Study of D⁰ decays to the invisible final states at Belle II

Yonsei University Chanho Kim

ckh424@yonsei.ac.kr

Introduction to analysis

• In SM, heavy (B or D) decays to $\nu\bar{\nu}$ is helicity suppressed with an expected branching fraction of $Br(D^0 \rightarrow \nu\bar{\nu}) = 1.1 \cdot 10^{-30}$, which is beyond the reach of current collider experiments.

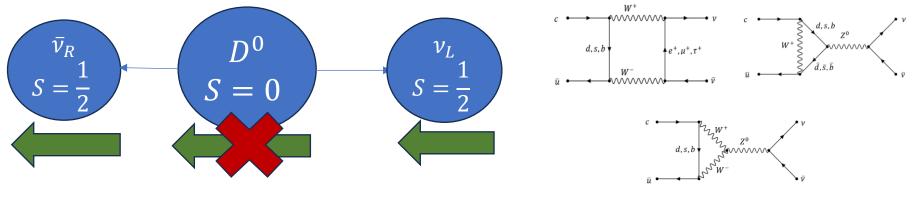
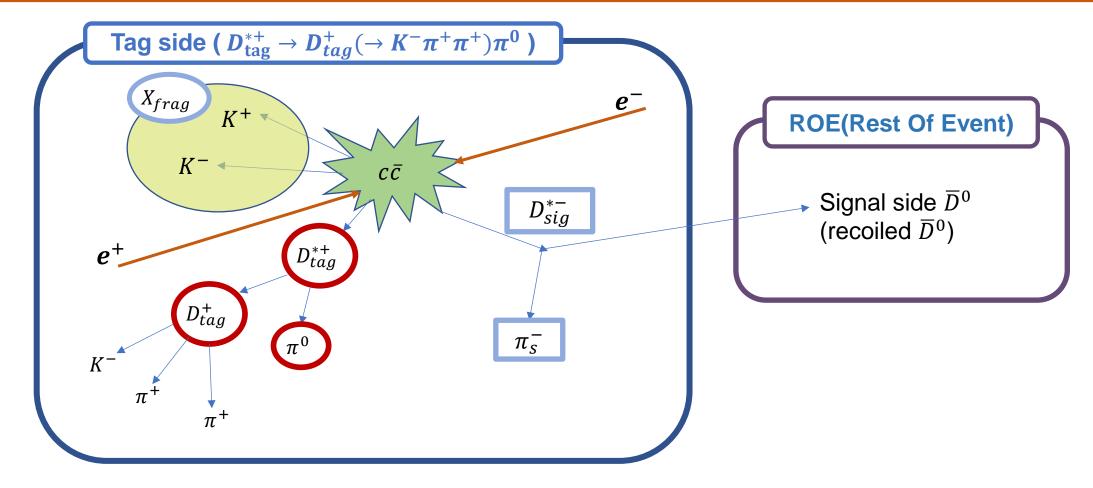


Figure1: Scheme of helicity suppresing

Figure2: Feynman diagram for $D^0 \rightarrow \nu \bar{\nu}$

- Therefore, search for $D^0 \rightarrow$ invisible final states is sensitive to new physics
- The previous result is $BR_{UL} = 9.4 \times 10^{-5}$ on 924 fb^{-1} data samples at 90% CL at belle [Phys. Rev. D 95, 011102(R)]


MC simulation samples

- 20M signal MC samples were used
- Signal Event used for simulation :

$$\begin{array}{ccc} e^+e^- \rightarrow c\bar{c} \rightarrow D_{tag} X_{frag} D_{sig}^{*+} & & \\ D_{sig}^{*+} \rightarrow D_{sig}^0 \pi^+ & & \\ & D_{sig}^0 \rightarrow \nu \bar{\nu} \end{array}$$

- MC15ri generic MC($1ab^{-1}$) is used as generic background MC sample
- 20M Control sample $(D^0 \rightarrow K^- \pi^+)$

Analysis Method : Charm Tagger

Figure3: schematics of signal event with tag side decay $D_{tag}^{*+} \rightarrow D_{tag}^{+} (\rightarrow K^{-}\pi^{+}\pi^{+})\pi^{0}$

