Can A.I. understand Hamiltonian mechanics?

arXiv: 2410.20951

Tae-Geun KimSeong Chan Park

Yonsei University

November 4, 2024 the 21st Saga-Yonsei Joint Workshop

Hamiltonian Mechanics

Figure 1: Sir William Rowan Hamilton

- In 1833, Sir William Rowan Hamilton introduces a reformulation of Lagrangian mechanics - Hamiltonian mechanics [W. R. Hamilton, PD Hardy (1833)]
- With $p = \frac{\partial L}{\partial \dot{q}}$, Hamiltonian is defined by the Legendre transform

 $H(q,p)=p\dot{q}-L$

Lagrangian Mechanics On configuration space (q, \dot{q})

L = T - V

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0$$

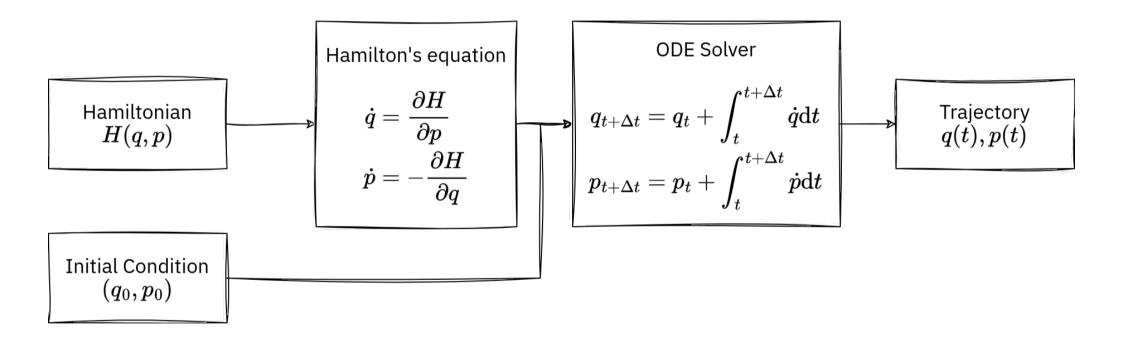
Hamiltonian Mechanics

On phase space (q, p)

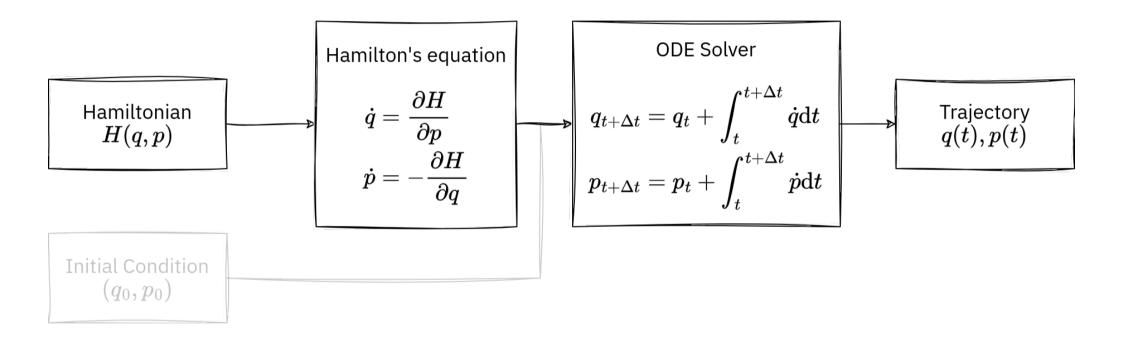
$$H=p\dot{q}-L$$

$$\dot{q}=rac{\partial H}{\partial p}, \quad \dot{p}=-rac{\partial H}{\partial q}$$

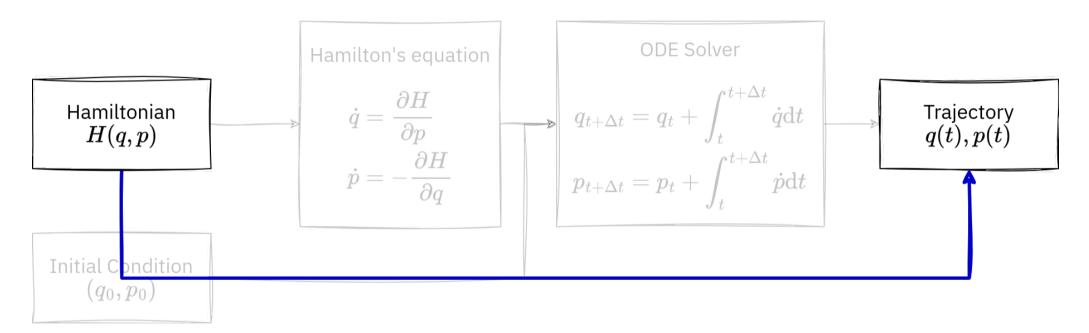
How to solve Hamilton's equation?



