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 inflation

- Inflation \/C® )
/N

... The rapid expansion that occurred
immediately after the birth of the universe.

- Inflaton field (Inflaton)
...A scalar field believed to cause rapid
accelerated expansion in the early
universe

Figure1 Typical potentials of the Inflaton Field.



* Infrationary dynamics

(i) Slow-roll phase
The inflaton field slowly rolls down a flat part
of the potential.

(ii) Oscillation phase
The inflaton field falls to the bottom of the
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potential and oscillates around it. ¢ «— 0
(iii), Decay into radiation

The inflaton field decays into other particlesy .-=7-= Vo

(mainly radiation), transitioning the universe(' \l

into a radiation-dominated era._.---__ v N\ J .
g N S /@
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‘\ /’ The dynamics of inflaton field can be considered in three stages
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" reheating

After inflation ends, the oscillation phase follows, but at that time, the
universe is still not radiation-dominated; it is dominated by the oscillating
inflaton field.After some time, the inflaton field decays into radiation.

The energy density of the oscillating @ decreases as pyca3

H also decreases with time.

When H=I"¢, the rapid decay of ¢ occurs, leading to a radiation-
dominated universe."

[ :Decay rate of the inflaton field
H :Hubble parameter
H=[¢ : GamovV’s criteria



The inflaton field evolves according to the following Klein-Gordon equation,
depending on the form of the potential V().
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Klein-Gordon equation : @ + 3H@ + 5= 0. (H=a/a)
P
In the following,we assume that the potential minimum during reheating can be
approximated as a monomial functionVecd™, specifically,
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The energy density of the inflaton field is described by the following the
continuity equation.

Pp +3H(1+ wy)py = —Tpp, -

Where, w,, is equation of state parameter
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Pressure : p

* Evolution of energy density Energy density:p

continuity equation

. ,a continuity equation
+3—(p+p)=0.
p+3—(p+p)

pr = % p o< a—3(1+w¢)
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The ontinuity equation
Py + 3H(1 + a)(p)p(p = —TyPy

Assuming all decayed particles turn into radiation components, this
equation includes the effect of ¢ decay which generates radiation

pr +4Hp, = Typyp.

The friedman equation

1

H? = Py + P
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Solve simultaneously



- The process of cosmic reheating by the inflaton field

Areheating: SCale factor when p,=p..
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* reheating temperature

The expression for the total energy density
in the relativistic Iimit

pr=7 T g.TH
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r = ( Zpr>
JIA g*

Where, g, : effective degrees of freedom
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i=bosons i=fermions

Friedman equation is

H*= 20z 30 g9:T* =Ty

Therefore, the reheating temperature can
be evaluated as
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 Time dependence of '

define I" as follows to incorporate its time dependence.
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The reheating temperature is different from Gamow’s criterion, depending
on the value of p .



* summary

* In this presentation, | explored the uncertainties associated with the
reheating process and its temperature.

* The decay of the inflaton field generates radiation components,
causing the universe to become radiation-dominated.

* The reheating temperature (T';) is the temperature at which the
universe becomes radiation-dominated .

* Generally, the reheating temperature is determined using the
Gamow criterion, but it is also necessary to consider the time
dependence of the decay rate (I).

- I varies depending on the interaction for the decay and the potential,
which affects the timing and temperature of reheating.

* The numerical analysis results indicate that the reheating
temperature may deviate significantly from the Gamow criterion.



* Time dependence of '

The decay rate I' is determined by the interaction and the potential.

Example interaction: . P = _YQU\TJLP
n /

The oscillations of @ (t)

(p(t) — z (pne_iwnt, (w =2 /T)

n=—o0o

The transition rate per unit time I' from the initial state to the final two-particle state:
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Here, (- -) denotes the average of ..over one period of the oscillations.



 Time dependence of I’

Using the energy conservation,

poT,At = ETAt .

The left-hand side represents the energy loss of the ¢ field during the infinitesimal time At .
The right-hand side the energy gain of two ¢ —particles . E is the expectation value of the energy of the final
two — particles state.

The energy decay rate of ¢:
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Difine the numerical factor a by
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Then, I}, can be written as , .
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* Time dependence of '
Consider the case where the potential V' (@) = %cp‘*.

@(t) can be written as

N ( ) o5 (2n—1)
— ((2n—-1)wt —i(2n—-1)wt
@(t) = Po z (e Te ) 1 — g-m(2n-1)"
I (Z) n=1
Where the frequency w is given by 2
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. 4 @,: the overall amplitude of the field ¢
2
Using these ,we find o = 1.036, % = %. Then the decay rate of the inflaton can be written as
Q
2
Y
[, =4 —m(pf !
81



	슬라이드 1: On uncertainties of the determination  of reheating temperature 
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16