Description of Charm tagging Procedure

Reconstruction D_{tag} , D_{tag}^*

- 1. Reconstruct D_{tag} using the pre-chosen decay channels
- 2. Reconstruct D_{tag}^*

Recoil part 1 (D^{*+})

- 1. Calculate $M_{miss}(D_{tag}^*X_{frag})$ which is regarded as mass of D_{sig}^{*+}
- 2. Apply kinematic mass constrained Fit on $M_{miss}(D^*_{tag}X_{frag})$ to $m_{D^{*+}}$
- 3. BCS of D_{sig}^{*+} by using chiProb from step 2

Recoil part 2 (D^0)

- 5. Using slow pion, calculate $M_{miss}(D_{tag}^* X_{frag} \pi_s^+)$ which is regarded as mass of signal side D^0
- 6. BCS of D^0 by using angle between D_{sig}^0 and tag side hadron in cm frame

Table1. Tag reconstruction channels

D^0 decay	Br(%)	D^+ decay	Br(%)	Λ_c^+ decay	Br(%)	D_s^+ decay	Br(%)
$K^-\pi^+$	3.9	$K^-\pi^+\pi^+$	9.4	$pK^{-}\pi^{+}$	5.0	$K^+K^-\pi^+$	5.5
$K^-\pi^+\pi^0$	13.9	$K^-\pi^+\pi^+\pi^0$	6.1	$pK^{-}\pi^{+}\pi^{0}$	3.4	$K^0_S K^+$	1.5
$K^-\pi^+\pi^+\pi^-$	8.1	$K_S^0 \pi^+$	1.5	pK_s^0	1.1	$K^0_S K^0_S \pi^+$	5.4
$K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	4.2	$K_S^0 \pi^+ \pi^0$	6.9	$\Lambda^0 \pi^+$	1.1	$K^+K^-\pi^+\pi^0$	5.6
$K_{S}^{0}\pi^{+}\pi^{-}$	2.9	$K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}$	3.1	$\Lambda^0 \pi^+ \pi^0$	3.6	$K_{S}^{0}K^{-}\pi^{+}\pi^{+}$	1.5
$K^0_S \pi^+ \pi^- \pi^0$	5.4	$K^+K^-\pi^+$	1.0	$\Lambda^0 \pi^+ \pi^+ \pi^-$	2.6	$K^+\pi^-\pi^+K^0_S$	1.0
$K^-\pi^+\pi^0\pi^0$	8.9	$K^{-}K^{+}\pi^{+}\pi^{0}$	0.7	$p^+\pi^-\pi^+$	0.5	$\pi^+\pi^-\pi^+$	1.0
$\pi^{-}\pi^{+}$	0.1	$\pi^-\pi^+\pi^+$	0.3	$p^+K^-K^+$	0.1	$\pi^+ K_S^0$	0.1
$\pi^-\pi^+\pi^-\pi^+$	0.8	$\pi^-\pi^+\pi^+\pi^0$	1.2	$p^{+}K^{-}\pi^{+}\pi^{0}\pi^{0}$	0.1	$\pi^+\pi^0 K_S^0$	0.5
$\pi^-\pi^+\pi^0$	1.5	$K^{+}K^{0}_{S}K^{0}_{S}$	0.3	$p^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{+}$	0.2	$K^-K^+\pi^+\pi^-\pi^+$	0.7
$\pi^-\pi^+\pi^0\pi^0$	1.0	$\pi^+\pi^0$	0.1	$p^{+}K^{0}_{S}\pi^{0}$	2.0		
K^-K^+	0.4			$p^+ K_S^0 \pi^+ \pi^-$	1.6		
$K^-K^+\pi^0$	0.3			$\pi^+\pi^-\Sigma^+$	4.5		
$K^-K^+K^0_S$	0.4			$\pi^+\pi^-\pi^0\Sigma^+$	1.2		
$\pi^0 K_S^0$	1.2			$\pi^0 \Sigma^+$	1.2		
sum	53.1	sum	30.5	sum	28.2	sum	22.8