How to solve Hamilton's equation?

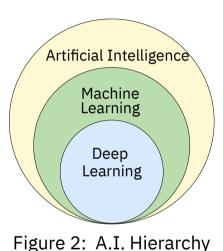


How to solve Hamilton's equation?



Q. Can A.I. do this process?

Neural Network



- In this work, Artificial Intelligence refers to (Artificial) Neural Networks (NN)
- Neural Network finds \hat{f} that best maps input to output:

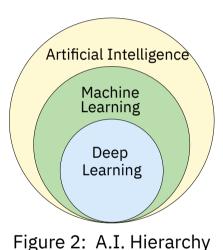
Training Data $\mathcal{D} = \left\{ (x_i, y_i) \right\}_{i=1}^n \Longrightarrow \text{Learn } \hat{f} \text{ such that } y_i \approx \hat{f}(x_i)$

• The convergence is guaranteed by *Universal Approximation Theorem* (UAT) [Lu et al., NeurIPS (2017); G. Cybenko, MCSS (1989)]

Theorem 1 (Universal Approximation Theorem for Width-Bounded ReLU Networks). For any Lebesgue-integrable function $f: \mathbb{R}^n \to \mathbb{R}$ and any $\epsilon > 0$, there exists a fully-connected ReLU network \mathscr{A} with width $d_m \leq n + 4$, such that the function $F_{\mathscr{A}}$ represented by this network satisfies

$$\int_{\mathbb{R}^n} |f(x) - F_{\mathscr{A}}(x)| \mathrm{d}x < \epsilon.$$
(3)

Neural Network



• In this work, Artificial Intelligence refers to (Artificial) Neural Networks (NN)

• Neural Network finds \hat{f} that best maps input to output:

Training Data $\mathcal{D} = \left\{ (x_i, y_i) \right\}_{i=1}^n \Longrightarrow \text{Learn } \hat{f} \text{ such that } y_i \approx \hat{f}(x_i)$

• The convergence is guaranteed by *Universal Approximation Theorem* (UAT) [Lu et al., NeurIPS (2017); G. Cybenko, MCSS (1989)]

Theorem 1 (Universal Approximation Theorem for Width-Bounded ReLU Networks). For any Lebesgue-integrable function $f: \mathbb{R}^n \to \mathbb{R}$ and any $\epsilon > 0$, there exists a fully-connected ReLU network \mathscr{A} with width $d_m \leq n + 4$, such that the function $F_{\mathscr{A}}$ represented by this network satisfies

$$\int_{\mathbb{R}^n} |f(x) - F_{\mathscr{A}}(x)| \mathrm{d}x < \epsilon.$$
(3)

Q. But, how to approximate $G: H(q,p) \mapsto (q(t),p(t))$?

Operator Learning

• Universal Approximation Theorem for Operator

[Lu et al., Nat. Mach. Intell. (2021); Chen & Chen, IEEE Trans. Neural Netw. (1995)] **Theorem 1.** Suppose that X is a Banach space, $K_1 \,\subset X, K_2 \subset \mathbb{R}^d$ are two compact sets in X and \mathbb{R}^d , respectively, V is a compact set in $C(K_1)$. Assume that $G: V \to C(K_2)$ is a nonlinear continuous operator. Then, for any $\epsilon > 0$, there exist positive integers m, p, continuous vector functions $g: \mathbb{R}^m \to \mathbb{R}^p, f: \mathbb{R}^d \to \mathbb{R}^p$, and $x_1, x_2, \cdots, x_m \in K_1$, such that

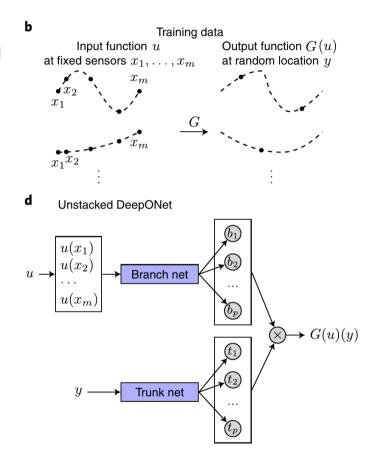
$$G(u)(y) - \langle \underbrace{\boldsymbol{g}(u(x_1), u(x_2), \cdots, u(x_m))}_{branch}, \underbrace{\boldsymbol{f}(y)}_{trunk} \rangle < \epsilon$$

holds for all $u \in V$ and $y \in K_2$.

