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Abstract 

An analytical and optimal procedure to combine statistically independent sets of confidence levels on a quantity is 

presented. This procedure does not impose any constraint on the methods followed by each analysis to derive its own 
limit. It incorporates the a priori statistical power of each of the analyses to be combined. in order to optimize the overall 
sensitivity. It can, in particular. be used to combine the mass limits obtained by several analyses searching for the Higgs 
boson in different decay channels, with different selection efficiencies, mass resolution and expected background. It can 
also be used to combine the mass limits obtained by several experiments (e.g. ALEPH, DELPHI, L3 and OPAL. at LEP 
2) independently of the method followed by each of these experiments to derive their own limit. A method to derive the 
limit set by one analysis is also presented, along with an unbiased prescription to optimize the expected mass limit in the 
no-signal-hypothesis. CC) 1998 Elsevier Science B.V. All rights reserved. 

1. Introduction 

The purpose of this article is to propose a simple 
and analytical prescription to merge statistically 
independent analyses on a given phenomenon in 
order to set a combined confidence level on a para- 
meter used in its theoretical description. The 
method provides a mechanism to weight the contri- 
butions of the analyses according to their intrinsic 
capabilities, i.e., in order to optimize the power of 
the combined test, but does not imply any modifi- 
cations of the existing analyses. The combination of 

several searches for the Higgs boson in different 
decay channels (or by different experiments), with 
different selection efficiencies, expected back- 

* Corresponding author. 

grounds and mass resolutions to derive a Higgs 
boson mass limit is chosen as an illustration of the 
method. 

The article is organized as follows. First, for the 
sake of clarity, a definition of what a confidence 
level should be is briefly reminded in Section 2. (All 
confidence levels presented in this paper are com- 
puted in the well-defined probabilistic approach of 
statistics, the so-called frequency approach.) Sec- 
ond, for the sake of definiteness, and although the 
combination of confidence levels presented in the 
following sections is independent of it, a method 
based on Ref. [l] to set up an optimal test statistic 

for a given analysis where a prediction is available 
for the shape and the level of the signal and the 
background is described in Section 3. 

In Section 4, a Democratic Prescription (DP) to 
combine several analyses is discussed. Its advantages 
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are simplicity - the prescription is the easiest to 
explain - and democracy - all the experiments are 
treated on the same footing - thereby avoiding 
diplomatic difficulties. The drawback, however, is 
that such a Democratic Prescription is, in principle, 
not “fair”, in the sense that the candidates of the 
best possible analysis (largest efficiency, best mass 
resolution, and smallest background) are con- 
sidered with the same significance as those of the 
worst analysis (smallest efficiency, poorest mass 
resolution, and largest background). In more tech- 
nical terms, a Democratic Prescription, which dis- 
regards the intrinsic capabilities of the individual 
analyses, cannot be optimal. 

For this reason, in Section 5, an Elitist Prescrip- 
tion (EP) is finally built as a natural extension of the 
Democratic one, its raison d’e*tre being to make an 
optimal use of the available information for the 
different analyses. In both Section 4 and 5, the 
prescriptions are first discussed when the expected 
distributions of the confidence levels associated to 
the analyses do not present any singularities, i.e., 
when they are continuously distributed between 
0 and 1. The prescriptions are then generalized to 
the case where the expected confidence level is 
bounded from below by a non-zero minimum 
value. Such a singularity unavoidably arises when 
the probability of observing no events is not 
negligibly small. 

2. Generalities on confidence levels 

An analysis aimed at searching for a new phe- 
nomenon that depends on a single parameter has to 
deal with three kinds of confidence levels, briefly 
reviewed in turn below. For instance, such an anal- 
ysis can be directed towards the Higgs boson 
search, the parameter being then the Higgs boson 
mass &, or towards the tau-neutrino mass 
measurement, the parameter being the tau-neutrino 
mass rn,% itself, or it can be designed to observe 
B,” oscillations, the parameter being x,. Only the 
first example is considered in the following, thus 
dealing with experiments with signai (the new phe- 
nomenon of interest) and background (processes 
faking the signal), but the method described in this 
paper can be applied to a variety of situations. 

2. I. The measured confidence level 

The measured confidence level is associated to 
a given hypothesis for the mh value, and quantifies 
the probability that the agreement between this 
hypothesis and the considered experiment be as 
poor as or poorer than observed. This current 
!trh hypothesis value is hereafter denoted & 
to avoid confusion with the true mh value, which 
is of course not known ~assuming, to begin with, 
that the Higgs boson exists!). The following proced- 
ure is used to define and compute this confidence 
level: 

l A test statistic G’ is first defined in view of ranking 
the experiment outcomes (i.e., the results of 
a given analysis when applied to a number of 
experiments) from the least to the most signal 
like. The definition of d is not unique but should 
be elaborated in order to reach the best sensitiv- 
ity to the process under study. Formally speak- 
ing, however, this definition is totally free. it can 
even be taken for granted that each analysis team 
will choose its own definition. For instance, 
tr can be based on a simple event counting 
method, or it can be made dependent on &&,; it 
can be based on a likelihood function, or defined 
by any other means. The test statistic dealt with 
in the following is such that (i) the larger 8, the 
more signal like the experiment; and (ii) adding 
an event to a given sample can only lead to an 
increase of the 8‘ value. The latter condition 
guarantees that the degree of belief attached to 
the signal hypothesis can never be reduced by the 
background contribution. Such a test statistic, 
an example of which is given in Section 3, should 
therefore increase much more rapidly with the 
addition of a signal event than with that of 
a background event. 

l The value of the test statistic Jdata is computed 
for the actual data set as a function of &,,. 

l The outcome of all possible experiments wirEr 
signal only is then simulated to obtain the ex- 
pected distribution of 8, would &h be the true 
value of mh. This distribution, normalized to 
unity, is denoted p(8). It depends on $zr, too. 

l Finally, the probability that - would &h be the 
true VdUe Of mh - as bad or worse an d VdUe 
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than Adata (8 I Bdata in the aforementioned 
choice) be obtained, is derived from this simula- 
tion. This probability defines the confidence level 
for this hypothesis c E CL(bd,l,;&,). It is ob- 
tained by evaluating the integral 

r A.,,,, 
(‘= p(6) dR. (1) 

J c,,,., 

i.e., the fraction of all possible experiment out- 
comes (would r&, be the true value of m,,) with an 

(5’ value smaller than or equal to gdata. (A low 
value of c is equivalent to a low confidence in the 
hypothesis.) 

