

Forward Physics with ALICE FoCal detector

Takahiro Fusayasu Saga University

- 1. Introduction to ALICE experiment
- 2. QGP discovery and measurements
- 3. CGC: how the QGP generated?
- 4. FoCal development

Forward Physics with ALICE FoCal detector

Takahiro Fusayasu Saga University

- 1. Introduction to ALICE experiment
- 2. QGP discovery and measurements
- 3. CGC: how the QGP generated?
- 4. FoCal development

World highest energy **MontBlanc** accelerator in Geneva **TO SALA ON OR**

$ATLAS$

p p

LHCb

Pb \longrightarrow Pb

YSWS 21th
T. Fusayasu @ Saga U

YSWS 21th ALICE detector photo T. Fusayasu @ Saga U

Pb-Pb collision data by ALICE YSWS 21th T. Fusayasu @ Saga U

• ALICE detector is designed for heavy ion studies with Pb-Pb, p-Pb, pp collisions. • Multiplicity ranges up to ~3000 for $|\eta|$ < 0.8

Pb-Pb collision data by ALIC 10^{-2}

3un:24491 Timestamp:2015-11-25 11:25:36(UTC) System: Pb-Pb

 \cdot ALICE detector is designed for heavy ion studies with • Multiplicity ranges up to ~3000 for $|\eta|$ < 0.8

7 **8.16 TeV 5.02 TeV** T

ALICE, AA collisions, charged particles lηl < 0.8, 0.15 GeV/*c* < ρ_τ < 10 GeV/*c*

40 200 80 200

 \mathbf{a}

Pb−Pb, 5.02 TeV Į. Pb−Pb, 2.76 TeV Xe−Xe, 5.44 TeV

0 500 1000 1500 2000 2500 3000

 N_{ch}

Forward Physics with ALICE FoCal detector

Takahiro Fusayasu Saga University

- 1. Introduction to ALICE experiment
- 2. QGP discovery and measurements
- 3. CGC: how the QGP generated?
- 4. FoCal development

Quark-Gluon Plasma

T. Fusayasu @ Saga U

9

Proton, neutron, other hadrons

Quarks are bound by gluons, which mediate strong interactions

V ∝ *A r* + *Br* Huge force if large r.

Cannot extract a quark.

Quark-Gluon Plasma

T. Fusayasu @ Saga U

Protons, neutrons Quark-Gluon Plasma (QGP)

High T, high P

No boundary between p, n. Quarks and gluons are free.

Phases of Quark matter (QCD) $\frac{1}{T}$ $\$

11

Compared to water phase diagram (QED). This is the QCD phase diagram.

Baryon Chemical Potential μ_B

History of the Universe T. Fusayasu @ Saga U

12

$Mistory$ of the Universe T. Fusayasu @ Saga U

13

$Mistory$ of the Universe T. Fusayasu @ Saga U

System development after collisions YSWS 21th T. Fusayasu @ Saga U

YSWS 21th

- Gold ions pass through each other \bullet
	- High momentum (high-x) partons fly away
	- Low momentum (low-x) gluons remain in the mid-rapidity (y=0), and
create "gluon matter"
- (Pre-equilibrium) Gluon plasma \rightarrow QGP \rightarrow Hadronization \bullet
- Transition temperature (quark to hadron) : $T = 180$ MeV \bullet
- Energy density: >2 GeV/fm³ \bullet
	- Estimate from Lattice QCD calculation

- In 2005, RHIC experiments discovered generation of the QGP state, which is high-T, high-density material.
- QGP had been expected to be a gas-like state, but the discovered QGP was almost perfect fluid, i.e. fluid with very low viscosity.
- LHC (2009~) measurements follow the RHIC results.

17

- Hard scattered partons lose their energies in the QGP via gluon radiation or parton collisions.
- However, jet reconstruction was difficult in heavy ion collision experiments.
- Instead, high P_T hadrons (π ⁰ etc.) are observed, which are leading particles from jets and carry a large fraction of jet momentum.
- Energy loss of the partons at RHIC are initially observed by high-p $\tau \pi^0$.

18

- Hard scattering probability is so large at LHC that the observation of reconstructed jets and their energy loss became possible.
- Back-to-back jets are observed. Energy of sub-leading jets is significantly lower than that of leading jets.

