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Hamiltonian Mechanics

Hamiltonian Mechanics

Figure 1: Sir William
Rowan Hamilton

• In 1833, Sir William Rowan Hamilton introduces a reformulation of Lagrangian
mechanics - Hamiltonian mechanics [W. R. Hamilton, PD Hardy (1833)]

• With 𝑝 = 𝜕𝐿
𝜕 ̇𝑞

, Hamiltonian is defined by the Legendre transform

𝐻(𝑞, 𝑝) = 𝑝 ̇𝑞 − 𝐿

Lagrangian Mechanics
On configuration space (𝑞, ̇𝑞)

𝐿 = 𝑇 − 𝑉

d
d𝑡

(𝜕𝐿
𝜕 ̇𝑞

) − 𝜕𝐿
𝜕𝑞

= 0

Hamiltonian Mechanics
On phase space (𝑞, 𝑝)

𝐻 = 𝑝 ̇𝑞 − 𝐿

̇𝑞 = 𝜕𝐻
𝜕𝑝

, ̇𝑝 = −𝜕𝐻
𝜕𝑞
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Hamiltonian Mechanics

How to solve Hamilton's equation?

T.-G. Kim, S. C. Park Neural Hamilton [2410.20951] 3



Hamiltonian Mechanics
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Hamiltonian Mechanics

How to solve Hamilton's equation?

Q. Can A.I. do this process?
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Figure 2:  A.I. Hierarchy

• In this work, Artificial Intelligence refers to (Artificial) Neural Networks (NN)

• Neural Network finds 𝑓  that best maps input to output:

Training Data 𝒟 = {(𝑥𝑖, 𝑦𝑖)}
𝑛
𝑖=1 ⟹ Learn 𝑓 such that 𝑦𝑖 ≈ 𝑓(𝑥𝑖)

• The convergence is guaranteed by Universal Approximation Theorem (UAT)
[Lu et al., NeurIPS (2017); G. Cybenko, MCSS (1989)]
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Figure 2:  A.I. Hierarchy

• In this work, Artificial Intelligence refers to (Artificial) Neural Networks (NN)

• Neural Network finds 𝑓  that best maps input to output:

Training Data 𝒟 = {(𝑥𝑖, 𝑦𝑖)}
𝑛
𝑖=1 ⟹ Learn 𝑓 such that 𝑦𝑖 ≈ 𝑓(𝑥𝑖)

• The convergence is guaranteed by Universal Approximation Theorem (UAT)
[Lu et al., NeurIPS (2017); G. Cybenko, MCSS (1989)]

Q. But, how to approximate 𝐺 : 𝐻(𝑞, 𝑝) ↦ (𝑞(𝑡), 𝑝(𝑡))?
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Operator Learning

Operator Learning
• Universal Approximation Theorem for Operator

[Lu et al., Nat. Mach. Intell. (2021); Chen & Chen, IEEE Trans. Neural Netw. (1995)]

• DeepONet [Lu et al., Nat. Mach. Intell. (2021)]

‣ Task: Approximate the operator 𝐺 : 𝑢(𝑥) ↦ 𝐺(𝑢)(𝑦)
‣ Train data

– Discretization of input function [𝑢(𝑥1), …, 𝑢(𝑥𝑚)]
– Query point 𝑦
– Output function as label 𝐺(𝑢)(𝑦)

Figure 3: DeepONet structure
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Operator Learning

Example: Anti-Derivative
• Task: For 𝑢 ∈ 𝐶[0, 1] and 𝑦 ∈ [0, 1], learn the operator such that

𝐺(𝑢)(𝑦) = ∫
𝑦

0
𝑢(𝑥)d𝑥

• Input data
‣ 𝑢: Input function from Gaussian Random Field

𝑢(𝑥) = Spline[{(𝑥𝑖, GRF(𝑥𝑖))}
𝑚
𝑖=1](𝑥)