The use of signal-on/v experiments to obtain p(g) 
always yields conservative confidence levels. 
Indeed, the inclusion of background events would 

only shift the p(8) distribution to higher values 
(see (ii) above). The over-conservative character of 
the confidence level obtained by ignoring the con- 
tribution of background events is not a virtue by 
itself, but it becomes a necessity when, as is often 
the case, the Monte Carlo simulation of the resid- 

ual background cannot be fully relied upon. 
However. notwithstanding the previous remark, 
the inclusion of the background knowledge for the 
confidence level determination and combination is 
further discussed at the end of this article (see also 
Ref. [Z]), 

In order to avoid the tedious and delicate Monte 
Carlo simulation of Gedanken experiments, the 
precise and analytical knowledge of the shape of 
the (4’ distribution would be needed. Unfortunately, 

since the rather low confidence level values (below 
5%) are of some interest, the shape of p(8) must be 
mastered especially in its low probability tail, which 
is a practical impossibility without Monte Carlo 
simulation. To avoid this necessary step, it might be 
tempting to use directly R as a confidence level, 
thus assuming it is distributed uniformly between 
0 and 1. This is actually done quite often in the 

literature [336]. and is justified therein by the fact 
that. although (si is not uniformly distributed be- 
tween 0 and 1. this procedure leads to “conserva- 
tive” confidence levels. 

It is important for the following discussion to 
realize that (5’ can even become completely insensi- 

tive to the hypothesis that is tested. An analysis 
could be considered which would define 8 as the 
output of a random process, with no connection 
whatsoever with the Higgs boson mass. Of course, 
such an analysis is better to be ignored in 

any analysis combination, and this should 
appear as a result of what follows. It should how- 
ever be stressed that, for sufficiently large ni, values 
(when the number of events expected from signal 
tends to zero), all analyses are doomed to behave 
that way. 

This can be expressed somehow more formally 
by introducing the concept of discriminating Power 
of the test. Let CL be a predefined value of the 
confidence level (e.g., CL = 0.05). which is 
by construction the probability for an experi- 
ment with signal to fall in the “rejection” region 

(i.e., the region rejected at the “1 - CL confi- 
dence level”). The Power Pm7 of the test is then 
defined to be the probability of an experiment with- 
out signal to fall in the same rejection region. The 

quality of the test statistic can be assessed by in- 
specting the function P,(CL), the larger the better. 
For instance, an analysis which, for a given value of 

CL, yields Pw = CL has no discriminating power 
between the two hypotheses and should be omitted 
if the aim is to setting limits referring to this 
CL value. 

2.2. The cowentional confidence level 

In order to give the complete available informa- 
tion on a given analysis, the measured confidence 
level should be published in the form of a curve 
representing the CL(&) function. However. 
the usual convention is rather to quote the 

smallest value of r& that yields a confidence level 
above 5%. This value of nib, hereafter denoted 
WI:‘” is referred to in sentences as abrupt as “~1~ is 
greater than mu’” at 95% CL”. The value of nzr’” is 

a convenient summary, but it carries only a tiny 
part of the information contained by the CL(yi?h) 

function. In the following, it is assumed that all 
analyses proceed according to the above line to 
derive mp’“. More specifically, it is assumed that all 
analyses are able to produce the complete CL(&) 
function. 
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2.3. The expected confidence level in the no-signal 
hypothesis 

In order to weight the contribution of the differ- 
ent analyses, it is made use in this paper of a third 
type of confidence level, (c)~(&), the confidence 
level expected when d is distributed as for experi- 
ments with background only, and not according to 
p(b). Since d depends on Ai,, this average c value for 
background-only experiments also depends on 
ti, but, to simplify the notation, the specific 
Ai, hypothesis is not kept explicit in (c),,. 

Such a function of &, is essential to assess the 
intrinsic potential of an analysis. It refers to the 
so-called “no-signal hypothesis”, corresponding to 
the case in which there is nothing to be seen. An 
analysis offers a good discrimination if, assuming 
ini, is indeed very large, it yields a large rrzFn value, 
or equivalently, an expected confidence level small- 
er than 5%, on average, in the largest possible 
WQ, domain. Therefore, for a given &,, value, the 
various analyses can be ranked according to their 
(c),, the smaller the better. As an interesting by- 
product, minimizing (c}, (with respect to selection 
cuts, for instance) is well suited to optimize in an 
unbiased way (i.e., based on Monte Carlo informa- 
tion only) the performance of a given analysis (see 
also Ref. [7]). 

QO.12 

M 

0.08 

0.04 

(0) 

Fig. 1. Normalized distributions of the characteristic variable Y 

statistics Monte Carlo sampfes. 

3. An optimal confidence level for one analysis 

3.1. The test statistic 

In this section, a test statistic 6’ is proposed to 
distinguish as much as possible between experi- 
ments with backg$oand on/y and experiments with 
signal events. This test statistic can then be used to 
determine whether the real data are signal like or 
not. In the following, a signal (resp. background) 
event is by definition an event, simulated under the 
signal-only (resp. background-only) hypothesis, 
which passes some signal selection criteria. The 
number of events observed in a given experiment is 
an obvious choice for this test statistic if no other 
information is available to disentangle between the 
background and the signal process of interest. 
However, since this process is a resonant produc- 
tion of a massive particle, it is expected that one 
variable x (such as the reconstructed invariant mass 
of the Higgs boson) is distributed quite differently 
for signal and background. This can be generalized 
in a straightforward manner to multivariate ana- 
lyses: neural network, linear discriminant analysis, 
rarity [S], parameterized approach [93, . . . . 

Let s and b be the numbers of signal and back- 
ground events expected to be selected by a given 
analysis, and .$(.u) and &(x) be the corresponding 

(b) 

70 80 90 100 110 120 130 140 150 160 

X(&V/C') 

for the signal (a) and the background {b). as simulated with high 
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expected, normalized distributions of this variable, 
as provided by the same analysis. Fig. 1 shows 
a typical example of such distributions as obtained 
for a Higgs boson search at LEP 2. (In this particu- 
lar example, .X is related to the reconstructed value 
of the Higgs boson mass as obtained from a Monte 
Carlo simulation with sufficiently high statistics.) It 
should be noted that both s and s^ depend on &,, 
making all the figures presented in this section, but 
Fig. 1 b, depend on the mass hypothesis. Now let 
n be the total number of events observed when the 
analysis is applied to the actual experiment. For 
these n events, the discriminating variable x takes 
the values _yl, . . . , x,. 