D_{tag}^* reconstruction channels and fragmentations for each tag particle

D^{*+} decay	Br(%)	D^{*0} decay	Br(%)	D_s^{*+} decay	Br(%)
$D^0\pi^+$	67.7	$D^0\pi^0$	61.9	$D_s^+\gamma$	93.5
$D^+\pi^0$	30.7	$D^0\gamma$	38.1		
sum	98.4	sum	100.0	sum	93.5

Table3: D_{tag}^* channel

<u> </u>						
$D^{*+} or D^+$	$D^{*0} or D^0$	Λ_c^+	$D_s^{*+} \text{ or } D_s^+$			
nothing (K^+K^-)	$\pi^+(K^+K^-)$	$\pi^+ \bar{p}$	K_S^0			
$\pi^0(K^+K^-)$	$\pi^{+}\pi^{0}(K^{+}K^{-})$	$\pi^+\pi^0\bar{p}$	$\pi^0 \tilde{K}^0_S$			
$\pi^+\pi^-(K^+K^-)$	$\pi^{+}\pi^{+}\pi^{-}(K^{+}K^{-})$	$ \pi^+\pi^-\pi^+\bar{p} $	$\pi^+ K^-$			
$\pi^{+}\pi^{-}\pi^{0}(K^{+}K^{-})$			$\pi^{+}\pi^{+}\pi^{-}K_{S}^{0}$			
			$\pi^{+}\pi^{-}\pi^{0}K_{S}^{0}$			
			$\pi^+ K^-$			
			$\pi^+\pi^0 K^-$			
			$\pi^+\pi^-\pi^+K^-$			

Table4: X_{frag} channel (total 25 channels)

fastBDT training for Charm Tagging

- Input Variables of fastBDT
 - For D_{tag} training

M, p, dr(flight length), chiProb, Q, E, cosToThrustOfEvent,

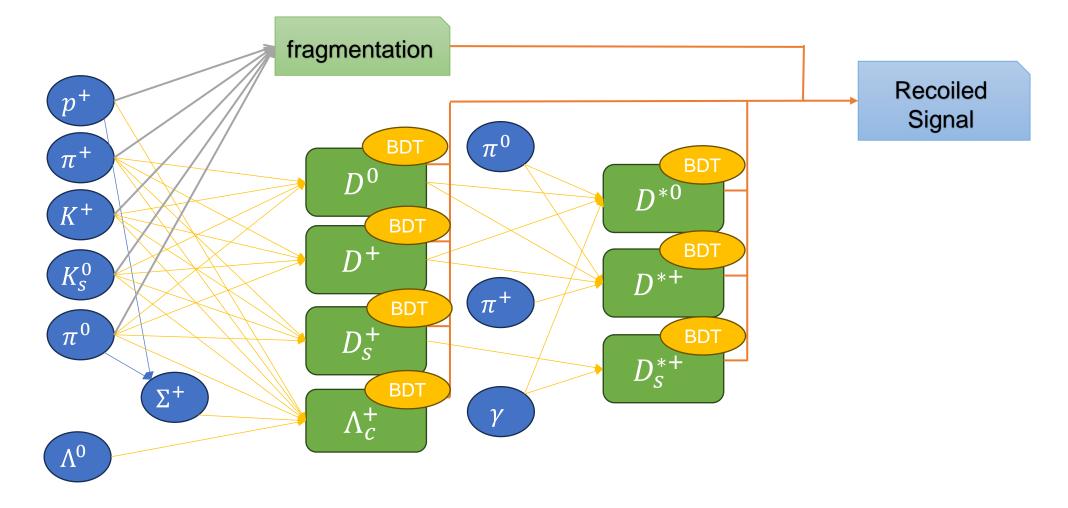
cosAngleBetweenMomentumAndVertexVectorInXYPlane, ImpactXY,