‣ 𝑦: Target point

• Label

𝐺(𝑢𝑖)(𝑦𝑗) = ∫
𝑦𝑗

0
𝑢𝑖(𝑥)d𝑥

Figure 4: (Top) 𝑢(𝑥) and (Bottom) 𝐺(𝑢)(𝑦)
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Operator Learning

Example: Anti-Derivative

Figure 5:  (Left) Test for one GRF sample and (Right) test for cosine function
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Neural Hamilton

Operator Learning for Hamilton's Equation
• Task: For 𝐻(𝑞, 𝑝) = 𝑝2

2
+ 𝑉 (𝑞), approximate the operator 𝐺 : 𝑉 (𝑞) ↦ (𝑞(𝑡), 𝑝(𝑡))

• Constraints

‣ From the UAT for operator, domain & range of 𝑉  and 𝑞, 𝑝 should be compact

– Simply making 𝑉 (𝑞) bounded on a compact
domain is insufficient

– Even with that kind of potential, trajectories may
escape the domain

– As shown in the figure, 𝑞(𝑡) can exceed the
boundary 𝑄 before time 𝑇

– This leads to an ill-defined problem where 𝑉 (𝑞)
doesn’t exist for 𝑞 > 𝑄

T.-G. Kim, S. C. Park Neural Hamilton [2410.20951] 11
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Operator Learning for Hamilton's Equation
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• Constraints

‣ From the UAT for operator, domain & range of 𝑉  and 𝑞, 𝑝 should be compact

⇒ Consider “bounded” potential

‣ From the operator formulation, 𝑉  must be twice continuously differentiable (𝐶2)

– This ensures the existence and uniqueness of solutions

– Required for the operator 𝐺 to be well-defined
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Neural Hamilton

Operator Learning for Hamilton's Equation
• Task: For 𝐻(𝑞, 𝑝) = 𝑝2

2
+ 𝑉 (𝑞), approximate the operator 𝐺 : 𝑉 (𝑞) ↦ (𝑞(𝑡), 𝑝(𝑡))

• Constraints

‣ From the UAT for operator, domain & range of 𝑉  and 𝑞, 𝑝 should be compact

⇒ Consider “bounded” potential

‣ From the operator formulation, 𝑉  must be twice continuously differentiable (𝐶2)

– This ensures the existence and uniqueness of solutions

– Required for the operator 𝐺 to be well-defined

⇒ Use “Cubic B-Spline” to generate potentials
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Neural Hamilton

Data Generation

Figure 6:  Potential function 𝑉 (𝑞)

Figure 7:  Trajectory 𝑞(𝑡) and 𝑝(𝑡)

• Generate random potential with GRF
+ Cubic B-Spline

‣ 𝑉 (0) = 𝑉 (1) = 2

‣ 𝑉 (𝑞) < 2 for 0 < 𝑞 < 1

‣ Standard dataset: 10,000,
Extended dataset: 100,000

• Solve Hamilton’s equation with
Gauss-Legendre 4th order (GL4) to
generate trajectories.

‣ Initial condition: 𝑞(0) = 𝑝(0) = 0

‣ Time: 0 ≤ 𝑡 ≤ 2

T.-G. Kim, S. C. Park Neural Hamilton [2410.20951] 15



Neural Hamilton

Models

Figure 8:  Models for Neural Hamilton.
(Red Dashed Box) DeepONet, (Green Solid Box) VaRONet, (Blue Dashed Box) TraONet and (Purple Solid Box) MambONet

T.-G. Kim, S. C. Park Neural Hamilton [2410.20951] 16



Neural Hamilton

A Result

Figure 9:  Potential function 𝑉 (𝑞)

Figure 10:  Trajectory 𝑞(𝑡) and 𝑝(𝑡)

Figure 11:  Phase space plot

T.-G. Kim, S. C. Park Neural Hamilton [2410.20951] 17



Neural Hamilton

Test Results

Figure 12:  Histogram for total test losses for (left) standard dataset and (right) extended dataset