• DeepONet

[Lu et al., Nat. Mach. Intell. (2021)]

- Task: Approximate the operator $G: u(x) \mapsto G(u)(y)$
- Train data
 - Discretization of input function $[u(x_1), ..., u(x_m)]$
 - Query point y
 - Output function as label G(u)(y)



(1)

Figure 3: DeepONet structure

Example: Anti-Derivative

• Task: For $u \in C[0,1]$ and $y \in [0,1]$, learn the operator such that

$$G(u)(y) = \int_0^y u(x) \mathrm{d}x$$

- Input data
 - *u*: Input function from *Gaussian Random Field*

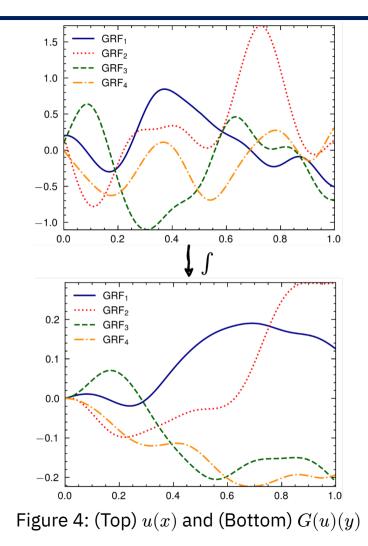
$$u(x) = \text{Spline}\Big[\{(x_i, \text{GRF}(x_i))\}_{i=1}^m\Big](x)$$

▶ y: Target point

1

• Label

$$G(u_i)\big(y_j\big) = \int_0^{y_j} u_i(x) \mathrm{d}x$$



Example: Anti-Derivative

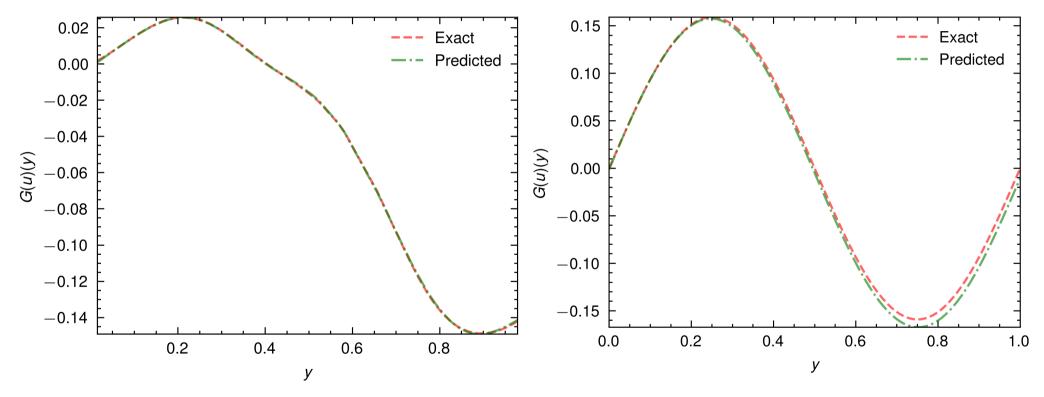
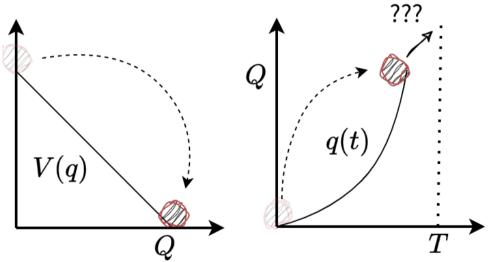


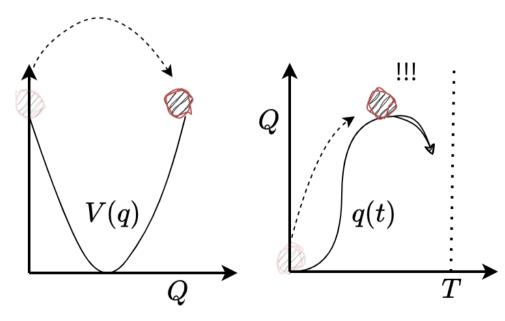
Figure 5: (Left) Test for one GRF sample and (Right) test for cosine function

- Task: For $H(q,p) = \frac{p^2}{2} + V(q)$, approximate the operator $G: V(q) \mapsto (q(t), p(t))$
- Constraints
 - From the UAT for operator, domain & range of V and q, p should be compact



- Simply making V(q) bounded on a compact domain is insufficient
- Even with that kind of potential, trajectories may escape the domain
- As shown in the figure, q(t) can exceed the boundary Q before time T
- This leads to an ill-defined problem where V(q) doesn't exist for q > Q

- Task: For $H(q,p) = \frac{p^2}{2} + V(q)$, approximate the operator $G: V(q) \mapsto (q(t), p(t))$
- Constraints
 - \blacktriangleright From the UAT for operator, domain & range of V and q,p should be compact



- Simply making V(q) bounded on a compact domain is insufficient
- Even with that kind of potential, trajectories may escape the domain
- As shown in the figure, q(t) can exceed the boundary Q before time T
- This leads to an ill-defined problem where V(q) doesn't exist for q > Q
- \Rightarrow Consider "bounded" potential