xp, PID of daughters, cosHelicityAngle(2 body or 3 body decays),

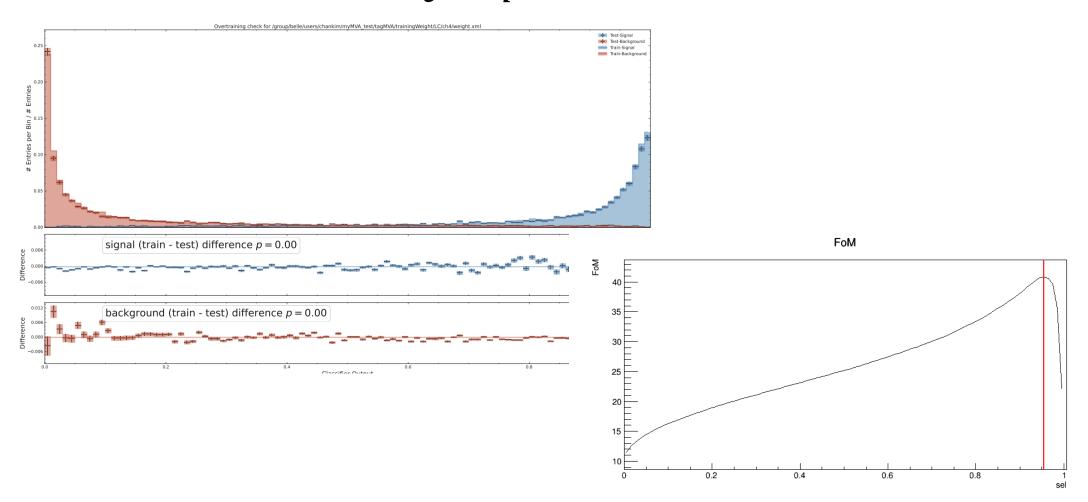
angle between 2 daughters of $\pi^{0}(\rightarrow \gamma \gamma)$, $K_{S}^{0}(\rightarrow \pi^{+}\pi^{-})$, $\Lambda^{0}(\rightarrow p^{+}\pi^{-})$, $\Sigma^{+}(\rightarrow p^{+}\pi^{0})$,

$$\frac{E_{d_1}-E_{d_2}}{E_{d_1}+E_{d_2}} | \text{ of } \pi^0(\to\gamma\gamma), K_S^0(\to\pi^+\pi^-), \Lambda^0(\to p^+\pi^-), \Sigma^+(\to p^+\pi^0) \text{ etc...}$$

• For D_{tag}^* training

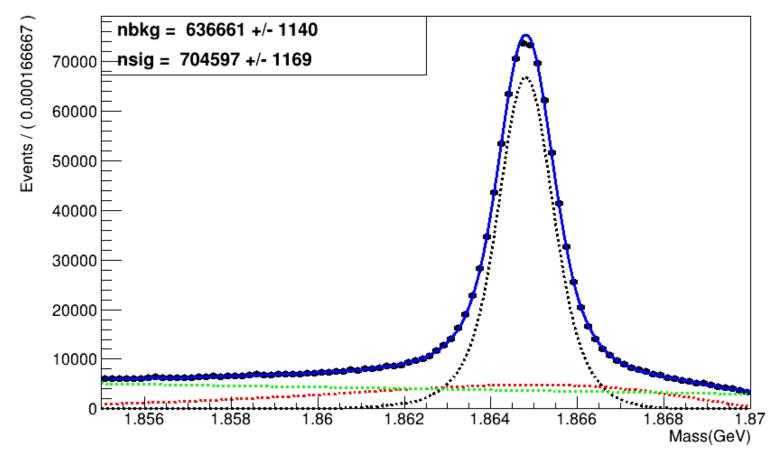

 $\Delta M (= M_{D_{tag}^*} - M_{D_{tag}}), \text{ momentum of } \pi_s^{\pm}, \gamma, \pi^0,$ angle between D_{tag} and $\pi_s^{\pm}, \gamma, \pi^0$ etc...

