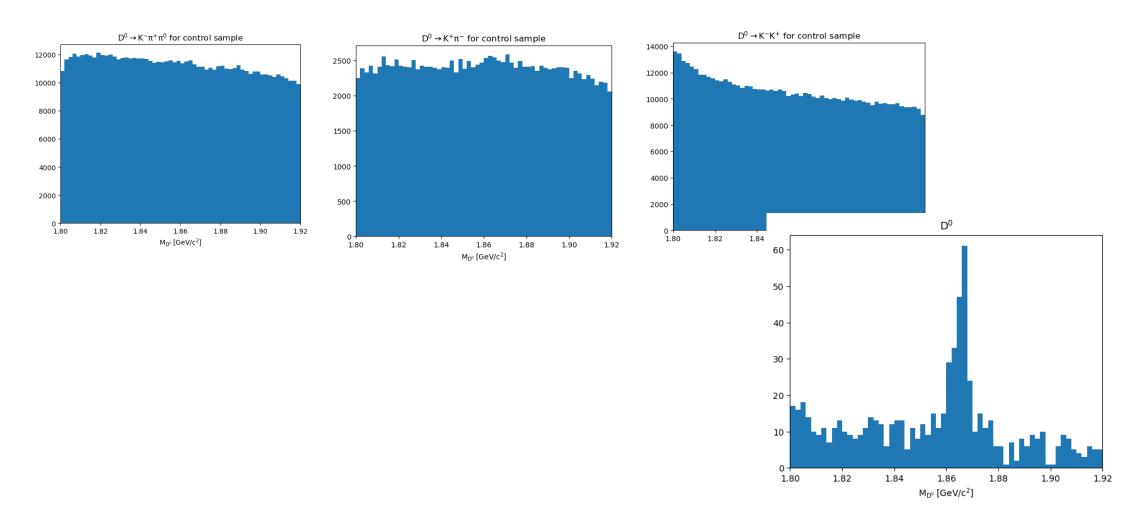


Check fit result with pull distribution for inclusive D

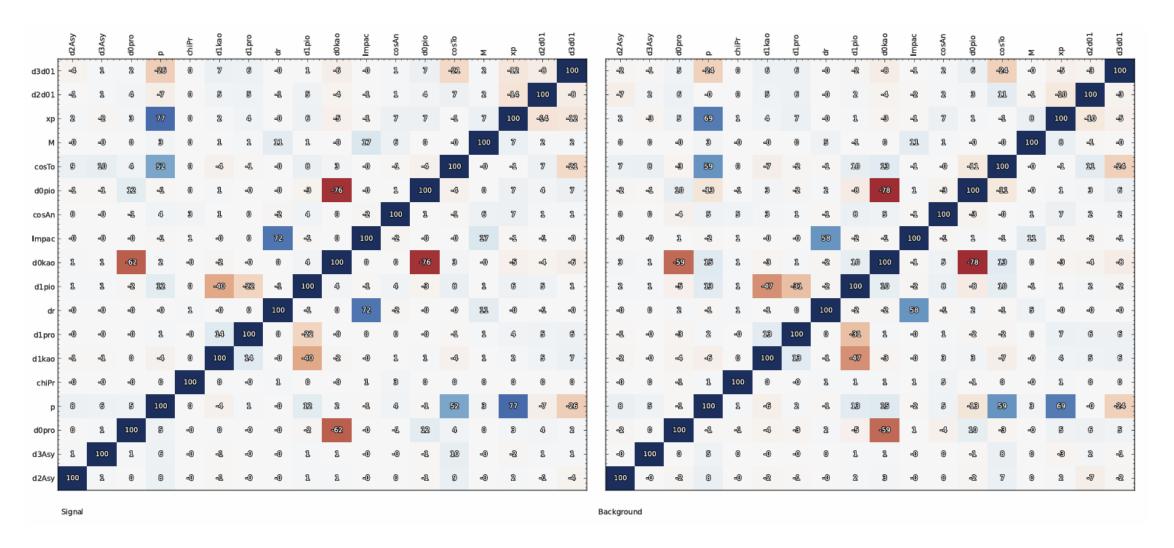
Left: generic MC, middle: signal MC, right: control sample