• Task: For $H(q,p) = \frac{p^2}{2} + V(q)$, approximate the operator $G: V(q) \mapsto (q(t), p(t))$

- Constraints
 - From the UAT for operator, domain & range of V and q, p should be compact

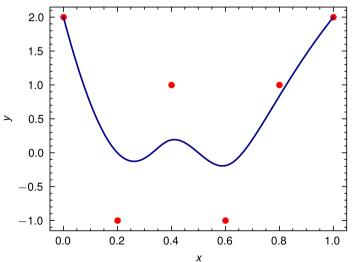
 \Rightarrow Consider "bounded" potential

- From the operator formulation, V must be twice continuously differentiable (C^2)
 - This ensures the existence and uniqueness of solutions
 - Required for the operator G to be well-defined

- Task: For $H(q,p) = \frac{p^2}{2} + V(q)$, approximate the operator $G: V(q) \mapsto (q(t), p(t))$
- Constraints
 - From the UAT for operator, domain & range of V and q, p should be compact

 \Rightarrow Consider "bounded" potential

- From the operator formulation, V must be twice continuously differentiable (C^2)
 - This ensures the existence and uniqueness of solutions
 - Required for the operator G to be well-defined
 - \Rightarrow Use "Cubic B-Spline" to generate potentials



Data Generation

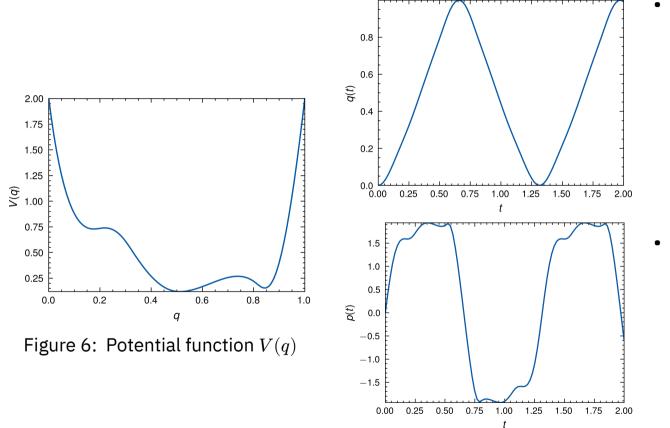


Figure 7: Trajectory q(t) and p(t)

Generate random potential with GRF
 + Cubic B-Spline

$$\blacktriangleright V(0) = V(1) = 2$$

- ${\scriptstyle \blacktriangleright} \ V(q) < 2 \text{ for } 0 < q < 1$
- Standard dataset: 10,000,
 Extended dataset: 100,000
- Solve Hamilton's equation with *Gauss-Legendre 4th order* (GL4) to generate trajectories.
 - Initial condition: q(0) = p(0) = 0
 - Time: $0 \le t \le 2$

Models

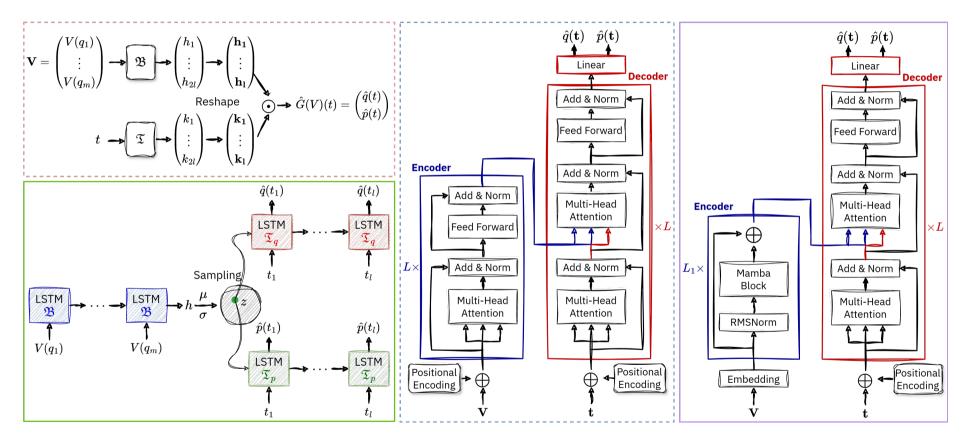


Figure 8: Models for Neural Hamilton.