Hyper Parameters of BDT was optimized by applying grid search for each tag training


Preselection of Charm Tagger

- For tracks : dr < 1.0, |dz| < 3.0 and InCDCAcceptance
- π^{\pm} : 15 candidates with Highest pionID after pionID > 0.01
- K^{\pm} : 10 candidates with Highest kaonID after kaonID > 0.1
- p^{\pm} : 10 candidates with highest protonID after protonID > 0.1
- for fragmentations, PID selection of π^{\pm} , K^{\pm} , p^{\pm} is on 0.1, 0.9, 0.9 and additionally require p > 0.1 GeV
- K_S^0 , Λ^0 :
 - mass and dr and χ^2 and angle between Momentum and Vertex Vector selection on Λ^0 - goodBelleKshort for K_S^0 (similar selection to Λ^0)
- Σ^+ : reconstructed from $\Sigma^+ \rightarrow p^+ \pi^0$ and mass cut (1.08 < M < 1.28)

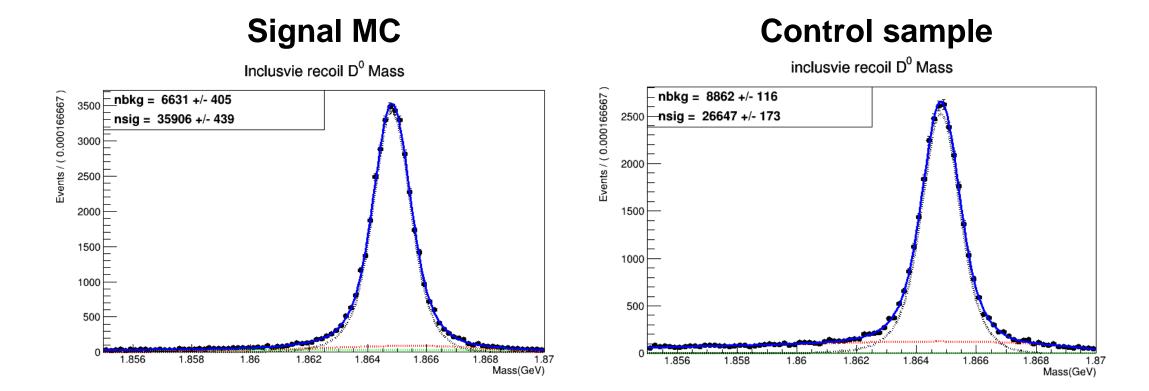
Flow of Charm Tagger



One example about training : $\Lambda_c^+ \rightarrow p^+ K^- \pi^+ \pi^0 \pi^0$

Reconstructed D^0 from charm tagger on generic ccbar MC

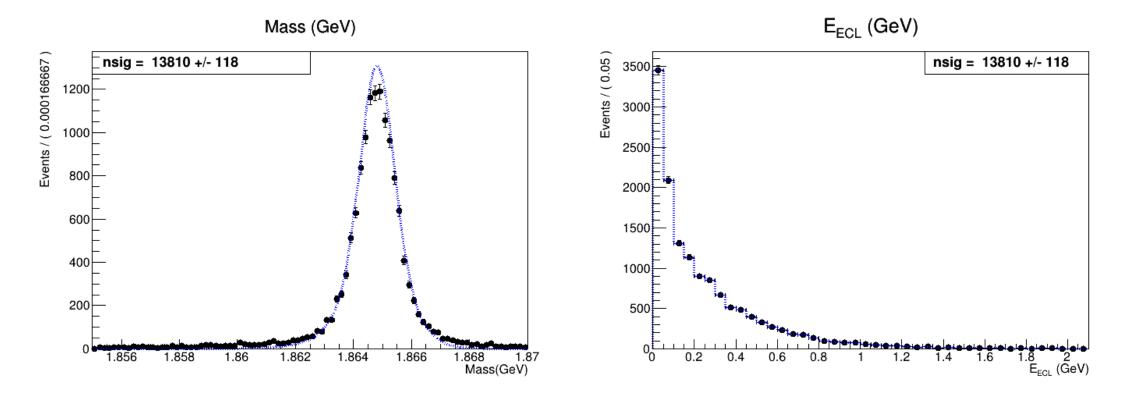
Inclusvie recoil D⁰ Mass


Variables for extracting signal side D

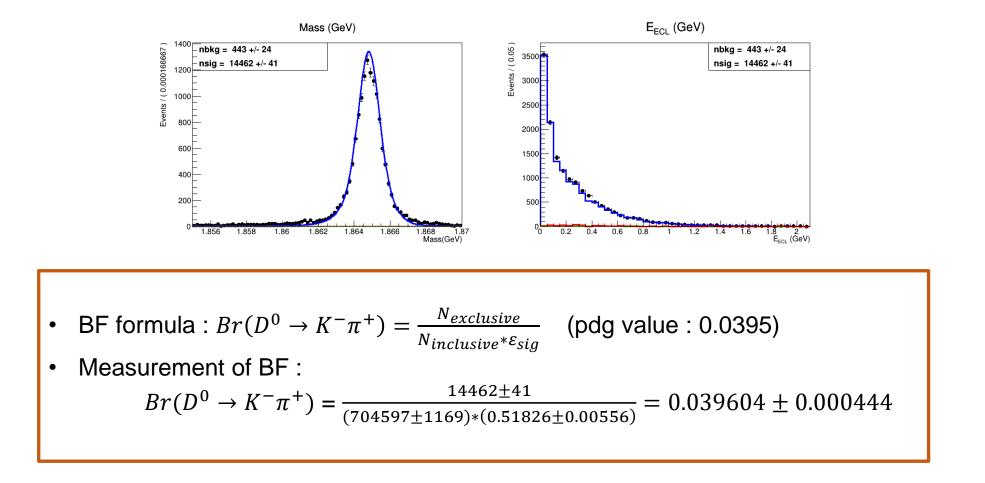
- Recoil mass $(M_{miss}(D_{tag}^*X_{frag}\pi_s^{\pm}) \text{ or } M_{recoil}(D^0))$
