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Fig. 7. (a) Nuclear many-body landscape and (b) degrees of freedom and corresponding scales in nuclei [48].

or for octupole enhancement factors of electric dipolemoments. In all cases, we seek theoretical error estimates, particularly
for extrapolations to systems where measurements will be limited or non-existent.

Progress toward such controlled nuclear calculations has long been hindered by the difficulty of the nuclear many-body
problem, when conventional nuclear potentials are used. This has historically been accepted as an unavoidable reality.
Indeed, conventional wisdom among nuclear physicists, as summarized by Bethe in his review of over 30 years ago [49],
holds that successful nuclear matter calculations must be highly non-perturbative in the potential. This is in contrast to
the Coulomb many-body problem, for which Hartree–Fock is a useful starting point and (possibly resummed) many-body
perturbation theory (MBPT) is an effective tool. The possibility of a soft potential providing a more perturbative solution to
the nuclear matter problemwas discarded at that time, and saturation firmly identified with the density dependence due to
the tensor force [49]. Until recent RG-based calculations [9,16,17], subsequent work on the nuclear matter problem [50–53]
had not significantly altered the general perspective or conclusions of Bethe’s review (although the role of three-nucleon
(3N) forces has been increasingly emphasized).

As already noted, non-perturbative behavior in the particle–particle channel for nuclear forces arises from several
sources. First is the strong short-range repulsion, which requires at least a summation of particle–particle-ladder
diagrams [49]. Second is the tensor force, for example, from pion exchanges, which is highly singular at short distances,
and requires iteration in the triplet channels [54,55]. Third is the presence of low-energy bound states or nearly bound
states in the S-waves. These states imply poles in the scattering T matrix that render the perturbative Born series divergent.
All these non-perturbative features are present in conventional high-precision NN potentials.

The philosophy behind the standard approach to nuclear matter is to attack these features head-on. This attitude was
succinctly stated by Bethe [49]:

‘‘The theory must be such that it can deal with any NN force, including hard or ‘soft’ core, tensor forces, and other
complications. It ought not to be necessary to tailor the NN force for the sake of making the computation of nuclear
matter (or finite nuclei) easier, but the force should be chosen on the basis of NN experiments (and possibly subsidiary
experimental evidence, like the binding energy of 3H).’’

In contrast, the EFT and RG perspective has a completely different underlying philosophy, which stresses that the potential
is not an observable to be fixed from experiment (there is no ‘‘true potential’’), but that an infinite number of potentials are
capable of accurately describing low-energy physics [56]. In order to be predictive and systematic, an organization (‘‘power
counting’’) must be present to permit a truncation of possible terms in the potential. If a complete Hamiltonian is used
(includingmany-body forces), then all observables should be equivalent up to truncation errors. The EFT philosophy implies
using this freedom to choose a convenient and efficient potential for the problems of interest.

The use of energy-independent low-momentum interactions is a direct implementation of these ideas. Varying the
cutoff can be used as a powerful tool to study the underlying physics scales, to evaluate the completeness of approximate
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Fig. 9. Schematic illustration of two types of RG evolution for NN potentials in momentum space: (a) Vlow k running in ⇤ and (b) SRG running in �. At each
⇤i or �i , the matrix elements outside of the corresponding lines are zero, so that high- and low-momentum states are decoupled.

Fig. 10. Two types of RG evolution applied to one of the chiral N3LO NN potentials (550/600 MeV) of Ref. [44] in the 3S1 channel: (a) Vlow k running in ⇤
and (b) SRG running in � (see Fig. 27 for plots in k2, which show the diagonal width of order �2).

‘‘At each scale, we have different degrees of freedom and different dynamics. Physics at a larger scale (largely)
decouples from the physics at a smaller scale. . . . Thus, a theory at a larger scale remembers only finitely many
parameters from the theories at smaller scales, and throws the rest of the details away. More precisely, when we
pass from a smaller scale to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the RG
method is to explain how this decoupling takes place and why exactly information is transmitted from scale to scale
through finitely many parameters.’’

The common features of RG for critical phenomena and high-energy scattering are discussed by StevenWeinberg in an essay
in Ref. [64]. He summarizes:

‘‘Themethod in itsmost general form can I think be understood as away to arrange in various theories that the degrees
of freedom that you’re talking about are the relevant degrees of freedom for the problem at hand.’’

This is the heart ofwhat is donewith low-momentum interaction approaches: arrange for the degrees of freedom for nuclear
structure to be the relevant ones. This does not mean that other degrees of freedom cannot be used, but to again quote
Weinberg [64]: ‘‘You can use any degrees of freedom you want, but if you use the wrong ones, you’ll be sorry.’’

There are two major classes of RG transformations used to construct low-momentum interactions, which are illustrated
schematically in Fig. 9. In the Vlow k approach, decoupling is achieved by lowering amomentum cutoff⇤ abovewhichmatrix
elements go to zero. In the SRG approach, decoupling is achieved by lowering a cutoff � (in energy differences �2) using flow
equations, whichmeans evolving toward the diagonal inmomentum space. The technology for carrying out these is outlined
in Section 3, but the effects can be readily seen in the series of contour plots in Fig. 10(a) and (b).

With either approach, lowering the cutoff leaves low-energy observables unchanged by construction, but shifts
contributions between the interaction strengths and the sums over intermediate states in loop integrals. The evolution
of phenomenological or chiral EFT interactions to lower resolution is beneficial, because these shifts can weaken or largely
eliminate sources of non-perturbative behavior, and because lower cutoffs require smaller bases inmany-body calculations,
leading to improved convergence for nuclei. The RG cutoff variation estimates theoretical uncertainties due to higher-
order contributions, to neglected many-body interactions or to an incomplete many-body treatment. When initialized with
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Fig. 17. Diagonal (left) and off-diagonal (right) momentum–space matrix elements for various phenomenological NN potentials initially (upper figures)
and after RG evolution to low-momentum interactions Vlow k [5,6] (lower figures) for a smooth regulator with ⇤ = 2.0 fm�1 and nexp = 4.