(Red Dashed Box) DeepONet, (Green Solid Box) VaRONet, (Blue Dashed Box) TraONet and (Purple Solid Box) MambONet

T.-G. Kim, S. C. Park

A Result

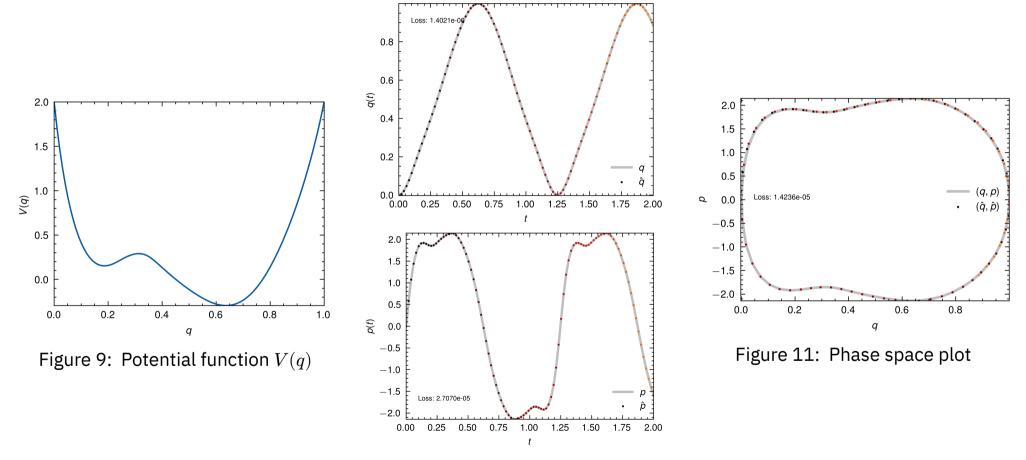


Figure 10: Trajectory q(t) and p(t)

Test Results

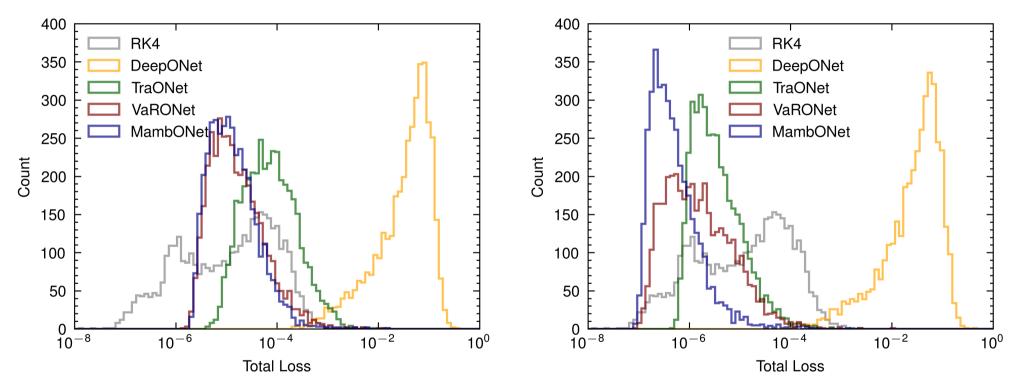


Figure 12: Histogram for total test losses for (left) standard dataset and (right) extended dataset

$$\mathcal{L}_{\text{tot}} = \frac{1}{2} \big(\mathcal{L}_q + \mathcal{L}_p \big) = \frac{1}{2N} \sum_{i=1}^N (\|q_i(t) - \hat{q}_i(t))\|^2 + \|p_i(t) - \hat{p}_i(t))\|^2)$$

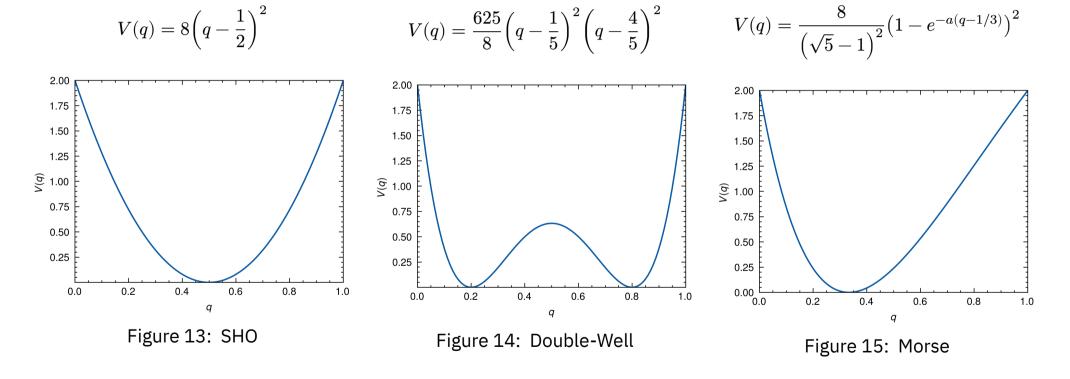
Neural Hamilton [2410.20951]

