

Forward Physics with ALICE FoCal detector

Takahiro Fusayasu Saga University

- 1. Introduction to ALICE experiment
- 2. QGP discovery and measurements
- 3. CGC: how the QGP generated?
- 4. FoCal development

Forward Physics with ALICE FoCal detector

Takahiro Fusayasu Saga University

- 1. Introduction to ALICE experiment
- 2. QGP discovery and measurements
- 3. CGC: how the QGP generated?
- 4. FoCal development

World highest energyMontBlancaccelerator in Geneva

ATLAS

LHCb

YSWS 21th T. Fusayasu @ Saga U

ALICE detector photo

Pb-Pb collision data by ALICE

• ALICE detector is designed for heavy ion studies with Pb-Pb, p-Pb, pp collisions. • Multiplicity ranges up to ~3000 for $|\eta|<0.8$

Pb-Pb collision data by ALIC

Run:244918 Timestamp:2015-11-25 11:25:36(UTC) System: Pb-Pb Energy: 5.02 TeV ALICE, AA collisions, charged particles $|\eta| < 0.8, 0.15 \text{ GeV/}c < p_T < 10 \text{ GeV/}c$

500

1000

Ω

♦ 8.16 TeV

∮ 5.02 TeV

Pb-Pb, 5.02 TeV
 Pb-Pb, 2.76 TeV
 Xe-Xe, 5.44 TeV

2000

1500

3000

 $N_{\rm ch}$

2500

• ALICE detector is designed for heavy ion studies with • Multiplicity ranges up to ~3000 for $|\eta|$ <0.8

Forward Physics with ALICE FoCal detector

Takahiro Fusayasu Saga University

- 1. Introduction to ALICE experiment
- 2. QGP discovery and measurements
- 3. CGC: how the QGP generated?
- 4. FoCal development

Quark-Gluon Plasma

Proton, neutron, other hadrons

Quarks are bound by gluons, which mediate strong interactions Energy in a flux tube of volume *v*: $V = \rho v = \rho ar \ln \beta de$ hadrons $V \propto \frac{A}{r} + Br$ Huge force if large r. Cannot extract a quark.

Quark-Gluon Plasma

Protons, neutrons

High T, high P

Quark-Gluon Plasma (QGP)

Phases of Quark matter (QCD)

11 YSWS 21th T. Fusayasu @ Saga U

Compared to water phase diagram (QED). This is the QCD phase diagram.

Baryon Chemical Potential μ_B

12

History of the Universe

History of the Universe

YSWS 21th T. Fusayasu @ Saga U

System development after collisions

15 YSWS 21th T. Fusayasu @ Saga U

- Gold ions pass through each other
 - High momentum (high-x) partons fly away
 - Low momentum (low-x) gluons remain in the mid-rapidity (y=0), and create "gluon matter"
- (Pre-equilibrium) Gluon plasma \rightarrow QGP \rightarrow Hadronization
- Transition temperature (quark to hadron) : T=~180MeV
- Energy density: >2GeV/fm³
 - Estimate from Lattice QCD calculation

- In 2005, RHIC experiments discovered generation of the QGP state, which is high-T, high-density material.
- QGP had been expected to be a gas-like state, but the discovered QGP was almost perfect fluid, i.e. fluid with very low viscosity.
- LHC (2009~) measurements follow the RHIC results.

- However, jet reconstruction was difficult in heavy ion collision experiments.
- Instead, high P_T hadrons (π⁰ etc.) are observed, which are leading particles from jets and carry a large fraction of jet momentum.
- Energy loss of the partons at RHIC are initially observed by high-p_T π^{0} .

YSWS 21th

T. Fusayasu @ Saga U

SCA UNIVERSIT

18 YSWS 21th T. Fusayasu @ Saga U

- Hard scattering probability is so large at LHC that the observation of reconstructed jets and their energy loss became possible.
- Back-to-back jets are observed. Energy of sub-leading jets is significantly lower than that of leading jets.

YSWS 21th T. Fusayasu @ Saga U

20

ATLAS has successfully measured asymmetry of energies of back-to-back jets.

$$A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}, \qquad \Delta \phi > \frac{\pi}{2},$$

- Central Pb+Pb points deviate from p+p and estimated Pb+Pb distribution without energy loss.
 - \rightarrow The deviation corresponds to 30-40% loss of jet energy.