Fig. 18. Diagonal (left) and off-diagonal (right) momentum–space matrix elements of different N3LO NN interactions (EM [20] and EGM [44]) initially
(upper figures) and after RG evolution to low-momentum interactions Vlow k [5,6] (lower figures) for a smooth regulator with ⇤ = 2.0 fm�1 and nexp = 4.
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Fig. 19. (a) Particle–particle contributions to the energy per nucleon in symmetric nuclear matter as a function of the Fermi momentum kF for the initial
Argonne v18 potential and the RG-evolved Vlow k with⇤ = 2.1 fm�1 [9]. (b) Pair-distribution function g(r) in nuclearmatter for kF = 1.35 fm�1 at different
resolutions, for details see Ref. [10].

Fig. 20. Trajectories of the largest repulsive Weinberg eigenvalues in the (a) 1S0 and (b) 3S1–3D1 channels as a function of energy for Vlow k evolved from
the Argonne v18 potential [12]. The results for selected cutoffs are indicated by the different symbols. The positions of the symbols on each trajectory mark
the eigenvalues for center-of-mass energies Ecm = 0, 25, 66, 100 and 150 MeV, starting from the filled symbol at 0 MeV. The trajectory with stars are
eigenvalues for the N3LO potential of Ref. [20].

By finding the eigenvalues and eigenvectors of the operator (E � H0)
�1V ,

1
E � H0

V |�⌫i = ⌘⌫(E)|�⌫i, (5)

and then acting with T (E) on the eigenvectors,

T (E)|�⌫i =
�
1 + ⌘⌫(E) + ⌘2

⌫(E) + · · ·
�
V |�⌫i, (6)

it follows that non-perturbative behavior at energy E is signaled by one or more eigenvalues with |⌘⌫(E)| > 1 [75]. A
rearrangement of Eq. (5) gives a simple interpretation of the eigenvalue ⌘⌫(E) as an energy-dependent coupling that must
divide V to produce a solution to the Schrödinger equation at energy E. For negative energies, a purely attractive V gives
positive real ⌘⌫(E) values, while a purely repulsive V gives negative eigenvalues. For this reason, we refer to negative
eigenvalues as repulsive and positive ones as attractive, although the eigenvalues become complex for positive E.

Fig. 20 shows the trajectories of the largest repulsive Weinberg eigenvalue in the 1S0 and 3S1–3D1 channels as a function
of (positive) energy for Vlow k interactions with various cutoffs evolved from the Argonne v18 potential. Themagnitude of the
largest repulsive eigenvalue at all energies decreases rapidly as the cutoff is lowered. This reflects the decrease of the short-
range repulsion present in the initial potential. In the 1S0 channel, the trajectory lies completely inside the shaded unit circle
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the eigenvalues for center-of-mass energies Ecm = 0, 25, 66, 100 and 150 MeV, starting from the filled symbol at 0 MeV. The trajectory with stars are
eigenvalues for the N3LO potential of Ref. [20].
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divide V to produce a solution to the Schrödinger equation at energy E. For negative energies, a purely attractive V gives
positive real ⌘⌫(E) values, while a purely repulsive V gives negative eigenvalues. For this reason, we refer to negative
eigenvalues as repulsive and positive ones as attractive, although the eigenvalues become complex for positive E.

Fig. 20 shows the trajectories of the largest repulsive Weinberg eigenvalue in the 1S0 and 3S1–3D1 channels as a function
of (positive) energy for Vlow k interactions with various cutoffs evolved from the Argonne v18 potential. Themagnitude of the
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the Argonne v18 potential [12]. The results for selected cutoffs are indicated by the different symbols. The positions of the symbols on each trajectory mark
the eigenvalues for center-of-mass energies Ecm = 0, 25, 66, 100 and 150 MeV, starting from the filled symbol at 0 MeV. The trajectory with stars are
eigenvalues for the N3LO potential of Ref. [20].
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the eigenvalues for center-of-mass energies Ecm = 0, 25, 66, 100 and 150 MeV, starting from the filled symbol at 0 MeV. The trajectory with stars are
eigenvalues for the N3LO potential of Ref. [20].
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it follows that non-perturbative behavior at energy E is signaled by one or more eigenvalues with |⌘⌫(E)| > 1 [75]. A
rearrangement of Eq. (5) gives a simple interpretation of the eigenvalue ⌘⌫(E) as an energy-dependent coupling that must
divide V to produce a solution to the Schrödinger equation at energy E. For negative energies, a purely attractive V gives
positive real ⌘⌫(E) values, while a purely repulsive V gives negative eigenvalues. For this reason, we refer to negative
eigenvalues as repulsive and positive ones as attractive, although the eigenvalues become complex for positive E.

Fig. 20 shows the trajectories of the largest repulsive Weinberg eigenvalue in the 1S0 and 3S1–3D1 channels as a function
of (positive) energy for Vlow k interactions with various cutoffs evolved from the Argonne v18 potential. Themagnitude of the
largest repulsive eigenvalue at all energies decreases rapidly as the cutoff is lowered. This reflects the decrease of the short-
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integrate-out high k states
preserves observables for k < !