YSWS 21th

• ATLAS has successfully measured asymmetry of energies of back-to-back jets.

$$
A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}, \qquad \Delta \phi > \frac{\pi}{2},
$$

- Central Pb+Pb points deviate from p+p and estimated Pb+Pb distribution without energy loss.
	- \rightarrow The deviation corresponds to 30-40% loss of jet energy.

QGP property: Collective flow of particles YSWS 21th T. Fusayasu @ Saga U

YSWS 21th

• In non-central collisions, the collision region is not isotropic but almond-like shape. \rightarrow Different pressure gradient produces **Reaction Plane** momentum anisotropy of emitted particles. • Measure the angular distribution of the particles with respect to the reaction plane. \rightarrow 2nd order Fourier coefficient show the elliptic flow. Larger pressure (楕円) gradient in plane d^3N \propto $[1 + 2v_2(p_T)\cos 2(\varphi - \phi_{RP}) + ...]$ $p_{\overline{T}}dp_{\overline{T}}dyd\varphi$ Spatial asymmetry ymmetry
eccentricity $\mathcal{E} = \frac{\langle y^2 \rangle - \langle x^2 \rangle}{\langle y^2 \rangle + \langle x^2 \rangle}$ Mom. Asymmetry
elliptic flow $\mathbf{v}_2 = \frac{\langle p_y^2 \rangle - \langle p_x^2 \rangle}{\langle p_y^2 \rangle + \langle p_x^2 \rangle}$ $\boldsymbol{\chi}$ • Higher order flows vn \rightarrow sensitive to the properties of the matter. \rightarrow compared to the hydrodynamics model.

QGP is found to be almost perfect fluid YSWS 21th 22

YSWS 21th

Non-central collision generates almond-shaped QGP.

If the QGP is gas, particles flow isotropically regardless of the QGP shape.

If the QGP is fluid, the scattered particles reflect the shape of the QGP.

- \cdot PHENIX (RHIC) and ATLAS (LHC) v_n analysis results are compared with a hydrodynamics model \rightarrow QGP is modeled as fluid consisting of partons.
- The model reproduces the higher order flow at RHIC and LHC very well.
- **Almost perfect fluid** is realized at RHIC (η /s from quantum limit ~ 1/4 π ~ 0.08)

- Thermal photons are emitted from all the stages after collisions.
- Penetrate the system unscattered after emission, because "no strong interaction". \rightarrow carry out QGP information such as temperature.
- Photons are produced by Compton scattering or q-qbar annihilation at LO.

 Π_{em} : photon self energy

$$
\mathrm{Im}\Pi_{em}(\omega,k) \approx \ln\left(\frac{\omega T}{\left(m_{th}(\approx gT)\right)^2}\right)
$$

- Thermal photon distribution will be expressed by the product of
	- Bose distribution, and
	- transition probability of QGP
- Fitting the model to the experiment data gives QGP temperature.

YSWS 21th T. Fusayasu @ Saga U

In this way, the obtained temperatures are:

- \cdot RHIC, Au+Au 200GeV: T_{ave} = ~220 MeV = 2.5 trillion K
- \cdot LHC, Pb+Pb 2.76TeV: $T_{ave} = -304$ MeV = 3.5 trillion K

- Quark gluon plasma (QGP), which is the state of very early universe (10us after bigbang), can be investigated by heavy-ion collider experiments.
- As a sign of QGP, jet quench phenomena were observed.
- \cdot From particle flow study, QGP was found to be almost complete fluid.
- These studies were first performed at RHIC experiments and more precisely performed at LHC experiments.
- \cdot QGP temperature was measured from thermal photons and the results are consistent with expected QGP temperature.

Forward Physics with ALICE FoCal detector

Takahiro Fusayasu Saga University

- 1. Introduction to ALICE experiment
- 2. QGP discovery and measurements
- 3. CGC: how the QGP generated?
- 4. FoCal development

Unknown !

•What is the initial condition?

