Indates of Vcb, Vub Tensions from Belle (II)

자랑스러운 연세인 한강 작가의 노벨 문학상 수상을 축하합니다

Youngjoon Kwon (Yonsei U.) Nov. 5, 2024 @ Saga-Yonsei XXI

Fermions of SM

Quark flavor mixing and CKM matrix

For quarks,

- weak interaction eigenstates \neq mass eigenstates
- mixing of quark flavors through a **unitary matrix**

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{CKM} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{us} \\ V_{cd} & V_{cs} & V_{cs} \\ V_{td} & V_{ts} & V_{ts} \end{pmatrix}$$

Wolfenstein
parametrization $V_{\rm CKM} \approx \begin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{pmatrix}$ $|\lambda| \approx O(0.1)$ 3 real parameters (λ, A, ρ) and 1 phase (η)

How fermions interact with W^{\pm}

W q_m

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

 V_{ub}^*

23

 $V_{ud} \cong V_{tb} \cong 1$

Unitarity triangle angles

BABAR:	eta	α	γ
BELLE:	ϕ_1	ϕ_2	ϕ_3
This talk:	易	難	魔

Z. Ligeti, from plenary talk @ ICHEP 2004

2 V_{td} V_{co}

Current status of CKM unitarity

ρ

SY XXI Nov. 5, 2024

The "CKM Brot	hers" • Dr. Hyunki Jang • Dr. Jiwoo Nam (
 ● ● Belle Journal Publications × È Physics ← → C △ ● sciencedirect.com/journal/physics 	Letters B Vol 526, Iss × + -letters-b/vol/526/issue/3
PHYSICS LETTERS B Physics Letters B Physics Letters B	3
Articles & Issues ↓ About ↓ Publish ↓ Volume 526, Issues 3–4 Pages 173-450 (7 February 2002) ↓ Download full issue	Short communication O Abstract only Determination of $ V_{cb} $ using the semilep Belle Collaboration, K. Abe, K. Abe, R. Abe, D. Žonta Pages 247-257 \checkmark Purchase PDF Article preview \checkmark
	Short communication \circ Abstract only Measurement of $B(B \ \to D^+ \ell^- \overline{\nu})$ and detern Belle Collaboration, K. Abe, K. Abe, R. Abe, D. Žonta Pages 258-268

(SNU) (SKKU)

otonic decay ₿ ⁰→D*+e⁻v̄ ar

mination of $|V_{cb}|$

Updates of V_{cb}, V_{ub} tensions from Belle (II) Youngjoon Kwon (Yonsei U.)

SY XXI Nov. 5, 2024

fraction of B mesons and $|V_{cb}|$

Updates of V_{cb} , V_{ub} tensions from Belle (II) Youngjoon Kwon (Yonsei U.)

Updates of V_{cb} , V_{ub} tensions from Belle (II) Youngjoon Kwon (Yonsei U.)

Measurement of $|V_{ub}|$ near the endpoint of the electron momentum

for V_{ub} "Inclusive"

detector is described in detail elsewhere [27]. We use 27.0 fb^{-1} and 8.8 fb^{-1} integrated luminosity samples taken at (ON) and 60 MeV below (OFF) the $\Upsilon(4S)$ resonance energy, respectively. The ON sample consists of 29.4 million $B\overline{B}$ events. Unless explicitly stated otherwise, all variables are calculated in

SuperKEKB

- $\mathcal{B}(\Upsilon(4S) \to B\overline{B}) > 96\%$, with $p_B^{CM} \sim 0.35$ GeV/c
- nothing else but $B\overline{B}$ in the final state
 - \therefore if we know (E, \vec{p}) of one *B*, the other *B* is also constrained "B-tagging"

Updates of V_{cb} , V_{ub} tensions from Belle (II)

Youngjoon Kwon (Yonsei U.)

We also have data taken off-resonance as well as energy scan around $\Upsilon(5S)$

Updated on 2024/07/01 09:43 JST

Updates of V_{cb} , V_{ub} tensions from Belle (II)

Youngjoon Kwon (Yonsei U.)

Key variables of B decays

Id: low background and matic constraints.

event shape

16

$|V_{cb}|$ from angular coeff's of $B \to D^* \ell \nu$

- Obtain the differential rates in three angles, $\theta_{\ell}, \theta_{V}, \chi$, and a kinematic variable, *w*.
 - differential rates are expressed in terms of 12 functions J_i that depend only on w.
 - possible for SM test & LFU test