“Similarity RG”
 eliminate far off-diagonal coupling
 preserves “all” observables 

Very similar consequences despite differences in appearance!
(universal low-momentum interaction, decoupling of high-k, preservation of low E physics)

(technical details in lecture 2)
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2 Types of Renormalization Group Transformations

“Vlow k”
integrate-out high k states
preserves observables for k < !

“Similarity RG”
 eliminate far off-diagonal coupling
 preserves “all” observables 

Very similar consequences despite differences in appearance!
(universal low-momentum interaction, decoupling of high-k, preservation of low E physics)

(technical details in lecture 2)

Similarity Renormalization Group 
Drives Hamiltonian to band-diagonal 

Wegner, Glazek/Wilson (1990s) 



Similarity Renormalization Group 

Apply a continuous unitary transformation, parameterized by s: 
 
 
where differentiating (exercise) yields: 
 
                                                 where 
 
Never explicitly construct unitary transformation 
 

Instead choose generator to obtain desired behavior: 
 
                                                
Many options, e.g., 
                                        
                                                  Drives H(s) to band-diagonal form 
 

H = T + V ! H(s) = U(s)HU
†(s) ⌘ T + V (s)

dH(s)

ds
= [⌘(s), H(s)] ⌘(s) ⌘ dU(s)

ds
U †(s)

⌘(s) = [T,H(s)]

Wegner, Glazek/Wilson (1990s) 

⌘(s) = [G(s), H(s)]



Illustration of SRG Flow 

Drive H to band-diagonal form with kinetic-energy generator: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s

Overview RG Basics flow

Flow equations in action: NN only
In each partial wave with ✏k = ~2k2/M and �2 = 1/

p
s

dV�

d�
(k , k 0) / �(✏k � ✏k 0)2

V�(k , k
0) +

X

q

(✏k + ✏k 0 � 2✏q)V�(k , q)V�(q, k
0)

Dick Furnstahl Nuclei at Low Resolution

� = 8.0 fm�1

ArgonneV18
1S0



Illustration of SRG Flow 

Overview RG Basics flow

Flow equations in action: NN only
In each partial wave with ✏k = ~2k2/M and �2 = 1/

p
s

dV�

d�
(k , k 0) / �(✏k � ✏k 0)2

V�(k , k
0) +

X

q

(✏k + ✏k 0 � 2✏q)V�(k , q)V�(q, k
0)

Dick Furnstahl Nuclei at Low Resolution

� = 4.0 fm�1

ArgonneV18
1S0

Drive H to band-diagonal form with standard choice: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s



Illustration of SRG Flow 

Overview RG Basics flow

Flow equations in action: NN only
In each partial wave with ✏k = ~2k2/M and �2 = 1/

p
s

dV�

d�
(k , k 0) / �(✏k � ✏k 0)2

V�(k , k
0) +

X

q

(✏k + ✏k 0 � 2✏q)V�(k , q)V�(q, k
0)

Dick Furnstahl Nuclei at Low Resolution

� = 3.0 fm�1

ArgonneV18
1S0

Drive H to band-diagonal form with standard choice: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s



Illustration of SRG Flow 

Overview RG Basics flow

Flow equations in action: NN only
In each partial wave with ✏k = ~2k2/M and �2 = 1/

p
s

dV�

d�
(k , k 0) / �(✏k � ✏k 0)2

V�(k , k
0) +

X

q

(✏k + ✏k 0 � 2✏q)V�(k , q)V�(q, k
0)

Dick Furnstahl Nuclei at Low Resolution

� = 2.5 fm�1

ArgonneV18
1S0

Drive H to band-diagonal form with standard choice: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s



Illustration of SRG Flow 

Overview RG Basics flow

Flow equations in action: NN only
In each partial wave with ✏k = ~2k2/M and �2 = 1/

p
s

dV�

d�
(k , k 0) / �(✏k � ✏k 0)2

V�(k , k
0) +

X

q

(✏k + ✏k 0 � 2✏q)V�(k , q)V�(q, k
0)

Dick Furnstahl Nuclei at Low Resolution

� = 2.0 fm�1

ArgonneV18
1S0

Drive H to band-diagonal form with standard choice: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s



SRG Renormalization of Chiral EFT Potentials 

These are all our 
favorite Chiral EFT 
NN potentials… 

These are all our 
favorite Chiral EFT  
NN potentials…  
SRG evolved 

Exhibit similar “universal” behavior as low-momentum interactions! 

Overview RG Basics 3NF BD

Run to lower � via SRG =) ⇡Universal VNN

Diagonal V�(k , k)
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Apparently different NN potentials flow to common VNN

Do NNN interactions evolve to universal form? [Hebeler: yes!]
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Overview RG Basics 3NF BD

Run to lower � via SRG =) ⇡Universal VNN
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Do NNN interactions evolve to universal form? [Hebeler: yes!]
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Renormalization of Nuclear Interactions 

AV18 

N3LO 

Vlow k(Λ): lower cutoffs advantageous for nuclear structure calculations 

Evolve momentum resolution scale of chiral interactions from initial       
Remove coupling to high momenta, low-energy physics unchanged 

€ 

Λχ

Bogner, Kuo, Schwenk, Furnstahl 

Universal at  
low-momentum 

H (⇤) = T + VNN (⇤) + V3N (⇤) + V4N (⇤) + · · ·



RG flow BD Perturbativeness 3NF A=3,4 Numerical

Flow of different N3LO chiral EFT potentials
1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

Significant decoupling even for “soft” EFT interaction

Dick Furnstahl Nuclei at Low Resolution

RG flow BD Perturbativeness 3NF A=3,4 Numerical

Flow of different N3LO chiral EFT potentials
1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

Significant decoupling even for “soft” EFT interaction

Dick Furnstahl Nuclei at Low Resolution

SRG-Evolution of Different Initial Potentials 

EFT1 

Lots of pretty pictures, but how does it actually help? 