A test statistic d can be built from the intuitive 
definition of Ref. [l]. 

where the factor in squared brackets is the Poisson 
probability that i events come from signal, and 
Y’p: is the (yet to be defined) probability for i signal 
events to be as or less signal like than observed, 
accounting for the density distributions s^ and 6. 
This is new with respect to Ref. [l] where the 
background shape is (intentionally) not taken into 
account in this probability. Other test statistics 
built without including the background shape, have 
also been proposed elsewhere [lo]. 

If this information carried by the discriminating 
variable were removed, the test statistic would be 
the probability to have FZ events or less in a signal- 
only experiment with s events expected, i.e., the 
confidence level of the actual experiment if event 
counting only were used. In this case, p(6) would be 
a infinite sum of 6 functions, as it would be if 8 had 
been chosen to be the number of events observed 
itself. The choice of the Poisson probability instead 
renders more natural the inclusion of .YpI in & as 
a simple product of probabilities. 

To get an explicit expression for 97, the examples 
of O-2 events observed are detailed below, and are 
then generalized to the case of any value of II. For 
no events observed, Eq. (2) reads 

The actual choice of .Yp”o is irrelevant because 
a change of this value would not affect the confi- 
dence level determination, but all .& ought to be 
identical, since they are defined as the probability 
for 0 signal event to be less signal like than ob- 
served. The choice is made that .?p; = 1. All experi- 
ments with at least one event have a larger rs’ value 
[e-“( 1 + s.Yy + .I. )I. The fraction of signal-only 
experiments with no events observed is exp( - s), 
and the corresponding confidence level is therefore 
also exp( - s). meaning that it is 59/o if s = 3. 

For one event observed, Eq. (2) reads 

A = exp( - s)( 1 + s.ft ), (4) 

where 8’: should be defined as the probability for 
a signal event to be as or less signal like than the 
observed event. To quantify the “signalness” of an 
event, a new quantity tl is defined by 

i(x) - h(s) 
4 = ?(.u) + i;(s) (5) 

which is expected to be + 1 for signal-like events 
E&X) 9 6(x)] and - 1 for background-like events 
[I&X) < G(X)]. The distributions of this quantity 
11 for the signal [i(q)] and for the background [6(q)] 
are shown in Fig. 2 if the distributions of f: are 
those shown in Fig. 1. 

The probability for a signal event to be less signal 
like than an event characterized by q is therefore: 

‘I 
n(q) = s( v’) dg’ where 

-1 

(6) 

thus uniformly distributed between 0 and 1 for 
signal events by construction, and peaked at 0 for 
background events (see Fig. 3). It is therefore now 
natural to choose 

For two events observed, Eq. (2) reads 

i 

2 

R = exp( - s) I + .s.# + h.Y$ . 
il. > 

(8) 
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Fig. 2. Normalized distributions of the variable q (see text) for the signal (a) and the background (b), as simulated with high statistics 
Monte Carlo samples. 
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Fig. 3. Normalized distributions of the variable I (see text) for the signal (a) and the background (b), as simulated with high statistics 
Monte Carlo samples, 

where :Y$ is the probability for two signal events 
to be less signal like than those observed. It is 
natural to build Yp2’ from 3’: and to define it as 
the probability to obtain a value for the product 
A?iW2 smaller than the measured one. Therefore 

Cll] 

S$ = C~,;~2[1 - ln(~13?JJ. (91 

To determine ,/P:, one of the two events has to be 
chosen to be the signal candidate event. It is natural 
to choose the event with the larger value of 2, 

Pi = Max[C%‘i,42]. (101 

The generalization for n events observed is now 
immediate, by choosing 3; to be the probability 
that the product of the i largest values of 8, 
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denoted 71i, be smaller than the measured value of 

this product. Ordering the .S’k from the largest 
(k = 1) to the smallest (/c = n), it follows: 

.‘p? = y/,(7ci) where Xi = n .S’k, 
k=l 

(11) 

the function ‘Pu,(=) being defined as [l] 

(1.2) 

Finally, Eq. (11) has to be incorporated into 

Eq. (2) to have the complete expression of the test 
statistic. The resulting distributions are shown in 

Fig. 4. for both signal and background, assuming 
s = 2.3 and b = 0.8. Due to the procedure followed 
to define the test statistic, the shape of the distribu- 
tion obtained for experiments with signal, p(d), is 
independent of s^ and 6. It only depends on the 
number s of signal events expected, and turns out to 
be the sum of a 6 function at co = exp( - s) (the 
outcome of experiments with no events observed) 
and a continuous function of 6’ from co and 1. It 

becomes different (an infinite sum of 6 functions) 
only in the extreme case in which s^ = 6 (or if finite 
intervals in ?c exist where both distributions are 
exactly proportional), i.e., when there is no dis- 

f - 
L- 

L 

(0) 1 

A_ --I 

0 co 02 0.4 0.6 0.8 1 

Estimator L 

criminating variable s between signal and back- 

ground: this case is not dealt with in this paper. 
The corresponding confidence level distribu- 

tions, as defined by Eq. (l), are displayed in Fig. 5. 
For signal-only experiments. the confidence level 
has by construction the properties of a probability. 
and is thus expected to be uniformly distributed 
between 0 and 1. It cannot be, however, smaller 

than CO (the fraction of experiments with no events). 
The domain of variation of C. thus defined to be 
[~‘.l] decreases when the number of signal events 

become small (which is typically the case when 
ri$, is close to mFi”). The c distribution for experi- 
ments with signal, p”(c). has therefore the universal 
form 

p’(c) = PC5(c - c”) + H(c - CO) with 

C ” = exp( - s). (13) 

where H(c - co) E 1 when CE [c”,l] and H is zero 

elsewhere. This expression can be simplified to 
p’(c) = H(c) only when s is “sufficiently” large. This 
simplification would also hold for test statistics 
dealing only with the shapes of the distributions 

and not with the number of events expected when 
computing the confidence levels. 