- **• What is the initial condition?** Sy called Color Glass Condensate (CGC)?
- **• Why so rapidly thermalized (t=0.6 fm/c)? • Instability of strong color field**? \rightarrow No clear evidence for the CGC yet.
- **• No clear evidence for CGC as an initial condition yet.** • Why so rapidly (~0.6fm/c) thermalized?
- **initiastabilitty of GetFortg rediolor field?** thermalized QGP
- \cdot Initial condition \leftrightarrow CGC strong color fields \leftrightarrow thermalized QGP

Deep Inelastic Scattering (DIS) basics YSWS 21th 30

YSWS 21th

Lorentz invariant variables $\mathcal{Q}^2 \equiv -\,q^2\,\,\,\,$: photon's virtuality : Bjorken variable $x \equiv$ \mathcal{Q}^2 2 *p* ⋅ *q*

Physics meanings

Q2: Transverse resolution

x: Longitudinal momentum fraction of parton

DIS resolves the target proton in vertical and horizontal scales.

ep / eA DIS works as an electron microscope on proton/nucleus

Higher Q2 dissolves gluon contributions!

³²
Q² evolution: DGLAP evolution equation **SSS ASS**

YSWS 21th T. Fusayasu @ Saga U

Linear QCD evolution in Q² is established by the DGLAP equation.

³³
Proton structure at high energy, low-x **T. Fusayasu @ Saga U INDEDIT SU UCLUI C UL INGLI CITCLY, IOW A** T. Fusayasu @ Saga U **Figure 1. Measurements of the structure** \mathcal{L} . The complement of previously published data at low \mathcal{L}

YSWS 21th

(open circles) [3] and high Q2 (open boxes) [3]. The error bars represent the error bars represent the total m

Mechanism of multipole gluon creations

- \cdot Lifetime of parton's fluctuations: $p \rightarrow$ Larger, Lifetime \rightarrow Longer compared to the HERAPDF1.0 fit. The bands represent the fit. The fit. Right: Right
- \cdot Probability of fluctuation generation: $x \rightarrow$ smaller, Prob. → Larger $s = 1$ sea distributions are scaled down by a factor \mathcal{S}

→ At high energy, increased small fluctuations exponentially !

by T. Chujo

nucleus

CGC!

Large x

mid-rapidity Low energy scattering

 $x \approx$ 2*pT s* exp−*^η*

Small x

forward rapidity High energy scattering

- **Small x and low Q** region (but Q >> Λ_{QCD} (~ 0.2GeV) for perturbative QCD)
- **Universal picture** of internal structure of high energy hadron (universality) \vert

• Non-linear QCD evolution

• Log-Log plot ! → Essential to **explore a wide x-Q2 space**

WAIGHT EVOIUT

 $\frac{1}{2}$ cxamined by Heasurentents. (expected to be) Saturation region is not explored yet. sea distributions are scaled down by a factor 20. The experimental, model and parametrisation compared to the HERAPDF1.0 fit. The Bands represent the total uncertainty of the fit. Right: Rig Up to now, evolution was successfully examined by measurements.

Forward pA collision makes $x_A << 1$ YSWS 21th T. Fusayasu @ Saga U

2 → 2 の場合

YSWS 21th

Final state: $p_{T,1}, y_1$ $p_{T,2}, y_2$

$$
x_p = \frac{p_{T,1}e^{y_1} + p_{T,2}e^{y_2}}{\sqrt{s}} \qquad x_A = \frac{p_{T,1}e^{-y_1} + p_{T,2}e^{-y_2}}{\sqrt{s}}
$$

 x_p ∼ x_A < 1 Central rapidities probe moderate x

forward/central doesn't probe smaller x

 x_p ∼ 1, x_A < 1

forward rapidities probe small x

$$
x_p \sim 1, x_A \ll 1
$$

Why nucleus? \rightarrow gluon saturates faster than p by $3\sqrt{A} \sim 6$ (Pb case)

Forward pA collision makes $x_A << 1$ YSWS 21th

YSWS 21th
T. Fusayasu @ Saga U

https://www.bnl.gov/today/body_pics/2022/08/proton-collision-hr.jpg

- There are several indications of gluon saturation from data vs. theory by RHIC experiments and LHC experiments.
- However, both CGC and linear QCD evolution can describe the data most of the cases.
- Uncertainties on probe: Hadron \rightarrow final state interactions.

inclusive π^0 , jet, direct γ , γ -jet, di-jet

integrated σ , structure functions (F₂, F_L)