SRG evolution of two different chiral EFT potentials 

EFT2 

H (⇤) = T + VNN (⇤) + V3N (⇤) + V4N (⇤) + · · ·



Revisit Low-Pass Filter Idea 

What’s the difference now? 

Ok, high momentum is a pain. I 
wonder what would happen to 

low-energy observables… 
Low-to-high momentum makes life difficult for 
low-energy nuclear theorists 

Vfilter(k
0, k) ⌘ 0; k, k0 > 2.2MeV

AV18 
SRG 



Revisit Low-Pass Filter Idea 

Low-energy observables were preserved – now sharp cut makes sense! 

Ok, high momentum is a pain. I 
wonder what would happen to 

low-energy observables… 
Low-to-high momentum makes life difficult for 
low-energy nuclear theorists 

Vfilter(k
0, k) ⌘ 0; k, k0 > 2.2MeV

Overview RG Basics flow

Low-pass filters work! [Jurgenson et al. (2008)]

Phase shifts with Vs(k , k 0) = 0 for k , k 0 > kmax
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Benefits of Lower Cutoffs 
Often work in HO basis – does this make a difference there? 
 

Removes coupling from low-to-high harmonic oscillator states 
 

Expect to speed convergence in HO basis 
 
 
 
 
 
 
 
 
 
 
 
 
Explicitly see why this causes problems later! 
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Faster convergence in HO basis expansions

49

many-body methods that expand on finite HO basis converge
much faster (weaker coupling to high momentum)

variational calculations improve (weaker correlations)



Benefits of Lower Cutoffs 
Exactly what happens in no-core shell model calculations 
 

Probably equally helpful in normal shell-model calculations? 
 

Come back to this later… 
134 S.K. Bogner et al. / Progress in Particle and Nuclear Physics 65 (2010) 94–147

Fig. 46. Ground-state energy of 6Li versus oscillator parameter h̄⌦ for different SRG-evolved interactions with � = 3.0, 2.0, 1.5 and 1.0 fm�1. The initial
interaction is the N3LO NN-only potential of Ref. [20]. The NCSM results clearly show improved convergence with the maximum number of oscillator
quanta Nmax for lower cutoffs. Because 3N interactions are neglected, the different NN calculations converge to different ground-state energies. For details,
see Ref. [14].

a b c

Fig. 47. Ground-state energies of (a) 4He, (b) 6Li, and (c) 7Li as a function of � for SRG interactions evolved from the N3LO NN-only potential of Ref. [20].
Error bars for larger � values are from extrapolations in Nmax. The arrowmarks the experimental energy. The characteristic increase in Egs at small � signals
the modification of the long-range attractive interaction [138]. For details see Ref. [14].

energy variation shown in Fig. 47 is comparable to natural-size truncation errors in chiral EFT, with no unnaturally large
contributions from omitted three-body forces for these light nuclei. Further evidence that the evolution preserves the
hierarchy of the underlying chiral EFT is shown in Figs. 35 and 36.

Extensions of ab initio methods to heavier and neutron-rich nuclei are a frontier of nuclear theory. CC theory is the prime
method for systems with up to 100 electrons in quantum chemistry [199] and a powerful method for nuclei for which a
closed-shell reference state provides a good starting point [86,200]. For 3H and 4He, CC results agree with the corresponding
Faddeev and Faddeev–Yakubovsky energies [13]. Combined with rapid convergence for low-momentum interactions, CC
theory has pushed the limits of accurate calculations tomedium-mass nuclei and set new benchmarks for 16O and 40Ca [13].
Using an angular-momentum- coupled scheme, it is possible to extend CC theory to very large spaces (15 major shells on a
single processor) and to obtain near-converged ground-state energies for spherical nuclei, 40Ca, 48Ca, and 48Ni, based on a
N3LO NN potential [201]. The CC developments for medium-mass nuclei are shown in Fig. 48, where the critical importance
of 3N forces for ground-state energies is evident.

Recently, a combination of nuclear and atomic physics techniques led to the first precision measurements of masses and
charge radii of the helium halo nuclei, 6He [202,203] and 8He [204,205], with two or four weakly bound neutrons forming
an extended halo around the 4He core. In Fig. 49, results are shown for the ground-state energies of helium nuclei based
on chiral low-momentum NN interactions [15]. This combines the RG evolution with the exact hyperspherical-harmonics



Benefits of Lower Cutoffs 
Use cutoff dependence to assess missing physics: return to Tjon line 
 

Varying cutoff moves along line  
 

Still never reaches experiment 
 
Lesson: Variation in  
physical observables  
with cutoff indicates  
missing physics  
 
Tool, not a parameter! 
 

3

1) Tells you if you’re missing something

2) Tells you how big it is



Where is the nuclear dripline? 
Limits defined as last isotope with positive neutron separation energy 
    - Nucleons “drip” out of nucleus 
Neutron dripline experimentally established to Z=8 (Oxygen) 

Limits of Nuclear Existence: Oxygen Anomaly 



Where is the nuclear dripline? 
Limits defined as last isotope with positive neutron separation energy 
    - Nucleons “drip” out of nucleus 
Neutron dripline experimentally established to Z=8 (Oxygen) 

Regular dripline trend… except oxygen 
Adding one proton binds 6 additional neutrons 

Limits of Nuclear Existence: Oxygen Anomaly 



Where is the nuclear dripline? 
Limits defined as last isotope with positive neutron separation energy 
    - Nucleons “drip” out of nucleus 
Neutron dripline experimentally established to Z=8 (Oxygen) 