The confidence-level distribution for the back- 

ground is. by construction. peaked towards its 

0.1 

0 + - 

i 

1 

(b’ 

L- 
0 co 0.2 0.4 0.6 06 

Estimator c 

Fig. 4. Normalized distributions of the test statistic A (see text) for the signal (a) and the background(b). as simulated with high statistics 
Monte Carlo samples. 
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Fig 5. Normalized dist~butions of the confidence level c (see text) for the signal (a) and the background (b). as simulated with high 
statistics Monte Carlo samples. 

smallest possible value, co, and depends on ~,$,s and 
b. The fraction of experiments with no signal yield- 
ing this confidence level is I! = exp( - b). (This is the 
fraction of experiments with no events observed 
while b events are expected.) Although the exact 
distribution depends on the problem at hand and is 
usually not known analytically, it can be para- 
meterized in a simple way, e.g., as 

p”(c) = %(c - co) + /?H(c - cO)c” with 

c^ z exp( - h), (14) 

where p and p can be determined as explained in 
Section 5. This expression can be simplified to 
p”(c) = (1 + /J)c” when s and b are sufficiently large. 

3.2. Optimizing the analysis and deriving the limit 

As mentioned in Section 2.3, an analysis is con- 
sidered to be optimum when it yields on average 
the largest mt, min in the no-signal hypothesis, or 
equivalently, the smallest (c), value (which is 
nothing but the mean value of the distribution of 
Fig. 5b) when ljl,, is in the vicinity of mp’“. It should 
be noted that this is also completely equivalent to 

minimizing Nq5, the number of signal events needed 
to reach (on average) a confidence level of 5% in the 
no-signal-hypothesis, as it was pioneered by 
ALEPH [I 11 following the prescription of Ref. [7]. 

After an analysis, yet to be optimized, has been 
designed, (c),, can be computed as a function of 
+z,, as detailed in the previous section. The value of 
&, for which (c),, = 5% (i.e., the larger mass value 
which is, on average and in the no-signal hypothe- 
sis, “excluded at the 95% confidence level”), can be 
chosen to optimize the analysis. The optimization 
_ which could, in principle, be performed for all 
mass hypotheses - is achieved by minimizing, with 
respect to the selection cuts, the value of (c)~,~(&) 
at that value. The consequence of this procedure is 
that the analysis is optimal for the mass hypothesis 
chosen, but could be not optimal for other mass 
hypotheses. This is of no practical importance since 
the analysis has to be most effective in the vicinity 
of mr’“. 

Displayed in Fig. 6 is the expected confidence 
level (c),, after this optimization (as a dashed line) 
for the analysis yielding the expected distributions 
shown in the previous section. It can be seen that, 
on average, a value of 59GeVjc’ is reached for 
mr’“. If, in the actual experiment, one event is 
observed. most likely originating from &, = 
45GeV/c” when interpreted as signal, the measured 
confidence level c is represented by the full line in 
Fig. 6. The actual mass limit mr’” is about 
60 GeV/c’, i.e., slightly better than what is expected, 
on average, in the no-signal hypothesis. However. 
the confidence level may be worse than expected, in 
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Fig. 6. Various confidence levels as a function of the mass 

hypothesis: expected confidence level in the no-signal hypothesis 

(cj , (dashed line); measured confidence level c obtained with 

a candidate event compatible with riz, = 45GeVic’ (full line); 

smallest possible confidence level c” in case no events are ob- 

served (dotted line); confidence level c’ obtained with a simple 

event counting method (upper dotted line). Also shown are the 
95% CL. mass limits: (mF’“>. expected on average in the no- 

signal hypothesis; and n$““~ deduced from the actual experiment. 

particular, in the region where the candidate event 
shows up: this must be so if a signal is produced in 
the experiment. Thanks to the use of the mass 
information. it is on the other hand, almost always 
below (except in the mass region where the candi- 
date event has been observed) the confidence level 
(.I E exp( - s)[1 + s] that would have been ob- 
tained if an event counting method had been 
chosen. 

When several analyses, e.g., the selection of dif- 
ferent final states arising from various Higgs boson 
decay channels, are to be combined, the individual 
optimization of each of them following the method 
described in the previous section does not guaran- 
tee that the combination be in turn optimized: this, 
in general. depends on how the combination is 
performed. 

The optimal combination method can be defined, 
as above, as the combination leading to the smallest 
expected combined confidence level. Therefore, the 
expected confidence levels ((.i)* have to be com- 
puted for each analysis i, and the expected combined 
confidence level minimized with respect to the selec- 
tion criteria of all analyses, at once. 

To achieve this, a method of confidence-level 
combination has first to be devised and the com- 
bined confidence level and its expected value have 
to be analytically determined, before proceeding 
with the minimization. Two different methods 
of combination, the Democratic and the Elitist 
Prescriptions. are proposed in the folIowing two 
sections. 

4. Combining several analyses with the democratic 
prescription 

A large variety of methods can be designed to 
merge a set of analyses. In this section, the simplest 
situation where no information is available on the 
intrinsic qualities of the analyses (i.e., only the mea- 
sured confidence levels t.i(&,) are known) is con- 
sidered. 

If. to begin with, two analyses are to be com- 
bined, a prescription has to be defined to merge the 
two confidence levels into a compound one, with 
the aim of providing a global analysis more effec- 
tive than each of the two sub-analyses. 

For a given $2, hypothesis, let cr and c2 be the 
two confidence levels obtained by two analyses, 
and J(.u,_r) an arbitrary function. A test statistic 
A,? has to be defined as a function of c‘1 and c’? by 

A 12 -.f(c1s:!), (15) 

and the associated confidence level CL12(&) is 
computed by 

where the integration domain 21 is defined by 
.0X,!,) < 6 12, and where the pS functions are the 
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expected distributions of the confidence levels for further specified, at least on the ground of scientific 
the two analyses, as explicited in Eq. (13). considerations. 

