Lab meeting

Yonsei University Chanho Kim 2024-12-03

Comparison my charm tagger and ccbarFEI

- Check on recoil mass distribution for signal side D^{*+}
 - Best candidate selection variables
 - ccbarFEI variables : pValueCombSigProb, daugProdOfSigProb
 - Opening Angle between momentum vectors of $D_{tag}^{(*)}$ and signal side $D^{*\pm}$ in the cm frame in my charm tagger
- Reconstruction on not skimmed signal $MC(D^0 \rightarrow \nu \bar{\nu})$
- Check on recoil mass distribution for signal side D^0
 - Best candidate selection variables
 - BCS with pValueCombSigProb on signal side D^{*+} and then BCS with daugProdOfSigProb on signal side D^0
 - BCS with daugProdOfSigProb on signal side D^{*+} and then BCS with pValueCombSigProb on signal side D^{0}

Optimization with pValueCombSigProb

Optimization with daugProdOfSigProb

Fit strategy for extraction signal yield

- Signal PDF :
 - 2 gaussians + 1 bifurcated gaussian (with common mean value)
- Background PDF :
 - ccbarFEI : linear + exponential
 - Charm tagger : linear + argus (as usual)
- Note :

T/F was classified by checking ccbarTagSignal (ccbarFEI target variable) & slowPion MC information (isSignal & genMotherPDG)

	True	Fake
Without optimization	68713	388534
With optimization	54520	53063

Inclusive D from ccbarFEI w/o optimization

Fit result is in error state for every fit...

Inclusive D yield from ccbarFEI wtih optimization

Fit result is in error state for many cases... => Toy MC test show also many fit error cases

Unstable fit result (without optimization)

Unstable fit result (optimized case)

Almost fit results show the mean of gaussian is around 1.872~1.873

Reminder : ccbarFEI working

Reminder : ccbarFEI variables

Reminder : ccbarFEI variables

Status of my analysis

- Privately skimming about run-independent uds/mixed/charged MC were almost done (only ~ 100 files in charged/mixed were left)
- I found some mistakes in my upper limit estimation code
 => fit on binned histogram data type
 => but estimate on unbinned data set
 => fixed
- With 200M privately generated background events for control sample study, 2D exclusive fit was tried again (now it does not show error state in fit result)

Inclusive D on generic MC

Linearity test of inclusive D fit on generic MC

Linearity Test $\times 10^{3}$ Fitted Nsig Data points = (1263.700 +/- 11243.872) + (0.998 +/- 0.015) χ^2 /ndf = 0.32 $\times 10^3$ generated Nsig

Signal efficiency on signal MC

• Signal eff : $\frac{30711 \pm 175}{39739 \pm 36} = 0.77282 \pm 0.00446$

Signal efficiency on control sample

• Signal eff : $\frac{8157\pm90}{27172\pm174} = 0.30020 \pm 0.00383$

2D fit on generic MC for $D^0 \rightarrow$ invisibles

Upper limit estimation of $D^0 \rightarrow \text{invisibles}$

Upper limit estimation of $D^0 \rightarrow invisibles$

With histogram PDF from 0.5/ab

Upper limit estimation of $D^0 \rightarrow invisibles$

• Way1) Upper Limit estimation by integration of likelihood function

$$\int_0^{N_{UL}} L(n) dn = 0.9 \int_0^\infty L(n) dn$$

$$N_{UL} = 8.07832$$

$$BR_{UL} = \frac{8.07832}{(747303*0.77282)} = 1.4 \times 10^{-5}$$

Upper limit estimation of $D^0 \rightarrow invisibles$

BR measurement on generic MC(uds/mixed/charged)

• $Br(D^0 \to K^- \pi^+) = \frac{N^{exclusive}}{N^{inclusive} * \epsilon_{sig}} = \frac{8313 \pm 87}{(747303 \pm 1269) * (0.30020 \pm 0.00383)} = 0.03706 \pm 0.00061$

• Far from decfile BR value(0.0395) ~ 4σ

The # of true signal event identified by TopoAna :

 $8757 \pm 94 \Rightarrow Br(D^0 \to K^-\pi^+) = 0.03903 \pm 0.00065$

- This difference seems to be from similarity of E_{ECL} shape for the peaking background component
 - Main source is

 $D^0 \rightarrow K^+\pi^-$, K^+K^- , $K^-\pi^+\pi^0$ consists of 80% of background events

- It seems to be irreducible error with current fitting strategy...
- For validation of charm tagger, it is also possible to apply other fit strategy only for signal extraction about this control sample study

Backup : Check on background events $(D^0 \rightarrow K^+\pi^-, K^+\pi^-, K^-\pi^+\pi^0)$ about control sample study

Backup : Check (M_{D^0}, E_{ECL}) on background events about control sample study

Backup : pValueCombSigProb (x) vs daugProdOfSigProb (y)