Belle data sample of 711 fb^{-1}

 $\frac{\mathrm{d}\Gamma(\bar{B}\to D^*\ell\bar{\nu}_\ell)}{\mathrm{d}w\,\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_\mathrm{V}\,\mathrm{d}\chi} = \frac{2G_\mathrm{F}^2\eta_\mathrm{EW}^2|V_\mathrm{cb}|^2m_B^4m_{\mathrm{D}^*}}{2\pi^4} \times \left(J_{1s}\sin^2\theta_\mathrm{V} + J_{1c}\cos^2\theta_\mathrm{V}\right)$ $+ (J_{2s}\sin^2\theta_{\rm V} + J_{2c}\cos^2\theta_{\rm V})\cos 2\theta_{\ell} + J_3\sin^2\theta_{\rm V}\sin^2\theta_{\ell}\cos 2\chi$ $+ J_4 \sin 2\theta_V \sin 2\theta_\ell \cos \chi + J_5 \sin 2\theta_V \sin \theta_\ell \cos \chi + (J_{6s} \sin^2 \theta_V + J_{6c} \cos^2 \theta_V) \cos \theta_\ell$ + $J_7 \sin 2\theta_V \sin \theta_\ell \sin \chi + J_8 \sin 2\theta_V \sin 2\theta_\ell \sin \chi + J_9 \sin^2 \theta_V \sin^2 \theta_\ell \sin 2\chi$).

> Updates of V_{cb} , V_{ub} tensions from Belle (II) Youngjoon Kwon (Yonsei U.)

$|V_{cb}|$ from angular coeff's of $B \to D^* \ell \nu$ $|V_{\rm cb}| = (40.7 \pm 0.3 \pm 0.4 \pm 0.5) \times 10^{-3}$ $(BGL_{332}),$ $|V_{\rm cb}| = (40.3 \pm 0.3 \pm 0.4 \pm 0.4) \times 10^{-3}$ (CLN),

Updates of V_{cb} , V_{ub} tensions from Belle (II) Youngjoon Kwon (Yonsei U.)

PRL 133, 131801 (2024)

LOUD, MILLINIUP PH/ [17] C. G. Boyd, B. Grinstein, and R. F. Lebed, Nucl. Phys. B 461, 493 (1996), arXiv:hep-ph/9508211. [18] C. G. Boyd, B. Grinstein, and R. F. Lebed, Phys. Rev. D 56, 6895 (1997), arXiv:hep-ph/9705252.

----- [---**F** ---] [16] I. Caprini, L. Lellouch, and M. Neubert, Nucl. Phys. B **530**, 153 (1998), arXiv:hep-ph/9712417.

 $|V_{cb}|$ from angular coeff's of $B \to D^* \ell \nu$

PRL 133, 131801 (2024)

Nov. 5, 2024

$|V_{ub}|$ from $B^0 \to \pi^- \ell^+ \nu \& B^+ \to$

Extract $|V_{ub}|$ by simultaneously fitting $B^0 \to \pi^- \ell^+ \nu \& B^+ \to \rho^0 \ell^+ \nu$

Signal extraction in (13+10)x4x5 bins

• 13 (10) bins in q^2 for $B^0 \to \pi^- \ell^+ \nu \ (\rho^0 \ell^+ \nu)$

4 bins in $M_{\rm bc}$, 5 bins in ΔE ${ \bullet }$

Signal

 $\pi^0 \ell v$

ρίν

Comb Signal

5.175

5.150

5.200

 $M_{\rm bc}$ [GeV]

 $|V_{\mu b}|$ from $B^0 \to \pi^- \ell^+ \nu \& B^+ \to \rho^0 \ell^+ \nu$

 $|V_{ub}| \text{ from } B^0 \to \pi^- \ell^{\text{erg}} \otimes B^+ \to \rho^0 \ell^+ \nu$

$|V_{\mu b}|$ from $B^0 \to \pi^- \ell^+ \nu \& B^+ \to \rho^0 \ell^+ \nu$

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu_\ell) = (1.516 \pm 0.042 \pm 0.059) \times 10^{-4}$ Total BF by integrating the $\Delta \mathscr{B}(q)$ $\mathcal{B}(B^+ \to \rho^0 \ell^+ \nu_{\ell}) = (1.625 \pm 0.079 \pm 0.180) \times 10^{-4}$

 $|V_{ub}|$ extracted separately from $\pi\ell\nu$ and $\rho\ell\nu$ mode using χ^2 fits to the measured q^2 spectra BCL for $B^0 \rightarrow \pi^- l^+ \nu_l$ Form-factor $\chi^{2} = \sum_{i,j=1}^{m} (\Delta B_{i} - \Delta \Gamma_{i}\tau) C_{ij}^{-1} (\Delta B_{j} - \Delta \Gamma_{j}\tau) + \sum_{m} \chi^{2}_{Theory,m}$ coefficents: BSZ for $B^+ \rightarrow \rho^0 l^+ \nu_l$

 $B^0 \to \pi^- \ell^+ \nu \text{ (LQCD)}$ $B^0 \rightarrow \pi^- \ell^+ \nu$ (LQCD+LCSR)

 $|V_{ub}|_{B\to\pi\ell\nu\ell} = (3.93\pm0.09\pm0.13\pm0.19)\times10^{-3}$ $|V_{ub}|_{B\to\pi\ell\nu_{\ell}} = (3.73\pm0.07\pm0.07\pm0.16)\times10^{-3}$

Updates of V_{cb} , V_{ub} tensions from Belle (II)

Youngjoon Kwon (Yonsei U.)