Inclusive D fit result check with ToyMC on generic MC

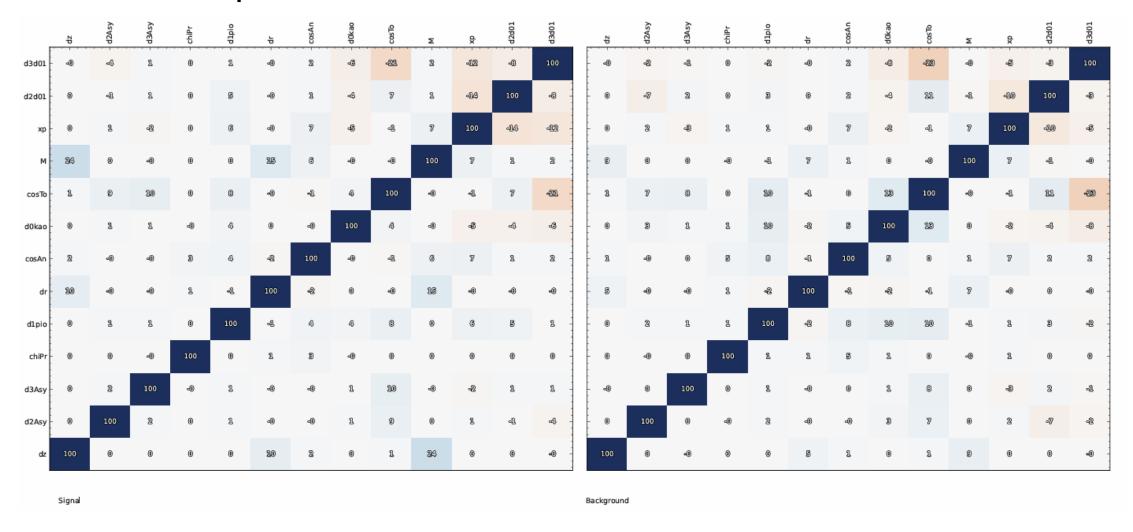
As next step


- Check control sample BR measurement result with other fit strategy using reconstructed D^0 instead of recoil mass
- Move on the run-dependent MC sample
- Study systematics
 - => 1st priority: systematic uncertainty from charm tagger
 - => PID, tracking, fitting strategy etc...

FYI) currently communicating with Kristof who is developing ccbarFEI (comparison and some variables in BDT)

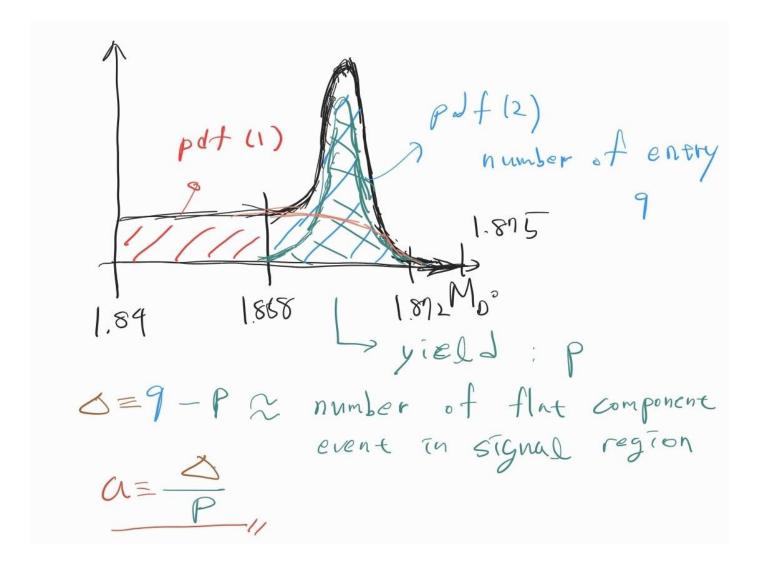

Question & comment from WG report

- Any plan to develop common tool that everybody can use in future?
 - Now we just started to compare the result and have discussion, but I hope we can do it
- What kind of dataset do you plan to use
 - I would like to concentrate on only belle II data set for publication
- Did you train every single tag reconstruction channels and optimization for every single channels
 - Yes, totally the 56 BDTs and optimized with FoM for every single channels
- Have you considered to measure the BR of $D^0 \to K_L^0 K_L^0$ with this method?
 - I may possibly do it as next topic, but I would like to focus on current topic at now
- How do you get the signal efficiency
 - exclusive D : subset of inclusive D and calculated from $D^0 \to K^-\pi^+$ MC
- From Kristof, he said he will upgrade ccbarFEI with my BDT setup and optimization
 - · Currently, training your modes is quite memory intensive and I am also doing some bug fixing on the FEI
 - Charm Tagger has almost same yield as ccbarFEI, but with less backgrounds (seems it may be from optimization)