Microscopic picture: NN-forces too attractive 
Incorrect prediction of dripline 

Prediction with NN forces 

Limits of Nuclear Existence: Oxygen Anomaly 



Calculate evolution of sd-orbital energies from interactions 
Physics in Oxygen Isotopes 

- 16O - 24O - 28O - 22O 

- 16O 

Phenomenological Models 
d3/2 orbit unbound 

Microscopic NN Theories    
   d3/2 orbit bound to 28O 

- 16O - 24O - 28O - 22O 

Fit to experiment 
8 

0p3/2 
0p1/2 

0d5/2 

1s1/2 

0d3/2 

20 



Calculate evolution of sd-orbital energies from interactions 
Physics in Oxygen Isotopes 

- 16O - 24O - 28O - 22O 

Phenomenological Models 
d3/2 orbit unbound 
   Dripline at 24O  
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Microscopic NN Theories    
   d3/2 orbit bound to 28O 
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Large-space methods with same SRG-evolved NN+3N-ind forces 
 
 
 
 
 
 
 
 
 
 
Agreement between all methods with same input forces 
 

No reproduction of dripline in any case 

Comparison with Large-Space Methods 
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Summary 
Low-momentum interactions can be constructed from any VNN via RG 

 

Low-to-high momentum coupling not desirable in low-energy nuclear physics 
 

Evolve to low-momentum while preserving low-energy physics 
 

Universality attained near cutoff of data 
 

Low-momentum cutoffs remove low-to-high harmonic oscillator couplings 
 

Cutoff variation assesses missing physics interaction level: tool not a parameter 

RG flow BD Perturbativeness 3NF A=3,4 Numerical

Flow of different N3LO chiral EFT potentials
1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

Significant decoupling even for “soft” EFT interaction

Dick Furnstahl Nuclei at Low Resolution

RG flow BD Perturbativeness 3NF A=3,4 Numerical

Flow of different N3LO chiral EFT potentials
1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

Significant decoupling even for “soft” EFT interaction

Dick Furnstahl Nuclei at Low Resolution



Chiral Effective Field Theory: Nuclear Forces 
Nucleons interact via pion exchanges  
and contact interactions 
 

Consistent treatment of NN, 3N,…  
 

NN couplings fit to scattering data 
 
 

 
 
 
 
 
 
 
 
 
 

Weinberg, van Kolck, Kaplan, Savage, Wise 

Δ(1232) 



system. These studies provide confirmation of the im-
portant role of the 2!-exchange potential in nucleon-
nucleon scattering observables !see, however, Entem
and Machleidt "2003b# for a criticism$. For a similar
work utilizing the distorted-wave methods see Birse and
McGovern "2004# and Birse "2007#.

The first nonvanishing contributions to the 3NF also
show up at N2LO and arise from tree diagrams shown in
Fig. 13 which involve a single insertion of the subleading
vertices L"1# in Eq. "2.17# and

LNNN
"1# = −

E
2

"N̄N#"N̄!N# · "N̄!N# , "2.21#

where E is a low-energy constant. The corresponding
3NF expression reads

V3N
"3# =

gA
2

8F!
4

"! 1 · q!1"! 3 · q!3

!q1
2 + M!

2 $!q3
2 + M!

2 $
!!1 · !3"− 4c1M!

2

+ 2c3q!1 · q!3# + c4!1 # !3 · !2q!1 # q!3 · "! 2$

−
gAD
8F!

2
"! 3 · q!3

q3
2 + M!

2 !1 · !3"! 1 · q!3 +
1
2

E!2 · !3, "2.22#

where the subscripts refer to the nucleon labels and q! i
=p! i!−p! i, with p! i! and p! i the final and initial momenta of
the nucleon i. The expressions in Eq. "2.22# correspond
to a particular choice of nucleon labels. The full expres-
sion for the 3NF results by taking into account all pos-
sible permutations of the nucleons "for three nucleons
there are altogether six permutations#, i.e.,

V3N
full = V3N + all permutations. "2.23#

We further emphasize that the expressions for the 3NF
given in Ordonez and van Kolck "1992# and van Kolck
"1994# contain one redundant 1!-exchange and two re-
dundant contact interactions. As shown in Epelbaum,
Nogga, Glöckle, Kamada, Meißner, and Witała "2002#,
only one independent linear combination contributes in
each case if one considers matrix elements between an-
tisymmetrized few-nucleon states !see also Bedaque et
al. "2000# for a related discussion$.

We now turn to N3LO and discuss first the corrections
to the 2NF. As follows from Eq. "2.8#, one has to account
for contributions from tree diagrams with one insertion
from L"4# or two insertions from L"2#, one-loop diagrams
with one insertion from L"2# or two insertions from L"1#

as well as two-loop graphs constructed from the lowest-
order vertices "see Fig. 12#. Apart from renormalization
of various LECs, the 1!-exchange potential receives at
this order !in the scheme based on the counting m
%O"$2 /M!#$ the first relativistic corrections propor-
tional to m−2. These are scheme-dependent and have to
be chosen consistently with the 1/m corrections to the
2!-exchange potential and the relativistic extension of
the dynamical equation !see Friar "1999# for a compre-
hensive discussion.$ The two-pion exchange contribu-
tions at N3LO were worked out in Kaiser "2001a# based

on the one-loop representation of the !N scattering am-
plitude. We refrain from giving here the rather involved
expressions for the subsubleading 2!-exchange potential
and refer to the original work "Kaiser, 2001a# where the
results are given in terms of the corresponding spectral
functions. For certain classes of contributions, the inte-
grals over the two-pion exchange spectrum could be per-
formed analytically and are given in Entem and
Machleidt "2002#. Notice further that the subleading
"i.e., the ones proportional to m−2# relativistic correc-
tions of the 2!-exchange range have also been worked
out in Kaiser "2002a#. In the counting scheme with m
%O"$2 /M!#, these terms, however, would only appear
at next-to-next-to-next-to-next-to-next leading order
"N5LO#. It should also be emphasized that the N3LO
contributions to the 2!-exchange potential were worked
out in the covariant version of chiral EFT !more pre-
cisely, using the formulation in Becher and Leutwyler
"1999#$ by Higa et al. "Higa and Robilotta 2003; Higa et
al., 2004, 2005#.

