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Introduction



Introduction

 Cosmic Inflation is one of popular mechanism to cure following
Issues on the Standard Big Bang Cosmology.

o Fine-tuning on Parameters (e.g. Flatness problem, Horizon
problem, ...)

o QOrigin of Density Perturbations

e Various observations tell us that our current Universe is in favor of
acceleration. (late-time acceleration).

Supernova Search Team collaboration (1998).
Supernova Cosmology Project collaboration (1999).
S.F. Daniel et al. (2008).



Introduction

 Both mechanisms introduces a scalar field (hamed inflaton,
and quintessence) beyond the Standard Model such that
the slow-roll assumption is satisfied. In general, those two
flelds are not necessarily equal.

 What about a case where the early time inflation and late
time acceleration is governed by a "same” scalar field @?

—> Quintessence Inflation (Ql)



Introduction

* |n order to successfully realize cosmic inflation and late time
acceleration, potential V(¢) at two certain regimes (e.g. small
field limit and large field limit) must be flat.

o To ensure fine-tuning problem (e.g. horizon, flathess problem)
during early-time inflation.

O To ensure late-time acceleration : d, > 0.

i L(1 __ ]
ay ~ 2\3 9 GO 3

where Wegro = W 082, 0.



Setup & Motivations



Our Setup

* |n our work, we considered following setup :

. Flat potential in a large
limit in a minimal way

1 ¢ 1 Y
. 4 1% U O
S = [d X\/—8& > (1 + ¢n/2) I — 58” 0,90 P — 0" . Attractor Behavior
Q*(¢) : non-minimal coupling ii. Origin from dynamical

symmetry breaking

I. Affleck et al. (1985).
P. Binetruy (1999).

For simplicity, we will replace the exponential factor: n — 2n.



Weyl Transformation

* Applying Weyl Transformation
g/,w — gE,,uy — Q2(¢)gﬂy
results in an Einstein-frame action with a canonical field §

1 1 Vi(s(@))
5, = Jd‘*x\/— % [5 p= o (08 - VE], Ve= o (Z(Z))

where canonical field s and Jordan frame field @ are related by
following equation.

& — + = I'(p)
dg \



Why NM Coupling with Inverse Power-Law?

e |In asmall field limit (¢" < &), the Einstein-frame potential is
approximated by

* In a large field limit (¢" > &), the Einstein-frame potential is
approximated by

Vo Vo
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Why NM Coupling with Inverse Power-Law?
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Slow-Roll Parameters

Slow-Roll parameters
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For general n and &, there always exists S.,; such that there is no solution of
equation max{e, |n|} =1 for & > &...,. We will only focus on a case where $ < ¢&.,.... 11



Early Time Inflation
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1/n
(V312) =1 for every natural number n.

End of Inflation

 Numerical calculation of end-of-inflation by solving max{e, |n|} =1
1/n

results in following scaling behavior : .., = (\/55/2) .

10
* From this fact, we can roughly divide il
whole evolution of the scalar field into two 1
regimes : - -
35_ o100V~ /| ----- n=1 (::zalytlc)
o Small field limit (¢ < ') during =2 (nayic) |
. . 0.010y | ____. n= nalytic
Inflation.  Anavie)
P R S n=10 (Analytic)
o Large field limit (¢ > ¢ ™) during >0%01 010 1 10 100 1000
late-time acceleration. Non-minimal Coupling &
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Main Results

PLANCK Collaboration (2020).
BICEP, Keck collaboration (2021).

* Observational Constraints by

_ 0020 Planck results and BICEP/Keck (BK)
§ 1 . data are drawn respectively.
— 0.010} ;' | : o lo -bound colored with
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o 0.005|
| :
?} * We picked N, = 60, where N, denotes
o an e-folds between pivot scale and an
= 0.002f

event where inflation terminates.

0.001—— . I
8.955 0960 0965 0.970 0.975 0.980
Scalar Spectral Index ng 14



Main Results
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Independence of Observables with Free Parameters

e |In a small field limit (¢ < £'"), CMB observables are
approximated by

2 2
8 @i % 2 9 64 X 12
nS=1—6€*+2;7*z1 CD 8(€0> 21 . v Y — ¢ Y —
3 ¢ £ N, N2 3\ € N2

o 1/n
where ¢« ~ (3§/4N ). PLANCK Collaboration (2020).