Physically Relevant Potentials

• Simple Harmonic Oscillator

Double-Well Potential

Morse Potential



Physically Relevant Potentials

• Mirrored Free-Fall

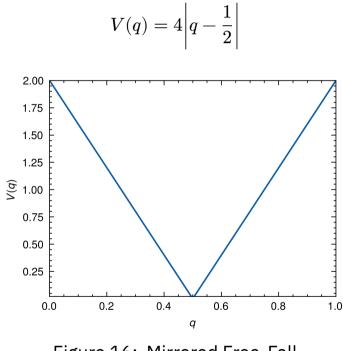


Figure 16: Mirrored Free-Fall

• Softened Mirrored Free-Fall

$$V(q) = \frac{4}{\coth\left(\frac{\alpha}{2}\right)} \left(q - \frac{1}{2}\right) \coth\left(\alpha \left(q - \frac{1}{2}\right)\right)$$

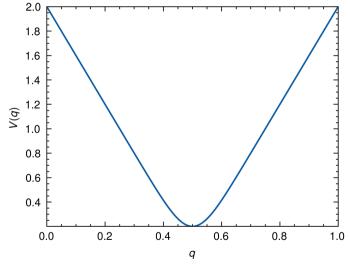


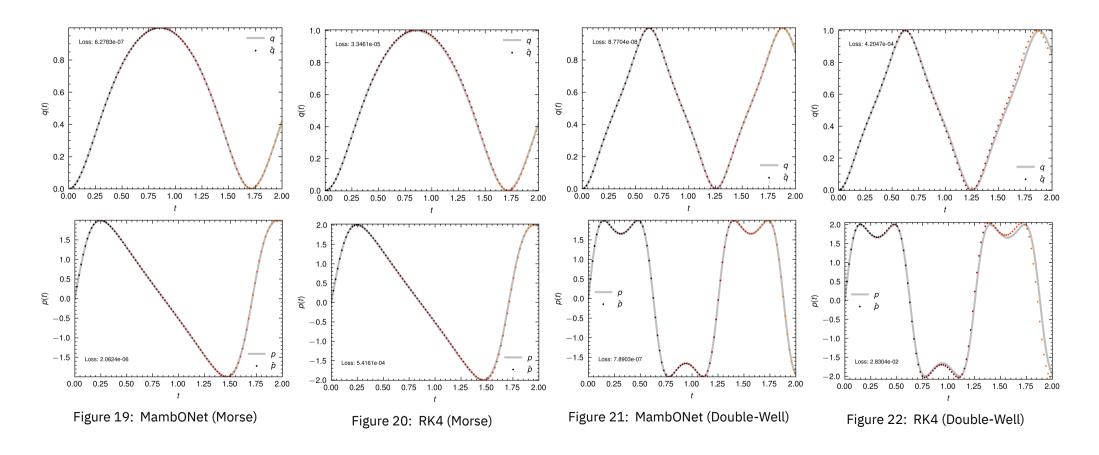
Figure 17: Softened Mirrored Free-Fall

Test Results on Physically Relevant Potentials

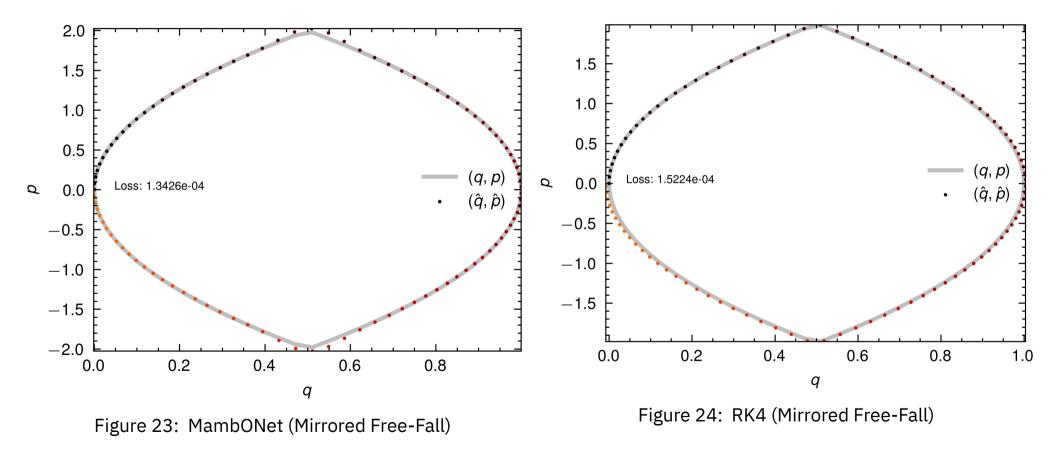
Model	SHO	Double Well	Morse	MFF	SMFF
RK4	3.3663×10^{-5}	1.4362×10^{-2}	2.8753×10^{-4}	1.5224×10^{-4}	4.1551×10^{-5}
DeepONet	2.4951×10^{-4}	8.9770×10^{-2}	4.7225×10^{-2}	2.5406×10^{-2}	1.5242×10^{-2}
TraONet	1.0145×10^{-6}	2.2207×10^{-6}	7.6594×10^{-6}	1.0228×10^{-4}	$\underline{3.3919\times10^{-5}}$
VaRONet	1.9729×10^{-7}	8.8354×10^{-7}	2.3114×10^{-6}	2.0465×10^{-4}	7.2018×10^{-5}
MambONet	1.4197×10^{-7}	4.3837×10^{-7}	1.3451×10^{-6}	$\underline{1.3426\times10^{-4}}$	1.9754×10^{-6}