4.2 The reaso~able~orm 

Without any other knowledge than the indi- 
vidual confidence levels computed by the two ana- 
lyses, they have a priori to be treated on the same 
footing. Hence, f must be symmetric 

%Y) =f(y,x). (17) 

Since the compound confidence level must be at 
least as stringent as each of its two components, it 
must tend to zero if any of the two analyses by itself 
provides a confidence level which does so. In par- 
ticular, a form such asJx,y) = x + y, as proposed, 
for instance, in Ref. [lo], is to be excluded for this 
sole reason. (Some numerical examples are given in 
Table 1 as to the performance of this form.) More 
generally, it follows that theffunction should be of 
the form 

The next step is therefore to invoke reasonable 
arguments, the first one being simplicity: the 
merging of the two confidence levels should not be 
a painful, but a straightforward, exercise. In par- 
ticular, the value of theffunction is not interesting 
in itself, while the value of the associated confidence 
level CLrz(&) is. For this reason, f must be an 
easy-to-compute function of the two individual 
confidence levels, with an easy subsequent integra- 
tion: the simplest form of the g function must be 
chosen, leading to the reasonable form off 

f(&Y) = xy (&Y) + $?(YJ))* (18) 

where the g function is not too singular when 
x(or y) -+ 0. The form of the g function cannot be 

f(x,y) = xy. (19) 

Since (i) the form x + y performs rather poorly (see 
Table 1); (ii) any symmetric function of x and y can 
be reparameterized as a function of xy and x + y; 
and (iii) any test statistic based on a monotonic 
function of xy leads to identical confidence levels as 
xy itself; the choice of Eq. (19) is in all likelihood the 
optimal one for a Democratic combination. 

4.3. The compound confidence level 

Table 1 
Comparison of DP and EP for some representative casesThe 
last column indicates the result of a test statistic equal tothe sum 
of the two confidence levels 

In the case of large number of events expected, 
cr and c, are both uniformly distributed between 
0 and 1, i.e., the & functions are just equal to 
unity between 0 and 1. This yields the simple DP 
rule 

Compound results for (cl>l = 0.001 

(Cl)1 (C&W), (CL,,) I s, z 
0.470 0.00118 0.00099 9.2 
0.400 0.00104 0.00093 3.0 
0.300 0.0008 1 0.00077 1.7 
0.200 0.00056 0.00055 1.3 
0.100 0.00029 0.00029 1.1 

Compound results for (cl)& = 0.01 
0.470 0.0118 0.0099 8.8 
0.400 0.0104 0.0093 3.0 
0.300 0.008 I 0.0077 1.7 
0.200 0.0056 0.0055 1.3 
0.100 0.0029 0.0029 1.1 

Compound results for (c,), = 0.10 
0.470 0.114 0.099 7.9 
0.400 0.100 0.093 2.7 
0.300 0.078 0.076 1.5 
0.200 0.054 0.054 1.2 
0.100 0.028 0.028 1.0 

(CL+,) I 
0.167 
0.126 
0.089 
0.056 
0.027 

0.173 
0.131 
0.093 
0.060 
0.030 

0.23 1 
0.183 
0.139 
0.098 
0.06 1 

CL,2(cI,cZ) =f(l - lnf) withf= clcz. (20) 

as can be directly found by the straightforward 
integration of Eq. (16) (see also Ref. [12]). Further- 
more, DP can be generalized directly to the case of 
a set of n analyses 

CL,, ,v) = V,y) withf’= fi l’j, 
j= 1 

(21) 

where the function Yn is defined in Eq. (12). 
This expression is no longer valid in the case of 

small numbers of events because the probability 
densities for cl and c2 are no longer uniform be- 
tween 0 and 1. With the same definition as above 
forSand the actual pi(Ci) functions obtained in that 
case (see Section 3) 
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the corresponding confidence level turns out to be 
(see Ref. [2J for the details of the algebra) 

CL12. v) = fi cp + C( - l)& 
i=l % 

Min(k.n - 1) 

x c ( - 1)4$!w;-j (23) 

j=O 

with the function A!??-’ defined by 

where fkf is a subset of k analyses among n ({Ef 
being the complementary subset), the external sum 
extends over all possible configurations ‘8 of such 
splittings, Cj, are the binomial coefficients and 

f;*; = n cp and firi = n cf. (25) 
ie:k: Jt-iCI 

It can be noticed that, if no events are observed in 
any of the n analyses, f&i equals f;,,; thus making 
the second term of Eq. (23) vanish. In this particu- 
lar case, the combined confidence level is 

CL12 v)= fi cp=exp(-s), (26) 
i=l 

where s = 2’; si is the total number of events ex- 
pected from signal in the n analyses. This allows 
a combined confidence level of 5% to be obtained 
when three signal events are expected in total, as 
desired. Also, it is straightforward to check that 
Eq. (21) can be recovered from Eq. (23) by setting 
all c’p to zero, in which case only the configuration 
% where ik] is empty has a non-zero cont~bution. 

5. Combining several analyses with the elitist 
prescription 

The DP approach can be refined by taking into 
account the intrinsic capabilities of each of the 
experiments, i.e., by merging the different confi- 
dence levels into a compound one with a more 
discriminating f function. In particular, as a check 
of its effectiveness, an elitist prescription is required 
to reject an insensitive analysis whose confidence 
level is unrelated to the Physics under study. 

In any case, a parameter measuring the intrinsic 
capability of each individual analysis has to be 
defined, so that the analyses to be combined can be 
ranked from the most to the least sensitive. As it is 
shown below and as it intuitively appears in Sec- 
tion 3, such a parameter is directly related to (c.)., . 

To elaborate EP, the leading idea is to modify 
the DP definition of f(.u,y) by breaking the sym- 
metry between the two variables, in order to opti- 
mize the statistical power of the global analysis. As 
in the previous section, the case of two analyses is 
first examined. The more powerful analysis is de- 
noted by I and the other by 2. The most natural 
choice for the modifiedffunction (because it is the 
simplest extension of DP) is 

where the two new parameters satisfy 
0 r a2 5 al I 1, and can be interpreted as the 
weights of each of the two analyses. In particular, 
EP is expected to force a2 to become very small if 
the second analysis presents a very poor discrimi- 
nating power: in the limit (J~ = 0, the value of the 
f function does not depend on the result of the 
poorly discriminating analysis 2. Under these con- 
ditions, the confidence level is no longer affected by 
it. As it becomes clear below, EP guarantees that 
the compound analysis cannot downgrade, on 
average, the statistical power of the first analysis. 
This renders EP, in any case, more robust than DP 
for combining analyses. 