 - $e^+e^- \rightarrow D^*_{tag}X_{frag}\pi^+_sD^0$
 - $p^{\mu}(e^+) + p^{\mu}(e^-) \left(p^{\mu}(D^*_{tag}) + p^{\mu}(X_{frag}) + p^{\mu}(\pi^+_s)\right) = p^{\mu}(D^0_{sig})$
 - $M_{recoil}(D^0) = \sqrt{p^{\mu}(D^0)} * p_{\mu}(D^0)$
 - Inclusive D⁰ : recoiled D⁰ (no requirement on signal side)
 => 1D fit on signal side recoil M_{D⁰}
- E_{ECL} : sum of energies from roe of tag side remained in electromagnetic calorimeter(ECL) cluster
 - Exclusive D^0 : recoiled D^0 (requirement on signal side) => 2D fit on signal side (M_{D^0}, E_{ECL})

Exclusive D requirement for signal MC & control sample (signal extraction)

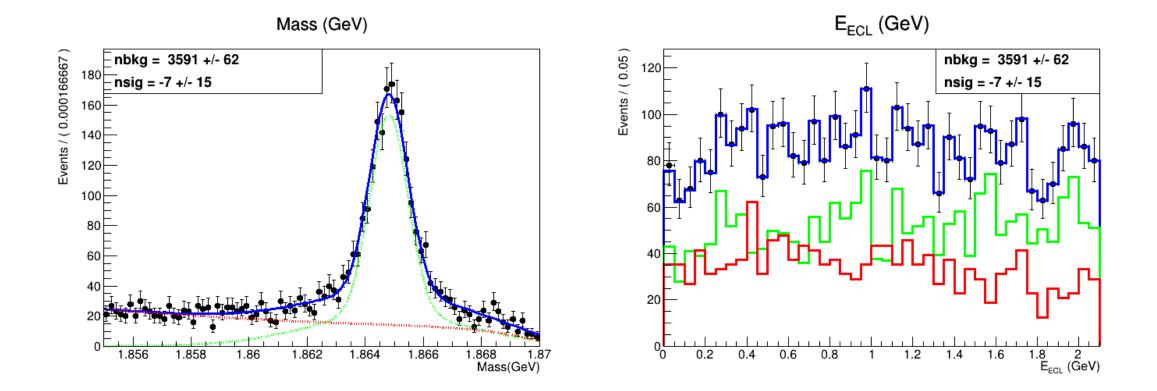
- Exclusive : D^0 with selection on signal side 1.84 GeV < M_{D^0} < 1.875 GeV & E_{ECL} < 2.1 GeV
 - Signal MC $(D^0 \rightarrow \nu \bar{\nu})$ selection for exclusive D^0 - no remaining tracks, $\pi^0, K_L^0, K_S^0, \Lambda^0$
 - Control sample $(D^0 \to K^-\pi^+)$ selection for exclusive D^0 (studying about this selection is on-going ...)
 - 2 remaining tracks and 1 reconstructed $D^0(K^-\pi^+)$
 - no π^0 , K_L^0 , K_s^0 , Λ^0
 - $|\Delta E| < 1.0 \text{ GeV} (\Delta E \equiv E (\text{recoil } D^0) E_{K\pi})$



