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Introduction
• Cosmic Inflation is one of popular mechanism to cure following 

issues on the Standard Big Bang Cosmology. 


Fine-tuning on Parameters (e.g. Flatness problem, Horizon 
problem, ...)


Origin of Density Perturbations


• Various observations tell us that our current Universe is in favor of 
acceleration. (late-time acceleration). 
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Supernova Search Team collaboration (1998).
Supernova Cosmology Project collaboration (1999).
S.F. Daniel et al. (2008).



Introduction
• Both mechanisms introduces a scalar field (named inflaton, 

and quintessence) beyond the Standard Model such that 
the slow-roll assumption is satisfied. In general, those two 
fields are not necessarily equal.


• What about a case where the early time inflation and late 
time acceleration is governed by a "same" scalar field    ?                                                                                
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φ
⟶ Quintessence Inflation (QI)



Introduction
• In order to successfully realize cosmic inflation and late time 

acceleration, potential         at two certain regimes (e.g. small 
field limit and large field limit) must be flat.


To ensure fine-tuning problem (e.g. horizon, flatness problem) 
during early-time inflation.


To ensure late-time acceleration :           . 


where                     .      
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V(φ)

··a0 > 0
··a0

a0
= −

1
2 ( 1

3
+ weff,0) ⟹ weff,0 < −

1
3

weff,0 ≃ ws,0Ωs,0



Setup & Motivations
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Our Setup
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• In our work, we considered following setup : 

S = ∫ d4x −g
1
2 (1 +

ξ
φn/2 )

Ω2(φ)

R −
1
2

gμν∂μφ∂νφ −
V0

φn

For simplicity, we will replace the exponential factor : n → 2n .

: non-minimal coupling

I. Affleck et al. (1985).
P. Binetruy (1999).

m .
m .
m .
m .
m .
m .
m .

i. Flat potential in a large 

limit in a minimal way

ii.   Attractor Behavior

iii.  Origin from dynamical 

symmetry breaking



Weyl Transformation
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• Applying Weyl Transformation 


results in an Einstein-frame action with a canonical field 


where canonical field    and Jordan frame field     are related by 
following equation.

gμν ⟹ gE,μν = Ω2(φ)gμν

s

s φ
SE = ∫ d4x −gE [ 1

2
RE −

1
2

(∂sE)2 − VE], VE ≡
VJ(s(φ))
Ω4(s(φ))

ds
dφ

=
1

Ω2
+

3(Ω2
,φ)2

2Ω4
≡ F(φ)



Why NM Coupling with Inverse Power-Law?
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• In a small field limit              , the Einstein-frame potential is 
approximated by


• In a large field limit              , the Einstein-frame potential is 
approximated by

VE =
V0

(φn + ξ)2
≃

V0

ξ2 (1 − 2
φn

ξ )

VE =
V0

(φn + ξ)2
≃

V0

φ2n

(φn ≪ ξ)

(φn ≫ ξ)



Why NM Coupling with Inverse Power-Law?
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Slow-Roll Parameters
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For general     and   , there always exists       such that there is no solution of 
equation                          for              . We will only focus on a case where             .

n ξ ξcrit
ξ ≥ ξcritmax{ϵ, |η |} = 1 ξ < ξcrit

Slow-Roll parameters

ϵ ≡
1

2V2
E ( dVE

ds )
2

=
1

2V2
EF2 ( dVE

dφ )
2

1.

2. η ≡
1

VE

d2VE

ds2

=
1

FVE

d
dφ ( 1

F
dVE

dφ )PRELIMINARY



Early Time Inflation

12



End of Inflation
• Numerical calculation of end-of-inflation by solving                        

results in following scaling behavior :                    .


• From this fact, we can roughly divide

whole evolution of the scalar field into two

regimes :  


Small field limit (             ) during 

inflation.


Large field limit (             ) during

late-time acceleration.
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max{ϵ, |η |} = 1
φend ≃ ( 3ξ/2)

1/n

φ ≪ ξ1/n

φ ≫ ξ1/n

( 3/2)
1/n

≃ 1 for every natural number n .

PRELIMINARY



Main Results
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• Observational Constraints by 

Planck results and BICEP/Keck (BK)

data are drawn respectively.


    -bound colored with green.

    -bound colored with yellow.


• We picked              , where      denotes 

an e-folds between pivot scale and an 

event where inflation terminates.

Ne = 60 Ne

1σ
2σ

PLANCK Collaboration (2020).
BICEP, Keck collaboration (2021).
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Main Results

15

PRELIMINARY

PRELIMINARY



Independence of Observables with Free Parameters

• In a small field limit (             ), CMB observables are 
approximated by 


• The last degree of freedom     is fixed by normalization condition, 
which constrains the scalar amplitude at the pivot scale (denoted 
by    ) :                                         (TT,TE,EE+lowE+lensing). 
Relation between      and non-minimal coupling is given by : 
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φ ≪ ξ1/n

V0

* ln(1010As) = 3.044 ± 0.014
V0

V0

ξ2
≃

18π2As

N2
e

≃ (1.01 − 1.05) × 10−9 × ( Ne

60 )
−2

.

ns = 1 − 6ϵ* + 2η* ≃ 1 −
8
3

φn
*

ξ
− 8 ( φn

*

ξ )
2

≃ 1 −
2
Ne

−
9

N2
e

, r ≃
64
3 ( φn

*

ξ )
2

≃
12
N2

e
,

φ* ≃ (3ξ/4Ne)1/nwhere                     . PLANCK Collaboration (2020).