As in DP, the configuration with large numbers 
of events (also called the continuous case) is the 
easiest to technically deal with in EP. The compari- 
son of the performance of EP and DP is done here 
in the case of two analyses, and EP is eventually 
generalized to the multi-analysis case, 

5.1.1. The compound conjidence level 
Integrating Eq. (16) with the modified expression 

off-given in Eq. (27), and with pS functions equal to 
unity (which is not valid an approximation in the 
case of small numbers of events), the EP compound 
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confidence level is which can be inverted to 

’ CJ42(Cl~CZ) = a [a#“’ - aZJi!“‘] where 
1 2 

.f= cu,icp. 

The DP result is recovered by taking the limit 
cZ2 + al. 

X1.2. The expected compound conjdence level 
The next step consists in determining the weights 

al and a2, or equivalently the “squash” factor 
St2 = al/az. The “best” choice for Si2 is the one 
that would minimize, on average, the compound 
confidence level of Eq. (28) for a given mass hy- 
pothesis Ai, when the true value is assumed to be 
very large (i.e., in the no-signal hypothesis). This 
corresponds to minimizing the mean value of the 
combined confidence-level distribution in back- 
ground-only experiments: 

(CL,,), = 
s 

dxdyp;“(x)P2”(Y)CL,zt?c,y), (29) 

where the function py(Ci) describes the probability 
distribution of the value Ci of the confidence level 
obtained while making the &ii, hypothesis, when the 
actual ?%h V&E iS very large. The exact eXpreSSiOn 

of the functions &‘(cJ is in general not known, but 
in practice, such complicated information is not 
needed because details of the function are smeared 
out by the integral of Eq. (29). Since, in the no- 
signal hypothesis, the confidence level is expected 
to peak at its smallest possible value, let the p?(e) 
function have the form 

pP(c) = pjcpr, (30) 

where 

l ili < 0 to ensure the peaking at 0 of pi”, 
* pi = 1 + pi (pi > 0) to ensure the normalization 

to unity of p?, 
o pi is related to the confidence level (c~)~~ set on 

average by 

’ (Ci)a 5 s 0 

Cipy(Ci) dci = s, 
i 

(31) 

(32) 

w-hich yields a negative value provided that 
(c),= < 0.50. In the case of an experiment with 
a large number of events expected, this inequality is 
equivalent to saying that the analysis is better be- 
haved than a pure random number generator. This 
is no longer true in the case of small numbers of 
events as discussed later on. Under this working 
hypothesis, the expected compound confidence 
level in the no-signal hypothesis can be computed 
from Eq. (29) and reads: 

(CL,>, = (Cl>.A (“.A 

Sl2 + 1 + SLU - <Cl)d - cc,>, 

II(cdx(S12 - 1) -t- 11C(ClMl - S12) + SIZI’ 

(33) 

The derivative of (CLsJic with respect to 
SIZ can be computed analytically, and it can be 
shown that the compound confidence level is min- 
imum, thus optimizing the combination of the two 
analyses, when 

I - 2(Q, 
ui = - Pi = 

l - Cci> xi . 

Eq. (34) indicates that an analysis has to be rejected 
(meaning ai = 0) if (c,),~ = 0.50, and that the 
weight affected to an analysis increases when its 
average confidence level (ci> X decreases. 

5.1.3. Co~npur~so~ with the Democratic prescription 
Setting St1 = 1 in Eq. (33) allows the democratic 

prescription to be recovered, and this leads to the 
following compound confidence level: 

(CL&X = (L.l)i,<Q)J3 - <Cl>, - (cz>,l3 

(35) 

from which it can be concluded that the second 
analysis is capable of downgrading the first one (on 
average) only if it is bad enough to yield 

1 
(C2)m 2 -c3 - Cc,) r 

2 

- (3 - (c1),J2 - 41 N 0.38, (36) 



where (c, ), << 1 has been assumed in the numer- 
ical application. This potential downgrading of the 
analysis never happens (on average) with EP. How- 
ever, the above (c?) z value is to be compared with 
the one expected from a random analysis 
( (c2), = 0.50). The two values being rather close, 
it follows that only in extreme cases is the DP 
treatment capable of yielding spuriously bad re- 
sults. 

The elitist and democratic prescription are fur- 
ther compared in Table 1 for three values of (cr > %, 
and five values of ((.2)x. Also indicated in the 
fourth column of this table is the squash factor that 
must be used for EP to be optimal. The last column 
gives the expected combined CL, had the form 
s + 4’ been chosen instead of sy for the CL combi- 
nation, (The analytical expression of (CL,,,),. is 
given in Ref. [I!].) 

From this table, it appears that the improvement 
brought by the refinements of EP is negligible, in 
most cases. Indeed, for meaningful (c2)=, values, 
(CLIL) is a slowly varying function of SIz. As 
a result, even if SIz = 1 is far from the optimal 
value, the gain obtained by making use of this 
optimal value is not large, except for the case of 
a quasi-random analysis ((cl),, -+ 0.50). 

It is finally worth stressing that, although the 
elitist prescription never downgrades, on aaeraye. 
the performance of the most powerful analysis, the 
merging of two experimental results cI and c2 can 
well end up with a confidence level c larger than cr. 
This is because the measured value of c2 can be 
larger than the expected value (L.~&, (see for in- 
stance Fig. 6), . and it must be so since, after all, 
the second analysis may have detected real signal 
events. 

The definition of EP should be extended to the 
general case of n analyses. The solution of the 
simplest case n = 2 is reached by minimizing 
(CL,,) with respect to Sr2. This can be extended in 
a straightforward way to the case of the function 
corresponding to the case of the merging of n ana- 
lyses. Starting from the extended definition 

more involved algebra (see Appendix B of Ref. [a], 
with all co zz 0) allows the confidence level to be 
computed 

and Eq. (33) to be generalized to 

where the expression of (CL,, ., > X is obtained from 
Eq. (33) by substituting i, j for 1,2, where the 
Sij squash factors are still defined by 

(401 

and where the weights that minimize <CLtz . ..> X 
have the same expression as in the case n = 2, 
namely, 

1 - 2(Ci).,. 
a< = - Pi = 1 _ ((.i) II . (41) 

5.2. The case of small numbers qf‘events 

The definition of EP has now to be extended to 
the real-life case of n analyses, each of them being 
expected to select a small number of events. 