QGP property: Collective flow of particles

QGP is found to be almost perfect fluid

22 YSWS 21th T. Fusayasu @ Saga U

Non-central collision generates almond-shaped QGP.

X

If the QGP is gas, particles flow isotropically regardless of the QGP shape.

If the QGP is fluid, the scattered particles reflect the shape of the QGP.

- PHENIX (RHIC) and ATLAS (LHC) v_n analysis results are compared with a hydrodynamics model \rightarrow QGP is modeled as fluid consisting of partons.
- \cdot The model reproduces the higher order flow at RHIC and LHC very well.
- Almost perfect fluid is realized at RHIC (η /s from quantum limit ~ 1/4 π ~ 0.08)

- Thermal photons are emitted from all the stages after collisions.
- Penetrate the system unscattered after emission, because "no strong interaction".
 → carry out QGP information such as temperature.
- Photons are produced by Compton scattering or q-qbar annihilation at LO.

 Π_{em} : photon self energy

$$\mathrm{Im}\Pi_{em}(\omega,k)\approx \ln\left(\frac{\omega T}{\left(m_{th}(\approx gT)\right)^{2}}\right)$$

- Thermal photon distribution will be expressed by the product of
 - Bose distribution, and
 - transition probability of QGP
- Fitting the model to the experiment data gives QGP temperature.

 $\frac{1}{\sqrt{dy}}$ (GeV⁻²c²)

3

YSWS 21th T. Fusayasu @ Saga U

In this way, the obtained temperatures are:

- RHIC, Au+Au 200GeV: $T_{ave} = ~220 \text{ MeV} = 2.5 \text{ trillion K}$
- · LHC, Pb+Pb 2.76TeV: $T_{ave} = ~304 \text{ MeV} = 3.5 \text{ trillion K}$

- Quark gluon plasma (QGP), which is the state of very early universe (10us after bigbang), can be investigated by heavy-ion collider experiments.
- \cdot As a sign of QGP, jet quench phenomena were observed.
- From particle flow study, QGP was found to be **almost complete fluid**.
- These studies were first performed at RHIC experiments and more precisely performed at LHC experiments.
- QGP temperature was measured from thermal photons and the results are consistent with expected QGP temperature.

Forward Physics with ALICE FoCal detector

Takahiro Fusayasu Saga University

- 1. Introduction to ALICE experiment
- 2. QGP discovery and measurements
- 3. CGC: how the QGP generated?
- 4. FoCal development

Unknown !

• What is the initial condition?

- What is the mitial condition? ondensate (CGC)?
 Why so rapidly thermalized (t=0.6 fm/c)?
 → No clear evidence for the CGC yet.
- · Woxies engines for containing the second solution of the second second
- -ipitinstabilitynofCstpongneolopifield? thermalized QGP
- Initial condition ↔ CGC strong color fields ↔ thermalized QGP

Deep Inelastic Scattering (DIS) basics

YSWS 21th T. Fusayasu @ Saga U

Lorentz invariant variables $Q^2 \equiv -q^2$: photon's virtuality $x \equiv \frac{Q^2}{2 p \cdot q}$: Bjorken variable

Physics meanings

Q²: Transverse resolution

x: Longitudinal momentum fraction of parton

DIS resolves the target proton in vertical and horizontal scales.

ep / eA DIS works as an electron microscope on proton/nucleus

Higher Q² dissolves gluon contributions!

Q² evolution: DGLAP evolution equation

YSWS 21th T. Fusayasu @ Saga U

Linear QCD evolution in Q² is established by the DGLAP equation.

Proton structure at high energy, low-x

YSWS 21th T. Fusayasu @ Saga U

Mechanism of multipole gluon creations

- · Lifetime of parton's fluctuations: $p \rightarrow$ Larger, Lifetime \rightarrow Longer
- Probability of fluctuation generation: $x \rightarrow$ smaller, Prob. \rightarrow Larger

→ At high energy, increased small fluctuations exponentially !

by T. Chujo

proton

nucleus

CGC!