Late Time Acceleration

17



Late Time Acceleration
• In order to check whether our model is compatible with 

observational results regarding late-time acceleration, we've 
checked following items.


1. Hubble parameter at current Universe :
 


2. The equation-of-state (EoS) parameter of the quintessence  


3. After last scattering event, matter-dominated Universe 
ensues, and finally dark-energy dominated one. 

⟶ H0 ≃ 67.36 ± 0.54km ⋅ s−1 ⋅ Mpc−1 ≃ 10−51MPl
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PLANCK Collaboration (2020).

⟶ wDE,0 ≤ − 0.9 PLANCK Collaboration (2015), S. Alam et al. (2017), Y. Wang et al. (2017).



Classical Equation of Motions
• We solved classical equation of motions for quintessence field 


  


  with suitable two input initial conditions 


• In our work, we set            (today) and tuned 


 and 
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H2 (1 −
1
6

F2φ2
,N) =

VE

3
+ H2

0 (
Ωm,0

exp(3N)
+

Ωr,0

exp(4N) )
H2φ,NN + (3H2 +

1
2

(H2),N) φ,N + H2
F,φ

F
φ2

,N +
VE,φ

F2
= 0

N ≡ ln(a/a0)
E-folds

φ(N = Ni), φ,N(N = Ni) .

Ni = 0 α ≡ φ(N = 0)

β ≡ φ,N(N = 0) .



Setting Adequate          
• Two initial conditions           are uniquely fixed by applying slow-

roll conditions and a large field limit as follows : 


• Inputting above initial conditions, we have tried to numerically 
calculate the evolution of energy density of the quintessence with 
respect to an e-fold, as well as an EoS(Equation-of-State) 
parameter of that field, especially in a regime where  
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(α, β)
(α, β)

N ∈ [−15,5] .

α ≃ ( V0

3H2
0Ωs,0 )

1
2n

, β ≃ 2nΩs,0 .



Main Results         
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The grey regime corresponds to                               , in 
which our numerical results become unreliable. 

N < NCMB ≃ − 6.97

NCMB(         denotes an event where last-scattering happens.)

Domination of matter components immediately after last scattering is required. 

There exists lower bound for     not to harm Big Bang scenario!⟹ n

PRELIMINARY



Indistinguishability between    and 
• Dominance of quintessence field comparing with other 

components happens in a large-field regime :            .


• The classical equation of motion with respect to the Jordan-
frame field is approximated by 


In other words, the Jordan-frame field     in our setup behaves like 
one in a single-field scenario with no non-minimal coupling. In 
that sense,    and    are indistinguishable each other. :  

φn ≫ ξ

φ

F(φ) ≡
ds
dφ

=
1

1 + ξφ−n
+

3n2ξ2φ−2n

2φ2 (1 + ξφ−n)2 ≃ 1 on a large field limit.

··φ + 3H ·φ + VE,φ ≃ 0
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s φ

s

φ

φ s ≃ φ .



Explanations of Shift of Dominance of Quintessence

• Suppose we backward quintessence from           to                , with 
infinitesimal      . The energy loss due to evolution of quintessence 
field by Hubble drag is given by


• On the other hand, the potential difference by the evolution of 
quintessence field is given by


• One important fact is that for decently small               ,  
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N = 0 N = − dN
dN

|ΔEloss(N = 0) | = − 3H2
0 β2dN

|ΔV(N = 0) | = (V0/α2n)(2nβdN/α) ≃ 3H2
0(2nβ/α)dN

n ≳ 𝒪(1)

|ΔEloss(N = 0) | ≫ |ΔV(N = 0) |
e.g., when                       ,   (n, ξ) = (4,0.01) α ∼ 𝒪(1013) .



Explanations
• Suppose we backward quintessence from           to                , with 

infinitesimal      .


• Hereafter, the most of energy increase                     by backwarding 
quintessence contributes to the increase of kinetic energy, with 
potential energy unchanged.


• Therefore, when we increase    with other parameters fixed, the 
kinetic energy of quintessence overtakes potential energy faster than 
same physical system of low   . 


24

N = 0 N = − dN
dN

|ΔEloss(N = 0) | = − 3H2
0 β2dN

|ΔEloss(N = 0) |

β ≃ 2nΩs,0 .Recall that

β

β



Conclusions
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Conclusions
• We have tried a setup which a scalar field is non-minimally 

coupled with gravity (especially with an inverse non-minimal 
coupling) with inverse power-law potential.


• CMB observables during inflation are well in accordance with 
recent bounds, with most of parameter sets : 


• This setup also realizes late-time acceleration for some kinds of 
parameter spaces, and compatible with successful Big Bang 
scenario, when  

26

(n, ξ, V0) .

n < 10.



Thank You!
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