5.2.1. The c~rn~~~~d ~~~~de~c~ level 
Starting from the same test statistic as in the 

previous section 

and the actual p~(cJ functions (see Section 3) 

Pf(L’i) = &?(,, - LO) + H(c; - CO), 143 

instead of functions uniformly distributed between 
0 and 1, the corresponding confidence level turns 
out to be (see Ref. [Z] for the details of the algebra) 
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where {k} is a subset of the n analyses, {$} is the 
complementary subset, where the dotted products 
do not contain the sth term, and where the sum 
extends over all possible configurations % of such 
splittings. For each of these configurations, the 
functions 0; are defined by 

with 

l E, is - 1 when s E (k} and + 1 when s E c/k}; 
l fikr = fl&$)n andfi,: = ~,,+(e~P. 

5.2.2. Remarks 
As was the case for the democratic prescription, 

all functions es, vanish when no events are observed 
in any of the IZ analyses, because f~~~~ equals f&; in 
that case. The combined confidence level is there- 
fore 

CLII . ..(f) = fi CO = exp( - s), 
i=l 

(46) 

where s is the total number of events expected from 
signal in the n analyses, independently of the 
weights assigned to each of the analyses. 

Contrary to the ~ontjnuous case described in 
Section 5.1 the combined confidence level always 
depends on (and benefits from) the result of all 
analyses, even when one of the weights is vanishing- 
ly small. The weights are therefore to be under- 
stood as affecting the candidate events selected by 
the analyses rather than the analyses themselves. 

It was numerically checked that Eq. (44) gives 
the same result as the Democratic Prescription 
(Eq. (23)) in the limit ai + 1. It is also straightfor- 
ward to check that Eq. (38) can be recovered from 
Eq. (44) by setting all cp to zero, and that the case 
n = 1 rightly gives CL, = cl. 

Finally, the situation can be considered where 
a single analysis is applied to a data sample arbit- 
rarily split in two components corresponding to 
different integrated luminosities. For internal con- 
sistency, the confidence level resulting from this 
combination must be identical to that obtained 
when considering the analysis as a whole. It was 

numerically checked, in the case of one candidate 
event selected, that the combined confidence level 
does not depend on the relative size of the two 
subsamples, although the optimal weights a, and 
a2, determined as described in the following subsec- 
tion, do (the smaller the subsample, the larger the 
weight). 

5.2.3. The expected combined confidence ieoel 
The weights ai have then to be determined by 

minimizing, with respect to these weights, the ex- 
pected combined confidence level in the no-signal 
hypothesis. This expected confidence level is ana- 
lyticahy computable (see Ref. [Z] for the details of 
the calculation) from the integration of 

J 

(47) 

where the details of the probability distributions 
p”‘(c) are not expected to have any major influence 
on the final result, and are therefore given the 
universal form (see Section 3 and Fig. 5b): 

p,“(Ci) = c*iS(Ci - Cp) + PiH(Ci - CO)Cr’, (48) 

where 

0 /%j = 
(1 - ii#l + pi) 

1 - ppy+p, 
to ensure the normalization 

of pY(fi)3 
l in the following, ai is defined by ai = &(c~)” ‘Pi, 

l /Li is related to the expected confidence level 

(ci>x, by 

(ci>l ~ 
s 

cpi”(c)dc = cP~~ + (1 - c^i) 

I + /ti 1 - (C?)' +” 
x 2f 1 - (cp)‘+“~ (49) 

which has to be inverted numerically to find the 
actual value of /Ai* 

The result of the integration is 

where {K) and {kj- are two independent subsets of 
K and k analyses among n, [#!j and ($) are the 
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complementary subsets, and where the sums extend 
over all possible configurations gr: and gk of such 
splittings, and over all analyses s in [K}, ($1, (k) 
and $). For each of these configurations, the vari- 
ous symbols have the following meaning: 

I-j= 

$I- 

g= 

Ij = 

(53) 

where the dots mean that the products do not 
contain the sth term, ifs is in {K) or {$) for the 
first two products and ifs is in jkf or (@ for the last 
two. In Eqs. (N-(54), i’s and k, are defined as 
follows: 

+1 if& 5 fK and h, > 0, 

0 
with (%, = I iffk I ,fK and h, < 0, 

0 if.f;, > fK and lt, > 0, 

-1 if fk >fK and h, < 0 

and 

(55) 

(56) 

(57) 

Unlike the case of large numbers of events, the 
expression of Eq. (50) cannot be minimized analyti- 
cally: the value of weights are thus obtained by 
means of a numerical minimization. 

5.3. An example 

As an illustration. the results of the two following 
analyses with different and extreme behaviour were 
combined. 

The first analysis is expected to select 3.0 events 
from signal and 1.0 event from background. 95% 
of which being irreducible (i.e.. with a distribu- 
tion for the variable .Y identical to that of the 
signal). The corresponding confidence level dis- 
tribution for experiments with background only 
is displayed in Fig. 7a. 
The second analysis is also expected to select 3.0 
events from signal, but a larger background of 
3.0 events with now very different distributions 
for the variable .X (reducible background). The 
corresponding confidence level distribution for 
experiments with background only is displayed 
in Fig. 7b. 

The expected confidence levels for analysis 1 
and analysis 2, i.e., the mean values of the distribu- 
tions shown in Fig. 7 obtained by means of toy 
Monte Carlo experiments, are (cr ) 1 = 17.6% and 
(cZ) ,. = 23.3%. respectively. These values, quan- 
tifying the intrinsic capabilities of the analyses, are 
to be used in the determination of the optimal 
squash factor nJn r, obtained by the minimization 
of the expected combined confidence level (cIz) I 
(see Eq. (50f.h 

It can be seen from Fig. 7 that the irreducible 
nature of the background of analysis I on the one 
hand. and the high level of the background of 
analysis 2, on the other, make the two confidence- 
level distributions appear quite different from the 
analytical form of Eq. (48): the first distribution is 
formed by steps corresponding to experiments with 
1,2,3,. . I, events observed, and the second develops 
waves at various confidence-level values. This leads 
one to wonder about the adequacy of the analytical 
expression of the expected combined con~dence 
level, and the subsequent weight determination. 
However, as mentioned in Section 5.23, the optim- 
ization procedure should not depend on details of 
the shape of the p’ distributions. 