Table 5: Performance on physically relevant potentials (Total Loss \mathcal{L}_{tot})

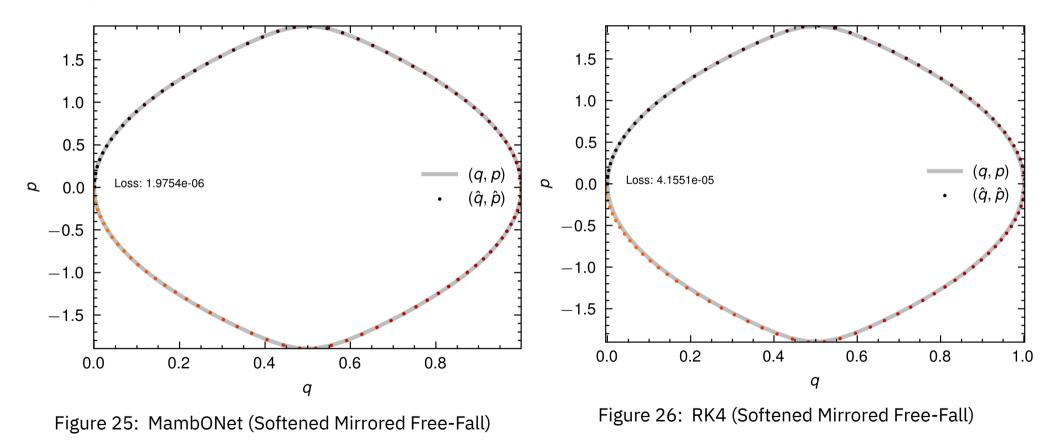
Test Results on Physically Relevant Potentials



Extrapolation Test

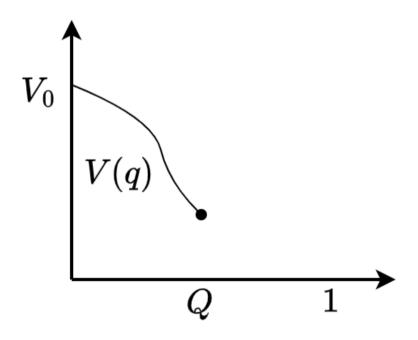


Extrapolation Test



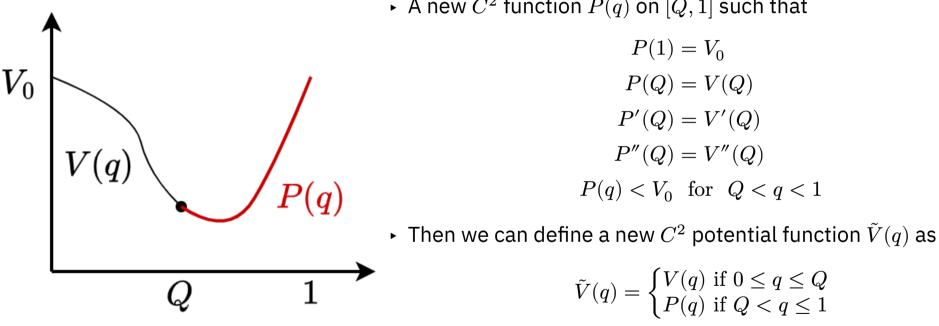
How about unbounded?

- Consider a monotonically decreasing C^2 potential V(q) defined on [0, Q], where 0 < Q < 1 and $V(0) = V_0$



How about unbounded?

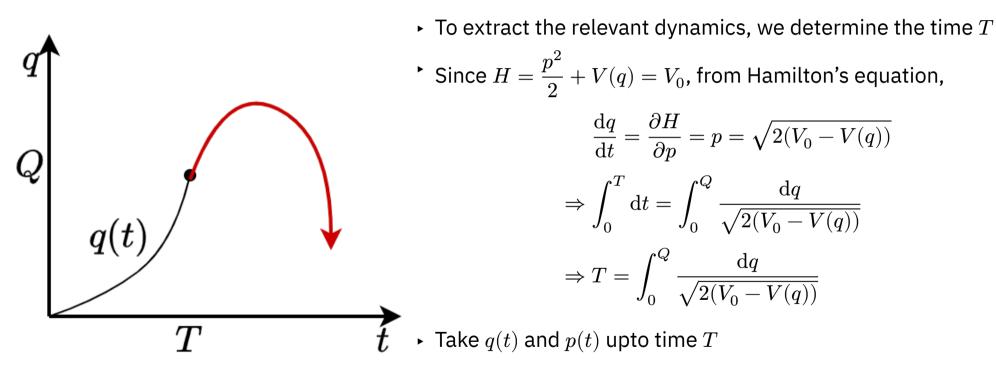
• Consider a monotonically decreasing C^2 potential V(q) defined on [0, Q], where 0 < Q < 1 and $V(0) = V_0$



• A new C^2 function P(q) on [Q, 1] such that

How about unbounded?