- C. Bourrely, L. Lellouch and I. Caprini. PRD 79 (2009) 013008 A. Bharucha, D. M. Straub and R. Zwicky, JHEP 08 (2016) 98

$|V_{ub}|$ from $B^0 \to \pi^- \ell^+ \nu \& B^+ \to \rho^0 \ell^+ \nu$

 $|V_{ub}|_{B \to \pi \ell \nu_{\ell}} = (3.93 \pm 0.09 \pm 0.13 \pm 0.19) \times 10^{-3}$ $|V_{ub}|_{B \to \pi \ell \nu_{\ell}} = (3.73 \pm 0.07 \pm 0.07 \pm 0.16) \times 10^{-3}$ $|V_{ub}|_{B \to \rho \ell \nu_{\ell}} = (3.19 \pm 0.12 \pm 0.17 \pm 0.26) \times 10^{-3}$

The results are limited by

- size of the off-resonance data set
- non-resonance $B \rightarrow X_u \ell \nu$ bkgd,

and reduce the tension against $|V_{ub}|$ inclusive

Updates of V_{cb}, V_{ub} tensions from Belle (II)

Youngjoon Kwon (Yonsei U.)

For 'light new physics'

$\sim \sigma(e^+e^- \to \pi^+\pi^-\pi^0)$ for $a_\mu^{\rm HV}$

Updates of V_{cb} , V_{ub} tensions from Belle (II)

Youngjoon Kwon (Yonsei U.)

connections to muon (g-2)

$$a_{\mu} = \frac{(g-2)_{\mu}}{2} = a_{\mu}^{\text{EW}} + a_{\mu}^{\text{QED}} + a_{\mu}^{\text{QCD}} \qquad a_{\mu}^{\text{QCI}}$$

$$a_{\mu}^{\mathrm{HVP,LO}} = rac{lpha}{3\pi^2} \int_{m_{\pi}^2}^{\infty} rac{K(s)}{s} R_{\mathrm{had}}(s) ds, \quad R_{\mathrm{had}}(s) =$$

Updates of V_{cb} , V_{ub} tensions from Belle (II) Youngjoon Kwon (Yonsei U.)

 $^{\rm D} = a_{\mu}^{\rm HVP} + a_{\mu}^{\rm H,LBL}$ (82%) (18%) $= \frac{\sigma_0(e^+e^- \to \text{hadrons})}{\sigma_{\text{pt}}(e^+e^- \to \mu^+\mu^-)},$

(a) The hadronic *R*-ratio.

 $\sigma(e^+e^- \to \pi^+\pi^-\pi^0)$

- Study $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ decays in $\mathscr{L} = 191 \text{ fb}^{-1}$
- as a function of $\sqrt{s'}$ by using **ISR** technique
 - reconstruct $e^+e^- \to \pi^+\pi^-\pi^0\gamma_{\rm ISR}$, for $0.62 < \sqrt{s'} = M(3\pi) < 3.50 \text{ GeV}$
- Kinematic fit for background suppression
 - constrain (E, \vec{p}) of $\pi^+ \pi^- \pi^0 \gamma_{\rm ISR}$ to that of $e^+ e^-$ beams
- Validation ("scale factor") of backgrounds in control samples

arXiv:2404.04915 accepted for PR

 $\sigma(e^+e^- \to \pi^+\pi^-\pi^0)$

- π^0 efficiency as a major analysis challenge
- The $\varepsilon(\pi^0)$ is determined to an accuracy of ~1% by comparing full- and partialreconstruction in the $\omega \to \pi^+ \pi^- \pi^0$ region

Updates of V_{cb} , V_{ub} tensions from Belle (II) Youngjoon Kwon (Yonsei U.)

arXiv:2404.04915 accepted for PRE

• $a_{\mu}^{3\pi}(0.62 - 1.8 \text{ GeV}) = (48.91 \pm 0.23 \pm 1.07) \times 10^{-10}$

- main syst. uncertainties from efficiency and absence of NNLO in the MC
- 6.5% higher (2.5 σ significant) than the global fit \rightarrow move to smaller 'anomaly' $a_{\mu}^{3\pi}(0.62-1.8\,\text{GeV}) = (45.91 \pm 0.38) \times 10^{-10}$

Updates of V_{cb} , V_{ub} tensions from Belle (II) Youngjoon Kwon (Yonsei U.)

Closing remarks

- Belle II has collected over 0.4 ab^{-1} data sample in its first 3 years of operation before LS1, and started Run 2 data-taking in Feb. this year.
- With the data set of $\sim 1/2$ the size of Belle, the physics precision of Belle II results are comparable or better in many analyses.
- Recent Belle II physics highlights include first evidence for $B^+ \to K^+ \nu \bar{\nu}$, and inclusive test of LFU with $B \rightarrow X \tau \nu$.
- Belle II started her endeavor to understand the 'Incl.-Excl. tension' on $|V_{\mu b}|$ and $|V_{cb}|$.
- After summer shutdown, Run 2 will resume very soon with the goal of collecting a several ab^{-1} data in the next few years. Please stay tuned!

(PRD 109, 112006 (2024))

자랑스러운 연세인 한강 작가의 노벨 문학상 수상을 축하합니다