3!-exchange contributions also appear at this order in
the chiral expansion and have been worked out in Kai-
ser "2000a, 2000b# !see also Pupin and Robilotta "1999#
for a related work$. The resulting potentials turn out to
be rather weak. For example, the strongest contribution
is of the isoscalar spin-spin type "i.e., proportional to
"! 1 ·"! 2# and about ten times weaker than the correspond-
ing 2!-exchange contribution at the same order at rela-
tive distances r%M!

−1. It should, however, be empha-
sized that the subleading 3!-exchange contributions at
next-to-next-to-next-to-next leading order "N4LO# are
larger in size "Kaiser, 2001b# which, again, can be traced
back to the large values of the LECs ci. Finally, the last
type of the 2NF corrections at this order results from
diagrams involving contact interactions. The most gen-
eral polynomial "in momenta# representation of the
short-range part of the potential involves, apart from the
two leading and seven subleading terms given in Eqs.
"2.11# and "2.14#, 15 new contact interactions "in the iso-
spin invariant sector# yielding in total 24 LECs to be
determined from nucleon-nucleon data.

The 3NF contributions at N3LO feed into five differ-
ent topologies "see Fig. 13# and are currently being
worked out. Presently, the expressions for the first three
topologies which do not involve short-range contact in-
teractions are available. The one-loop corrections to the
2!-exchange diagrams can, to a large extent, be ac-
counted for by a finite shift ci→ c̄i=ci+%ci of the LECs ci
"Ishikawa and Robilotta, 2007; Bernard et al., 2008#,

%c1 = − gA
2 M!/64!F!

2 , %c3 = − %c4 = gA
4 M!/16!F!

2 .

"2.24#

Numerically, these corrections are of the order of 20%
of the corresponding LECs and are consistent with the
difference in values of ci between the order-Q2 and Q3

1789Epelbaum, Hammer, and Meißner: Modern theory of nuclear forces

Rev. Mod. Phys., Vol. 81, No. 4, October–December 2009

Chiral EFT: N2LO 3N 
First non-vanishing 3N contributions: Next-to-next-to-leading order ⌫ = 3

!see also Coon and Friar "1986# and Eden and Gari
"1996#$. Consequently, there is no 3NF at NLO in the
chiral expansion.

The contributions at N2LO involve one-loop diagrams
with one insertion of the subleading vertices of dimen-
sion !i=1 "see Fig. 12#. The corresponding Lagrangians
read

L"N
"1# = N̄%c1&#+' + c2"v · u#2 + c3u · u

+ c4!S$,S%$u$u% + c5&#̂+'(N ,

L"NN
"1# =

D
2

"N̄N#"N̄S · uN# , "2.17#

where #̂+)#+− &#+' /2 and D, ci are the LECs. The
1"-exchange loop diagram again only lead to renormal-
ization of the corresponding LECs. Similarly, the contri-
bution from the last diagram which involves the two-
nucleon contact interaction can be absorbed into a
redefinition of the LECs CS,T and Ci in Eqs. "2.11# and
"2.14# "provided one is not interested in the quark mass
dependence of the nuclear force#. Further, the football
diagram yields vanishing contribution due to the anti-

symmetric "with respect to pion isospin quantum num-
bers# nature of the Weinberg-Tomozawa vertex. Thus,
the only nonvanishing contribution at this order results
from the 2"-exchange triangle diagram,

VNN
"3# = −

3gA
2

16"F"
4 !2M"

2 "2c1 − c3# − c3q!2$

&"2M"
2 + q!2#A'̃"q# −

gA
2 c4

32"F"
4 !1 · !2"4M"

2

+ q2#A'̃"q#"(! 1 · q!(! 2 · q! − q!2(! 1 · (! 2# , "2.18#

where the loop function A'̃"q# is given by

A'̃"q# = )"'̃ − 2M"#
1

2q
arctan

q"'̃ − 2M"#

q2 + 2'̃M"

. "2.19#

In DR, the expression for A"q# takes the following
simple form:

A"q# ) lim
'̃→*

A'̃"q# =
1

2q
arctan

q
2M"

. "2.20#

Notice that the triangle diagram also generates short-
range contributions which may be absorbed into redefi-
nition of contact interactions. The isoscalar central con-
tribution proportional to the LEC c3 is attractive and
very strong. It is by far the strongest two-pion exchange
contribution and reaches a few tens of MeV "depending
on the choice of regularization# at internucleon distances
of the order +*M"