- Input new potential function $ilde{V}(q)$ into the model, then we can get q(t) and p(t)



Example: Free-Fall

- Consider a free fall potential: $V(q) = -4(q 0.5), \quad (0 \le q \le 0.5)$ [Answer: $q(t) = 2t^2, p(t) = 4t$]
 - From the previous conditions, we can find a cubic function $P(q) = 32q^3 48q^2 + 20q 2$

• Obtain the time
$$T = \int_0^{\frac{1}{2}} \frac{\mathrm{d}q}{\sqrt{2(2-V(q))}} = \int_0^{\frac{1}{2}} \frac{\mathrm{d}q}{\sqrt{8q}} = 0.5$$

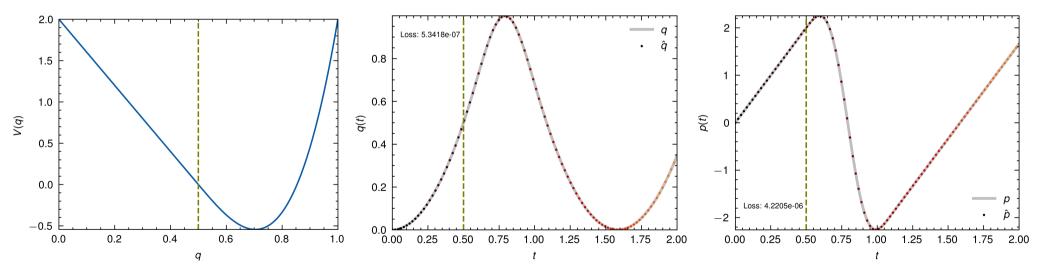


Figure 27: (Left) New potential function $\tilde{V}(q)$, (Middle) q(t), (Right) p(t); Olive dashed line marks the relevant area.

Large Neural Hamilton

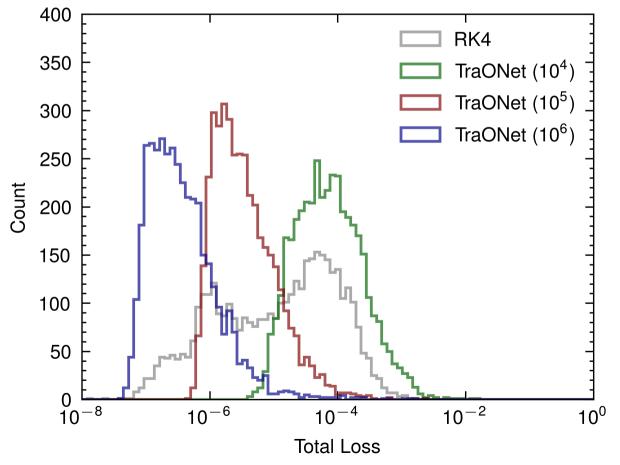


Figure 28: Loss histogram for TraONet trained on different dataset sizes

Neural Hamilton [2410.20951]

Thank you & Nice to meet you

Supplements

Operator formulation of Hamilton's equation

- Let denote $x(t) = [q(t), p(t)]^T$ then we can rewrite the Hamilton's equation as

$$\begin{cases} \dot{q} = \frac{\partial H}{\partial p} \\ \dot{p} = -\frac{\partial H}{\partial q} \implies \dot{x} = J\nabla H \quad \text{where } J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

• For $H \in C^2(\mathbb{R}^2, \mathbb{R})$ with non divergent x(t), we can find the solution:

$$x(t) = x(0) + \int_0^t J \nabla H[x(\tau)] \mathrm{d}\tau$$

and we can describe it as an operator $G: H(q, p) \mapsto (q(t), p(t))$:

$$G(H)(t) = x(t) = \begin{pmatrix} q(t) \\ p(t) \end{pmatrix}$$

• For simplicity, we assume the kinetic term is $p^2/2$ and consider the operator \tilde{G} as follows.

$$\tilde{G} = G \circ \Phi \quad \text{where} \quad \Phi(V)(q,p) = \frac{p^2}{2} + V(q) \quad \Longrightarrow \quad \tilde{G}[V(q)] = G\left[\frac{p^2}{2} + V(q)\right] = \begin{pmatrix} q(t) \\ p(t) \end{pmatrix}$$