ℒtot = 1
2
(ℒ𝑞 + ℒ𝑝) = 1

2𝑁
∑
𝑁

𝑖=1
(‖𝑞𝑖(𝒕) − 𝑞𝑖(𝒕))‖2 + ‖𝑝𝑖(𝒕) − 𝑝𝑖(𝒕))‖2)
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Neural Hamilton

Physically Relevant Potentials

• Simple Harmonic Oscillator

𝑉 (𝑞) = 8(𝑞 − 1
2
)

2

Figure 13:  SHO

• Double-Well Potential

𝑉 (𝑞) = 625
8

(𝑞 − 1
5
)

2
(𝑞 − 4

5
)

2

Figure 14:  Double-Well

• Morse Potential

𝑉 (𝑞) = 8

(
√

5 − 1)
2 (1 − 𝑒−𝑎(𝑞−1/3))2

Figure 15:  Morse
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Neural Hamilton

Physically Relevant Potentials

• Mirrored Free-Fall

𝑉 (𝑞) = 4|𝑞 − 1
2
|

Figure 16:  Mirrored Free-Fall

• Softened Mirrored Free-Fall

𝑉 (𝑞) = 4
coth(𝛼

2 )
(𝑞 − 1

2
) coth(𝛼(𝑞 − 1

2
))

Figure 17:  Softened Mirrored Free-Fall
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Neural Hamilton

Test Results on Physically Relevant Potentials
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Neural Hamilton

Test Results on Physically Relevant Potentials

Figure 19:  MambONet (Morse) Figure 20:  RK4 (Morse) Figure 21:  MambONet (Double-Well) Figure 22:  RK4 (Double-Well)

T.-G. Kim, S. C. Park Neural Hamilton [2410.20951] 22



Neural Hamilton

Extrapolation Test

Figure 23:  MambONet (Mirrored Free-Fall) Figure 24:  RK4 (Mirrored Free-Fall)

T.-G. Kim, S. C. Park Neural Hamilton [2410.20951] 23



Neural Hamilton

Extrapolation Test

Figure 25:  MambONet (Softened Mirrored Free-Fall) Figure 26:  RK4 (Softened Mirrored Free-Fall)
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Neural Hamilton

How about unbounded?

• Consider a monotonically decreasing 𝐶2 potential 𝑉 (𝑞) defined on [0, 𝑄], where 0 < 𝑄 < 1 and 𝑉 (0) = 𝑉0
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Neural Hamilton

How about unbounded?

• Consider a monotonically decreasing 𝐶2 potential 𝑉 (𝑞) defined on [0, 𝑄], where 0 < 𝑄 < 1 and 𝑉 (0) = 𝑉0

‣ A new 𝐶2 function 𝑃(𝑞) on [𝑄, 1] such that

𝑃(1) = 𝑉0

𝑃(𝑄) = 𝑉 (𝑄)
𝑃 ′(𝑄) = 𝑉 ′(𝑄)
𝑃 ″(𝑄) = 𝑉 ″(𝑄)

𝑃(𝑞) < 𝑉0  for 𝑄 < 𝑞 < 1

‣ Then we can define a new 𝐶2 potential function 𝑉 (𝑞) as

𝑉 (𝑞) = {𝑉 (𝑞) if 0 ≤ 𝑞 ≤ 𝑄
𝑃(𝑞) if 𝑄 < 𝑞 ≤ 1

T.-G. Kim, S. C. Park Neural Hamilton [2410.20951] 26



Neural Hamilton

How about unbounded?
• Input new potential function 𝑉 (𝑞) into the model, then we can get 𝑞(𝑡) and 𝑝(𝑡)

‣ To extract the relevant dynamics, we determine the time 𝑇

‣ Since 𝐻 = 𝑝2

2
+ 𝑉 (𝑞) = 𝑉0, from Hamilton’s equation,

d𝑞
d𝑡

= 𝜕𝐻
𝜕𝑝

= 𝑝 = √2(𝑉0 − 𝑉 (𝑞))

⇒ ∫
𝑇

0
d𝑡 = ∫

𝑄

0

d𝑞
√2(𝑉0 − 𝑉 (𝑞))