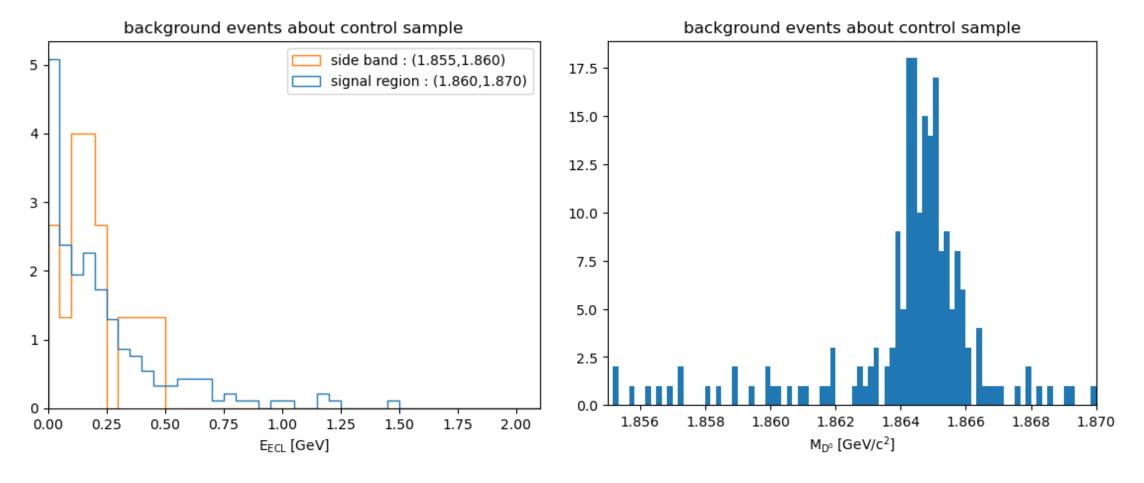

Reconstructed $M_{K^-\pi^+}$ distribution on $D^0 \to K^-\pi^+\pi^0$, $K^+\pi^-$, K^+K^-

Backup: check on correlation between previous BDT variables

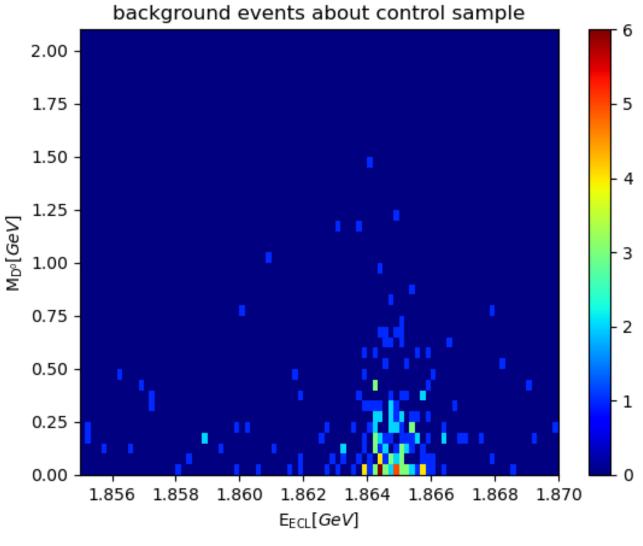
Backup: Check on correlation between BDT variables



Backup: details of fit procedure


- Fit inclusive D0 on signal MC
- Fixed the signal PDF
- E_{ECL} histogram PDF
 - Signal PDF from signal MC
 - Background PDF is from E_{ECL} histogram on background events
 - Flat background PDF is from E_{ECL} on $1.855 < M_{D^0} < 1.860$ --- (1)
 - Peak background PDF : histogram PDF from E_{ECL} on $1.860 < M_{D^0} < 1.870$ - (2) => peak background PDF : (2)*(1 + a) (1)*a

Backup: variable a


- The value of a can be roughly estimated
- a is floating number with small range around the estimated value

Backup : Check on background events $(D^0 \to K^+\pi^-, K^+K^-, K^-\pi^+\pi^0)$ about control sample study

Backup : Check (M_{D^0}, E_{ECL}) on background events $(D^0 \to K^+\pi^-, K^+K^-, K^-\pi^+\pi^0)$ about control sample study