−1. The origin of the unnaturally
strong subleading 2"-exchange contributions can be
traced back to the "numerically# large values of the
LECs c3,4 and is well understood in terms of resonance
exchange related to ! excitation "Bernard et al., 1997#.
We return to this issue in Sec. II.D where the chiral EFT
formulation with explicit ! degrees of freedom will be
discussed. The central 2"-exchange potential was also
calculated in Robilotta "2001# using the infrared-
regularized version of chiral EFT which enables one to
sum up a certain class of relativistic corrections "Becher
and Leutwyler, 1999#. He found that the results in the
heavy-baryon limit overestimate the ones obtained using
infrared regularization by about 25% !see also Epel-
baum "2006a# for a related discussion$. Last but not
least, the chiral 2"-exchange potential up to N2LO has
been tested in the Nijmegen partial wave analysis
"PWA# of both proton-proton and neutron-proton data
"Rentmeester et al., 1999, 2003# where also an attempt
has been done to determine the values of the LECs c3,4.
As demonstrated in these studies, the representation of
the "strong# long-range interaction based on the combi-
nation of the 1"- and the chiral 2"-exchange potentials
rather than on the pure 1"-exchange potential allows
one to considerably reduce the number of phenomeno-
logical parameters entering the energy-dependent
boundary conditions which are needed to parametrize
the missing short- and medium-range interactions. Also
the extracted values of the LECs c3,4 agree reasonably
well with various determinations in the pion-nucleon

Next−to−leading order

Next−to−next−to−leading order

Next−to−next−to−next−to−leading order

FIG. 13. "Color online# Chiral expansion of the three-nucleon
force up to N3LO. Diagrams in the first line "NLO# yield van-
ishing contributions to the 3NF if one uses energy-independent
formulations as explained in the text. The five topologies at
N3LO involve the two-pion exchange, one-pion-two-pion-
exchange, ring, contact-one-pion exchange, and contact-two-
pion-exchange diagrams in order. Shaded blobs represent the
corresponding amplitudes. For remaining notation see Fig. 12.
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Chiral EFT: N2LO 3N 
First non-vanishing 3N contributions: Next-to-next-to-leading order ⌫ = 3

!see also Coon and Friar "1986# and Eden and Gari
"1996#$. Consequently, there is no 3NF at NLO in the
chiral expansion.

The contributions at N2LO involve one-loop diagrams
with one insertion of the subleading vertices of dimen-
sion !i=1 "see Fig. 12#. The corresponding Lagrangians
read

L"N
"1# = N̄%c1&#+' + c2"v · u#2 + c3u · u

+ c4!S$,S%$u$u% + c5&#̂+'(N ,

L"NN
"1# =

D
2

"N̄N#"N̄S · uN# , "2.17#

where #̂+)#+− &#+' /2 and D, ci are the LECs. The
1"-exchange loop diagram again only lead to renormal-
ization of the corresponding LECs. Similarly, the contri-
bution from the last diagram which involves the two-
nucleon contact interaction can be absorbed into a
redefinition of the LECs CS,T and Ci in Eqs. "2.11# and
"2.14# "provided one is not interested in the quark mass
dependence of the nuclear force#. Further, the football
diagram yields vanishing contribution due to the anti-

symmetric "with respect to pion isospin quantum num-
bers# nature of the Weinberg-Tomozawa vertex. Thus,
the only nonvanishing contribution at this order results
from the 2"-exchange triangle diagram,

VNN
"3# = −
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2 "2c1 − c3# − c3q!2$
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2
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where the loop function A'̃"q# is given by

A'̃"q# = )"'̃ − 2M"#
1

2q
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q"'̃ − 2M"#

q2 + 2'̃M"

. "2.19#

In DR, the expression for A"q# takes the following
simple form:

A"q# ) lim
'̃→*

A'̃"q# =
1

2q
arctan

q
2M"

. "2.20#

Notice that the triangle diagram also generates short-
range contributions which may be absorbed into redefi-
nition of contact interactions. The isoscalar central con-
tribution proportional to the LEC c3 is attractive and
very strong. It is by far the strongest two-pion exchange
contribution and reaches a few tens of MeV "depending
on the choice of regularization# at internucleon distances
of the order +*M"

−1. The origin of the unnaturally
strong subleading 2"-exchange contributions can be
traced back to the "numerically# large values of the
LECs c3,4 and is well understood in terms of resonance
exchange related to ! excitation "Bernard et al., 1997#.
We return to this issue in Sec. II.D where the chiral EFT
formulation with explicit ! degrees of freedom will be
discussed. The central 2"-exchange potential was also
calculated in Robilotta "2001# using the infrared-
regularized version of chiral EFT which enables one to
sum up a certain class of relativistic corrections "Becher
and Leutwyler, 1999#. He found that the results in the
heavy-baryon limit overestimate the ones obtained using
infrared regularization by about 25% !see also Epel-
baum "2006a# for a related discussion$. Last but not
least, the chiral 2"-exchange potential up to N2LO has
been tested in the Nijmegen partial wave analysis
"PWA# of both proton-proton and neutron-proton data
"Rentmeester et al., 1999, 2003# where also an attempt
has been done to determine the values of the LECs c3,4.
As demonstrated in these studies, the representation of
the "strong# long-range interaction based on the combi-
nation of the 1"- and the chiral 2"-exchange potentials
rather than on the pure 1"-exchange potential allows
one to considerably reduce the number of phenomeno-
logical parameters entering the energy-dependent
boundary conditions which are needed to parametrize
the missing short- and medium-range interactions. Also
the extracted values of the LECs c3,4 agree reasonably
well with various determinations in the pion-nucleon

Next−to−leading order

Next−to−next−to−leading order

Next−to−next−to−next−to−leading order

FIG. 13. "Color online# Chiral expansion of the three-nucleon
force up to N3LO. Diagrams in the first line "NLO# yield van-
ishing contributions to the 3NF if one uses energy-independent
formulations as explained in the text. The five topologies at
N3LO involve the two-pion exchange, one-pion-two-pion-
exchange, ring, contact-one-pion exchange, and contact-two-
pion-exchange diagrams in order. Shaded blobs represent the
corresponding amplitudes. For remaining notation see Fig. 12.
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system. These studies provide confirmation of the im-
portant role of the 2!-exchange potential in nucleon-
nucleon scattering observables !see, however, Entem
and Machleidt "2003b# for a criticism$. For a similar
work utilizing the distorted-wave methods see Birse and
McGovern "2004# and Birse "2007#.