BK

Forward LHC (pA) vs. EIC (eA) YSWS 21th 41

YSWS 21th

- Forward LHC: **Significantly lower x** Forward LHC: **Significantly lower x** • Forward LHC (+RHIC) and EIC are complementary: together they provide a huge lever arm in x rogerier they provide a huge lever arm in x together they provide a huge lever arm in x
- Observables: **isolated γ, jets, open charm, DY, W/Z, hadrons, UPC** - Observables in Distribution operator connected via same under via same under dipole operator dipole operator
- Observables in Distribution dipole operator dipole operator dipole operator dipole operator dipole operator - Observables: **isolated γ, jets, open charm, DY, W/Z, hadrons, UPC** \cdot Forward **•** Forward LHC: Significantly lower **x**
	- · EIC: Precision control of kinematics + polarization
- . Multi-messenger program to test OCD universality: does saturation a coherent description of all observables, and is the description of the high gluon density regime? • Multi-messenger program to test QCD universality: does saturation provide a coherent description of all observables, and is therefore a universal - **Multi-messenger program to test QCD universality**: does saturation provide a coherent description of description of the high gluon density regime?

Forward Physics with ALICE FoCal detector

Takahiro Fusayasu Saga University

- 1. Introduction to ALICE experiment
- 2. QGP discovery and measurements
- 3. CGC: how the QGP generated?

4. FoCal development

YSWS 21th

Last update: November 24

FoCal Japan

Responsibilities:

(1) FoCal-E pad, (2)readout and trigger

- **๏ Univ. of Tsukuba**
- **๏ Tsukuba Univ. of Tech**
- **๏ RIKEN**
- **๏ Hiroshima Univ.**
- **๏ Nara Women's Univ.**
- **๏ Saga Univ.**
- **๏ Nagasaki Inst. of App. Sciences**
- **๏ Kumamoto Univ.**
- **๏ Univ. of Tokyo CNS**

RIKEN

熊本大学

9 institute, ~25 members

Uniqueness of FoCal detector 45

PS/SPS test beam in 2022

- **High two photon separation power** (<~5mm, energy resolution ~3%)
- 2)**Wide energy dynamic rage** (from 1 MIP to TeV EM showers)
- 3)**High radiation tolerance**(1013 (1MeV neutrons) / cm2)

→FoCal-E pad: mainly developed by FoCal-Japan group

by T. Chujo

 p_T (GeV/c)

Saga U. \rightarrow Mass evaluation of HGCROCv3 readout chips Look at the slides by M. Yokoyama

Saturation signal in FoCal YSWS 21th T. Fusayasu @ Saga U

- Excellent probe: isolated photons from quark-gluon Compton scattering

- pp at \sqrt{s} =8.8 TeV: 1 week, \mathcal{L} =4 pb⁻¹;
- p-Pb at \sqrt{s} =8.8 TeV: 3 weeks, \mathcal{L} =300 nb⁻¹;
- Pb-Pb at $\sqrt{s_{NN}}$ =5.02 TeV: 3 months; \mathcal{L} =7 nb⁻¹;
- pp at \sqrt{s} =14 TeV: \approx 18 months, \mathcal{L} =150 pb⁻¹;

図5: 本研究で開発するFoCalトリガ・読み出しシステムの全体図

- ALICE readout rate: 1MHz (pp), 500kHz (p-Pb)
- \sim ALIOL TOGOOGL TOIG. TIVITIZ (PP), JOUNTZ (PT D)
DIVEL readerst (ALDIDE) is not foot enought. JOOKU-• PIXEL readout (ALPIDE) is not fast enough! ~100kHz
- \cdot PIXEL trigger should delay by 1.2us \rightarrow Physics triggering of PIXEL is difficult. \quad |
- \cdot Our plan: For the tower with important signals, ROI (Region Of Interest) trigger $\,$ | \rightarrow lananese aroun's important task is issued. PIXELs with ROI and neighboring PIXELs are chosen to be readout.

整業者手数料込みで2.5万円/個である。同様䛾ことをFPGAで行うと20万円䛿かかるため、試作コス

 \rightarrow Japanese group's important task!

- QGP was discovered and its characteristics were measured by RHIC and LHC experiments. The QGP was found to be almost perfect fluid.
- Pre-QGP state is not identified and generation process of the QGP is unknown.
- CGC is a candidate of pre-QGP state. ALICE FoCal is appropriate for low-Q2, very low-x studies and being prepared for LHC LS3 installation. Combined with future EIC experiment results, wide range of x evolution is expected to be established, together with discovery of gluon saturation modeled by CGC.