Large x mid-rapidity

Low energy scattering

 $x \approx \frac{2p_T}{r} \exp^{-\eta}$

Small x

forward rapidity High energy scattering

SCA UNIVERSIT

Up to now, evolution was successfully examined by measurements. (expected to be) Saturation region is not explored yet. Forward pA collision makes x_A << 1

37 YSWS 21th T. Fusayasu @ Saga U

Final state: $p_{T,1}, y_1 = p_{T,2}, y_2$

$$x_p = \frac{p_{T,1}e^{y_1} + p_{T,2}e^{y_2}}{\sqrt{s}} \qquad \qquad x_A = \frac{p_{T,1}e^{-y_1} + p_{T,2}e^{-y_2}}{\sqrt{s}}$$

Central rapidities probe moderate x $x_p \sim x_A < 1$

forward/central doesn't probe smaller x

 $x_p \sim 1, x_A < 1$

forward rapidities probe small x

 $x_p \sim 1, x_A \ll 1$

Why nucleus?

 \rightarrow gluon saturates faster than p by $^{3}\sqrt{A} \sim 6$ (Pb case)

https://www.bnl.gov/today/body_pics/2022/08/proton-collision-hr.jpg

- There are several indications of gluon saturation from data vs. theory by RHIC experiments and LHC experiments.
- However, both CGC and linear QCD evolution can describe the data most of the cases.
- Uncertainties on probe: Hadron \rightarrow final state interactions.

inclusive π^0 , jet, direct γ , γ -jet, di-jet

integrated σ , structure functions (F₂, F_L)

Bł

Forward LHC (pA) vs. EIC (eA)

YSWS 21th T. Fusayasu @ Saga U

- Forward LHC (+RHIC) and EIC are complementary: together they provide a huge lever arm in x
- Forward LHC: Significantly lower x
- EIC: Precision control of kinematics + polarization
- Multi-messenger program to test QCD universality: does saturation provide a coherent description of all observables, and is therefore a universal description of the high gluon density regime?

Forward Physics with ALICE FoCal detector

Takahiro Fusayasu Saga University

- 1. Introduction to ALICE experiment
- 2. QGP discovery and measurements
- 3. CGC: how the QGP generated?

4. FoCal development

YSWS 21th T. Fusayasu @ Saga U

43

Last update: November 24

FoCal Japan

Responsibilities:

(1) FoCal-E pad, (2) readout and trigger

- Univ. of Tsukuba
- **Tsukuba Univ. of Tech**
- **RIKEN**
- Hiroshima Univ.
- Nara Women's Univ.
- Saga Univ.
- Nagasaki Inst. of App. **Sciences**
- Kumamoto Univ. \bigcirc
- Univ. of Tokyo CNS

6

NIKEN

熊本大学

9 institute, ~25 members

SAGA UNIVERSITY 国立大学法人

佐賀大学

45

Uniqueness of FoCal detector

PS/SPS test beam in 2022

- 1) High two photon separation power (<~5mm, energy resolution ~3%)
- 2) Wide energy dynamic rage (from 1 MIP to TeV EM showers)
- 3) High radiation tolerance (10¹³ (1MeV neutrons) / cm²)

→FoCal-E pad: mainly developed by FoCal-Japan group

by T. Chujo

Saga U. \rightarrow Mass evaluation of HGCROCv3 readout chips Look at the slides by M. Yokoyama

Saturation signal in FoCal

46

- Pb–Pb at $\sqrt{s_{NN}}$ =5.02 TeV: 3 months; \mathcal{L} =7 nb⁻¹;
- pp at $\sqrt{s}=14$ TeV: ≈ 18 months, $\mathcal{L}=150$ pb⁻¹;

by T. Chujo

- Expected gluon saturation (CGC) in small-x, not yet clear evidence
- Excellent probe: isolated photons from quark-gluon Compton scattering

<u>図5:本研究で開発するFoCalトリガ・読み出しシステムの全体図</u>

- ALICE readout rate: 1MHz (pp), 500kHz (p-Pb)
- PIXEL readout (ALPIDE) is not fast enough! ~100kHz
- PIXEL trigger should delay by 1.2us \rightarrow Physics triggering of PIXEL is difficult.
- Our plan: For the tower with important signals, ROI (Region Of Interest) trigger is issued. PIXELs with ROI and neighboring PIXELs are chosen to be readout.
 - \rightarrow Japanese group's important task!

- QGP was discovered and its characteristics were measured by RHIC and LHC experiments. The QGP was found to be almost perfect fluid.
- Pre-QGP state is not identified and generation process of the QGP is unknown.
- CGC is a candidate of pre-QGP state. ALICE FoCal is appropriate for low-Q², very low-x studies and being prepared for LHC LS3 installation.
 Combined with future EIC experiment results, wide range of x evolution is expected to be established, together with discovery of gluon saturation modeled by CGC.