⇒ 𝑇 = ∫
𝑄

0

d𝑞
√2(𝑉0 − 𝑉 (𝑞))

‣ Take 𝑞(𝑡) and 𝑝(𝑡) upto time 𝑇

T.-G. Kim, S. C. Park Neural Hamilton [2410.20951] 27



Neural Hamilton

Example: Free-Fall
• Consider a free fall potential: 𝑉 (𝑞) = −4(𝑞 − 0.5), (0 ≤ 𝑞 ≤ 0.5) [Answer: 𝑞(𝑡) = 2𝑡2, 𝑝(𝑡) = 4𝑡]

‣ From the previous conditions, we can find a cubic function 𝑃(𝑞) = 32𝑞3 − 48𝑞2 + 20𝑞 − 2

‣ Obtain the time 𝑇 = ∫
1
2

0

d𝑞
√2(2 − 𝑉 (𝑞))

= ∫
1
2

0

d𝑞√
8𝑞

= 0.5

Figure 27:  (Left) New potential function 𝑉 (𝑞), (Middle) 𝑞(𝑡), (Right) 𝑝(𝑡); Olive dashed line marks the relevant area.
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Neural Hamilton

Large Neural Hamilton

Figure 28:  Loss histogram for TraONet trained on different dataset sizes
T.-G. Kim, S. C. Park Neural Hamilton [2410.20951] 29



Neural Hamilton

Thank you
&

Nice to meet you

T.-G. Kim, S. C. Park Neural Hamilton [2410.20951] 30
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Operator formulation of Hamilton's equation

Operator formulation of Hamilton's equation

• Let denote 𝑥(𝑡) = [𝑞(𝑡), 𝑝(𝑡)]𝑇  then we can rewrite the Hamilton’s equation as

{{
{
{{ ̇𝑞 = 𝜕𝐻

𝜕𝑝

̇𝑝 = −𝜕𝐻
𝜕𝑞

⟹ ̇𝑥 = 𝐽∇𝐻 where 𝐽 = ( 0
−1

1
0)

• For 𝐻 ∈ 𝐶2(ℝ2, ℝ) with non divergent 𝑥(𝑡), we can find the solution:

𝑥(𝑡) = 𝑥(0) + ∫
𝑡

0
𝐽∇𝐻[𝑥(𝜏)]d𝜏

and we can describe it as an operator 𝐺 : 𝐻(𝑞, 𝑝) ↦ (𝑞(𝑡), 𝑝(𝑡)):

𝐺(𝐻)(𝑡) = 𝑥(𝑡) = (𝑞(𝑡)
𝑝(𝑡))

• For simplicity, we assume the kinetic term is 𝑝2/2 and consider the operator 𝐺̃ as follows.

𝐺̃ = 𝐺 ∘ Φ  where Φ(𝑉 )(𝑞, 𝑝) = 𝑝2

2
+ 𝑉 (𝑞) ⟹ 𝐺̃[𝑉 (𝑞)] = 𝐺[𝑝2

2
+ 𝑉 (𝑞)] = (𝑞(𝑡)

𝑝(𝑡))

T.-G. Kim, S. C. Park Neural Hamilton [2410.20951] 32


	Hamiltonian Mechanics
	How to solve Hamilton's equation?
	How to solve Hamilton's equation?
	How to solve Hamilton's equation?
	Neural Network
	Neural Network
	Operator Learning
	Example: Anti-Derivative
	Example: Anti-Derivative
	Operator Learning for Hamilton's Equation
	Operator Learning for Hamilton's Equation
	Operator Learning for Hamilton's Equation
	Operator Learning for Hamilton's Equation
	Data Generation
	Models
	A Result
	Test Results
	Physically Relevant Potentials
	Physically Relevant Potentials
	Test Results on Physically Relevant Potentials
	Test Results on Physically Relevant Potentials
	Extrapolation Test
	Extrapolation Test
	How about unbounded?
	How about unbounded?
	How about unbounded?
	Example: Free-Fall
	Large Neural Hamilton
	
	Operator formulation of Hamilton's equation