To check this last point, the expected combined 
confidence level was computed first from Eq. (50) 
as a function of the squash factor ti2/~lI, as shown 
by a full line in Fig. 8. A large number of analysis 
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(a) 

Small irreducible backgretmd 

0 0.2 0.4 0.6 0.8 

Confidence Level 

Large reducible background 

0.6 0.8 I 

Confidence Level 

Fig. 7. Distributions of the confidence level for (a) the analysis I: and (b) the analysis 2. (see text). 

outcomes was then generated according to the 
exact confidence level distributions of Fig. 7. The 
resulting confidence levels c1 and c2 were combined 
with Eq. (44) (which does not make use of the 
expected confidence level) into c12, subsequently 
averaged to get the true value of (c&~ as a func- 
tion of the squash factor a2/uI. This true value is 
displayed by triangles in Fig. 8. 

The survey of Fig. 8 leads to the following con- 
clusions: (i) the optimal value of the squash factor 
is, as naively expected, totally insensitive of the 
details of the confidence level distributions of the 
various analyses; (ii) the value of the expected com- 
bined confidence level is itself not particularly sen- 
sitive to these details, but this is irrelevant since no 
use is made of this value anyway; and (iii) as in the 
continuous case, the elitist prescription improves 
only slightly over the Democratic Prescription 
(a2/al = 1). However, the improvement would be 
more significant if the intrinsic capabilities of the 
two analyses were drastically different, which is 
not the case in the example chosen here 

(<Q).x, 2r’ <cz).XJ. 

5.4. Background subtraction 

Performing a “background subtraction” means 
that the confidence level (i.e., the probability to be 
in worse agreement with the expectation than ob- 

B 
z 
fi. Analysis 2 : 
d 

____ _______._i.________“__--_____I 

:< -. 

0 :, 

10-l 1 10 
Squash factor 

Fig. 8. Distribution of the expected confidence level from the 
combination of analyses 1 and 2 (see text) as a function of the 
squash factor u2/aI. The full line is analytically obtained, while 
the triangles result from a toy MC simulation. The dashed lines 
indicate the expected contidencc levels of the two individual 
analyses. 

served) is determined from the knowledge of the 
absolute number b of events expected from back- 
ground, in addition to that of s, s^ and 6. The obser- 
vation has then to be compared to the expectation 
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from siynal und background instead of signul only. 
Such a background subtraction is expected to be of 
particular interest in analyses with a large back- 
ground expected. However, a reliable understand- 
ing of both the absolute number of background 
events expected and of their distribution 6(x) is 
mandatory in this case to have a trustworthy esti- 
mate of the observed confidence level. 

In the frequency approach, this can be done by 
comparing the observed test statistic to the out- 
come of all possible experiments with signal and 
background. As outlined in Section 2, this proced- 
ure always yields confidence levels. hereafter de- 
noted c5 “, smaller than those obtained with sig- 
nff~-o~~~ experiments, and all formulae presented in 
this paper for the combination of several analyses 
remain valid by redefming co = expL - (s + h)] in- 
stead of exp( - s). This may lead, however, to deon- 
tologically unacceptable results: for instance, an 
experiment observing no events would return 
a confidence level of exp[ - (s + h)] (this is the 
probability to observe 0 event when s -i- h are ex- 
pected). always smaller than the smallest acceptable 
value exp( - s). Such an experiment would thus 
unduly benefit from the fact that less events are 
observed than expected from a known background 
to set a better limit on the signal hypothesis, 

This problem cannot be avoided while keeping 
the mathematical exactness of the frequency ap- 
proach to determine confidence levels. Confidence 
levels may, however, be estimntecl using various 
tricks and approximations. What is usually done to 
overcome this apparent paradox is to normalize 
csi-’ to the Power Pw of the test statistic, i.e., the 
fraction c” of experiments with background only 
leading to a value of the test statistic smaller than 
the observed value (see Section 2.1). A new quantity 
< aimed at estimating the true con~dence level is 
thus defined by 

(581 

It can be checked that 5 is never smaller than 
exp( - s) and, more importantly, that it is always 
larger than the false exclusion rate. In other words, 
when the observed value of < is 0.05, the fraction of 
experiments with signal and background having 

< I 0.05 is smaller than 0.05, thus making 5 a con- 
servative estimate of the true confidence level. 

However. this estimator < is not uniformly dis- 
tributed between 0 and 1 for experiments ~~?~~~~ siy- 
rral nttrl 6a~kg$ou?td and none of the formulae de- 
rived above can be usefully considered to combine 
several values of < as obtained from different ana- 
lyses. There is a simple way out, though: starting 
from the usual test statistic built with the confi- 
dence level values (~~‘* obtained in the n individual 
analyses. 

f= fi ((.;“yJ*. (591 
i=l 

the compound confidence level can be computed 
from Eq. (44) by redefining all 8s as 
exp[ - (si + bJJ. The knowledge of the individual 
expected confidence levels (c:+‘), also allows the 
expected combined confidence level to be analyti- 
cally determined as devised in Eq. (50) with the 
same substitution. and subsequently, of the optimal 
weights (+. Finally, the combined Power PW cm be 
obtained by combining the Powers C” of the n indi- 
vidual analyses. Since, by construction, the c*!s are 
distributed according to p’(c) 

ph(~,) = i’ii(c - Pf + N(c - 5) with 

C: z expf - hl 1601 

for background-only experiments, they can be com- 
bined into the compound Power using again 
Eq. (44), but replacing now co by Pi. The combined 
t value is then obtained by Eq. (58) as the ratio of 
the combined confidence level to the combined 
power. 

6. Conclusions 

In this article, a prescription is developed to 
combine limits obtained by a set of analyses on 
a common process. The prescription does not im- 
ply constraints on the method followed by the 
various analyses to derive their own limits. It ac- 
counts for the intrinsic capabilities of each of them 
in an optimal way by ensuring that, on average, the 
compound confidence level is minimal, in the ab- 
sence of signal. The procedure advocated makes 
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use of anaiytical expressions which allow a fast 
algorithm to be written, thus making it a practical 
tool, even in the important case of tow statistics. 
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