* The last degree of freedom V) is fixed by normalization condition,
which constrains the scalar amplitude at the pivot scale (denoted
by ) : In(101°A,) = 3.044 £ 0.014 (TT,TE,EE+lowE+lensing).
Relation between Vy and non-minimal coupling is given by :

V, 187°A,

N -2
~ ~ (1.01 -1.05)x 107 x [ — | .
£2 N2 60
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Late Time Acceleration
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Late Time Acceleration

* |n order to check whether our model is compatible with
observational results regarding late-time acceleration, we've
checked following items.

1. Hubble parameter at current Universe :
— H, ~ 67.36 £ 0.54km - s=1 - Mpc™! =~ 10™!M},, pLANCK Collaboration (2020)

2. The equation-of-state (EoS) parameter of the quintessence
> Wp E.0 < — 0.9 PLANCK Collaboration (2015), S. Alam et al. (2017), Y. Wang et al. (2017).

3. After last scattering event, matter-dominated Universe
ensues, and finally dark-energy dominated one.

18



Classical Equation of Motions

* We solved classical equation of motions for quintessence field

H2 ] — —F2 2 — ) | H2 m, | r,
( 6 QN) 3 "0 (exp(3N) exp(4N)> E-folds
N = In(a/a
2 2 2F<0 VE,qa ( O)

with suitable two input Initial conditions
p(N = N, (P,N(N =N,).

* In our work, we set N, = 0 (today) and tuned a = ¢(N = 0)

and =@ NN=0).
19



Setting Adequate (@, )

 Two initial conditions (&, /) are uniquely fixed by applying slow-
roll conditions and a large field limit as follows :

v o

0

a =~ : ~ 2n€d .
( 3HZQ, ) b .

* |Inputting above Iinitial conditions, we have tried to numerically

calculate the evolution of energy density of the quintessence with
respect to an e-fold, as well as an EoS(Equation-of-State)

parameter of that field, especially in a regime where N € [—13,3].
20



The grey regime corresponds to N < Ngyp =~ — 60.97, in
which our numerical results become unreliable.

Maln RGSUltS (Neyw denotes an event where last-scattering happens.)
' ‘ S
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Domination of matter components immediately after last scattering is required.

——> There exists lower bound for 71 not to harm Big Bang scenario!
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Indistinguishability between s and ¢

 Dominance of quintessence field comparing with other
components happens in a large-field regime : ¢" > ¢&.

* The classical equation of motion with respect to the Jordan-
frame field is approximated by ¢

¢+3Hp+ Vg ,~0

In other words, the Jordan-frame field ¢ in our setup behaves like
one in a single-field scenario with no non-minimal coupling. In
that sense, s and @ are indistinguishable each other. : S = @ .

ds 1 3n?E2p " . .
Flp)=—= + - @ ~ 1 on a large field limit.

do \ 1+ Ep 2¢2 (1 + ggp—n)z
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Explanations of Shift of Dominance of Quintessence

e Suppose we backward quintessence from N = Q) to N = — dN, with
iInfinitesimal dN. The energy loss due to evolution of quintessence
fleld by Hubble drag is given by

| AE,, (N =0)| = — 3H;°dN

* On the other hand, the potential difference by the evolution of
quintessence field is given by

| AV(N = 0)| = (Vy/a™)(2npdN/a) ~ 3H;(2nfla)dN
* One important fact is that for decently small n = O(1),
|AE, (N=0)|>|AV(N=0)|

e.g., when (1,&) = (4,0.01), a ~ 6(10'%). 23



Recall that g ~ 2nQ .

Explanations

e Suppose we backward quintessence from N =0 to N = — dN, with
infinitesimal dN .

| AE,, (N =0)| = — 3H;°dN

* Hereafter, the most of energy increase |AE, . (N = 0)| by backwarding
quintessence contributes to the increase of kinetic energy, with

potential energy unchanged.

* Therefore, when we increase s with other parameters fixed, the
Kinetic energy of quintessence overtakes potential energy faster than

same physical system of low £#.

24



Conclusions
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Conclusions

 We have tried a setup which a scalar field is non-minimally
coupled with gravity (especially with an inverse non-minimal
coupling) with inverse power-law potential.

» CMB observables during inflation are well in accordance with
recent bounds, with most of parameter sets : (n,¢, V).

* This setup also realizes late-time acceleration for some kinds of

parameter spaces, and compatible with successful Big Bang
scenario, when n < 10.

26
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