Extraction of exclusive D on signal MC

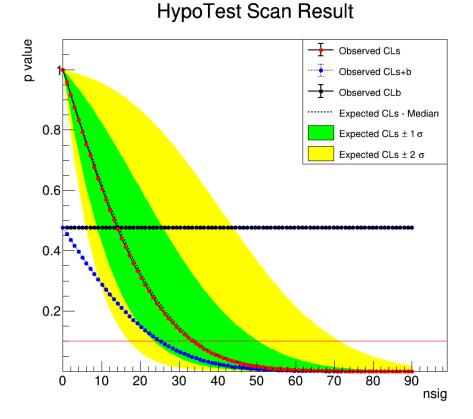

Signal efficiency = 0.84404 +/- 0.01140

Extraction of exclusive D on control sample



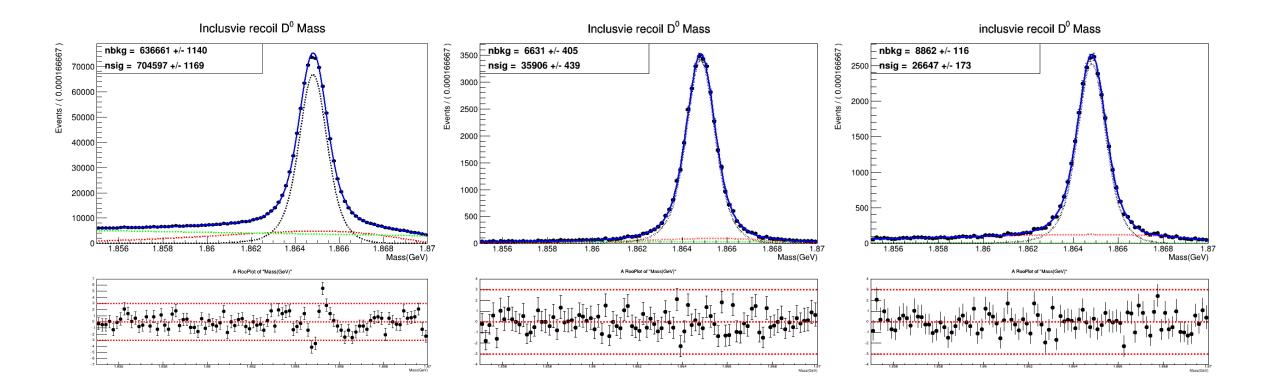
Signal efficiency = 0.51826 +/- 0.00556

Measurement of $Br(D^0 \rightarrow K^-\pi^+)$ on generic MC


Extraction of D^0 decays to invisible on generic ccbar MC

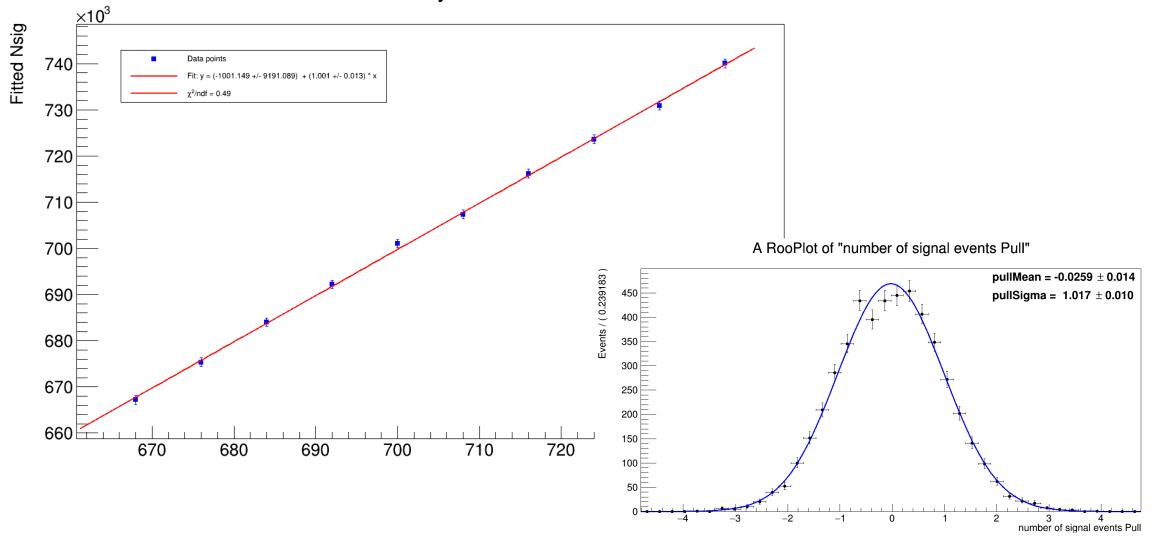
Trial to calculate Upper Limit of D^0 to invisible on $1 ab^{-1}$ generic MC with CLs method

• Systematics are not considered yet...

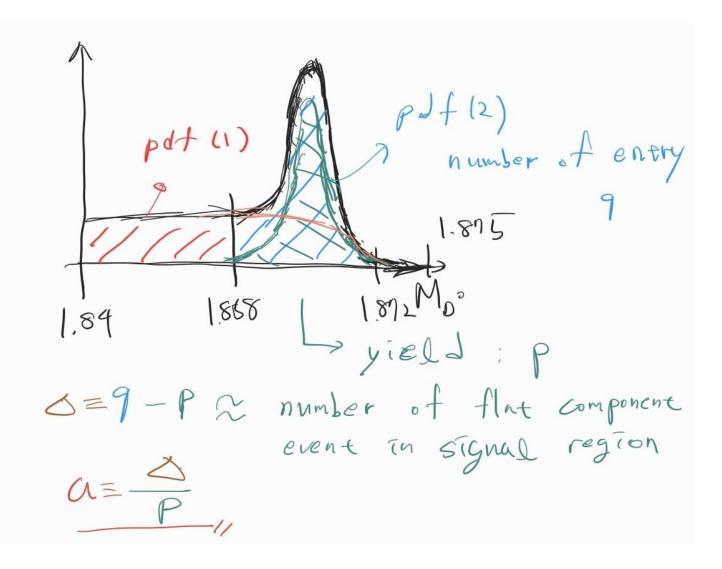

•
$$N_{UL} = 34.4444$$

• $BR_{UL} = \frac{34.4444}{(704597*0.84404)} = 5.62 \times 10^{-5}$

Fitting strategy & check with pull distribution


- Inclusive D fitting
 - 1D fitting : M_{D^0}
 - Signal pdf : 2 gaussians + 1 bifurcated gaussian
 - Background pdf : argus + linear
- Exclusive D fitting
 - 2D fitting : (M_{D^0}, E_{ECL})
 - Signal pdf : signal pdf from inclusive D fitting & histogram pdf
 - Background pdf :
 - Flat: Argus + linear & histogram PDF from MC study
 - Peak: 3 gaussians & histogram PDF from MC study

Fit result with Pull distribution for inclusive D


Inclusive D fit result check with ToyMC on generic MC

Linearity Test

Backup : variable a

- The value of a can be roughly estimated
- a is floating number with small range around the estimated value