The first nonvanishing contributions to the 3NF also
show up at N2LO and arise from tree diagrams shown in
Fig. 13 which involve a single insertion of the subleading
vertices L"1# in Eq. "2.17# and

LNNN
"1# = −

E
2

"N̄N#"N̄!N# · "N̄!N# , "2.21#

where E is a low-energy constant. The corresponding
3NF expression reads

V3N
"3# =

gA
2

8F!
4

"! 1 · q!1"! 3 · q!3

!q1
2 + M!

2 $!q3
2 + M!

2 $
!!1 · !3"− 4c1M!

2

+ 2c3q!1 · q!3# + c4!1 # !3 · !2q!1 # q!3 · "! 2$

−
gAD
8F!

2
"! 3 · q!3

q3
2 + M!

2 !1 · !3"! 1 · q!3 +
1
2

E!2 · !3, "2.22#

where the subscripts refer to the nucleon labels and q! i
=p! i!−p! i, with p! i! and p! i the final and initial momenta of
the nucleon i. The expressions in Eq. "2.22# correspond
to a particular choice of nucleon labels. The full expres-
sion for the 3NF results by taking into account all pos-
sible permutations of the nucleons "for three nucleons
there are altogether six permutations#, i.e.,

V3N
full = V3N + all permutations. "2.23#

We further emphasize that the expressions for the 3NF
given in Ordonez and van Kolck "1992# and van Kolck
"1994# contain one redundant 1!-exchange and two re-
dundant contact interactions. As shown in Epelbaum,
Nogga, Glöckle, Kamada, Meißner, and Witała "2002#,
only one independent linear combination contributes in
each case if one considers matrix elements between an-
tisymmetrized few-nucleon states !see also Bedaque et
al. "2000# for a related discussion$.

We now turn to N3LO and discuss first the corrections
to the 2NF. As follows from Eq. "2.8#, one has to account
for contributions from tree diagrams with one insertion
from L"4# or two insertions from L"2#, one-loop diagrams
with one insertion from L"2# or two insertions from L"1#

as well as two-loop graphs constructed from the lowest-
order vertices "see Fig. 12#. Apart from renormalization
of various LECs, the 1!-exchange potential receives at
this order !in the scheme based on the counting m
%O"$2 /M!#$ the first relativistic corrections propor-
tional to m−2. These are scheme-dependent and have to
be chosen consistently with the 1/m corrections to the
2!-exchange potential and the relativistic extension of
the dynamical equation !see Friar "1999# for a compre-
hensive discussion.$ The two-pion exchange contribu-
tions at N3LO were worked out in Kaiser "2001a# based

on the one-loop representation of the !N scattering am-
plitude. We refrain from giving here the rather involved
expressions for the subsubleading 2!-exchange potential
and refer to the original work "Kaiser, 2001a# where the
results are given in terms of the corresponding spectral
functions. For certain classes of contributions, the inte-
grals over the two-pion exchange spectrum could be per-
formed analytically and are given in Entem and
Machleidt "2002#. Notice further that the subleading
"i.e., the ones proportional to m−2# relativistic correc-
tions of the 2!-exchange range have also been worked
out in Kaiser "2002a#. In the counting scheme with m
%O"$2 /M!#, these terms, however, would only appear
at next-to-next-to-next-to-next-to-next leading order
"N5LO#. It should also be emphasized that the N3LO
contributions to the 2!-exchange potential were worked
out in the covariant version of chiral EFT !more pre-
cisely, using the formulation in Becher and Leutwyler
"1999#$ by Higa et al. "Higa and Robilotta 2003; Higa et
al., 2004, 2005#.

3!-exchange contributions also appear at this order in
the chiral expansion and have been worked out in Kai-
ser "2000a, 2000b# !see also Pupin and Robilotta "1999#
for a related work$. The resulting potentials turn out to
be rather weak. For example, the strongest contribution
is of the isoscalar spin-spin type "i.e., proportional to
"! 1 ·"! 2# and about ten times weaker than the correspond-
ing 2!-exchange contribution at the same order at rela-
tive distances r%M!

−1. It should, however, be empha-
sized that the subleading 3!-exchange contributions at
next-to-next-to-next-to-next leading order "N4LO# are
larger in size "Kaiser, 2001b# which, again, can be traced
back to the large values of the LECs ci. Finally, the last
type of the 2NF corrections at this order results from
diagrams involving contact interactions. The most gen-
eral polynomial "in momenta# representation of the
short-range part of the potential involves, apart from the
two leading and seven subleading terms given in Eqs.
"2.11# and "2.14#, 15 new contact interactions "in the iso-
spin invariant sector# yielding in total 24 LECs to be
determined from nucleon-nucleon data.

The 3NF contributions at N3LO feed into five differ-
ent topologies "see Fig. 13# and are currently being
worked out. Presently, the expressions for the first three
topologies which do not involve short-range contact in-
teractions are available. The one-loop corrections to the
2!-exchange diagrams can, to a large extent, be ac-
counted for by a finite shift ci→ c̄i=ci+%ci of the LECs ci
"Ishikawa and Robilotta, 2007; Bernard et al., 2008#,

%c1 = − gA
2 M!/64!F!

2 , %c3 = − %c4 = gA
4 M!/16!F!

2 .

"2.24#

Numerically, these corrections are of the order of 20%
of the corresponding LECs and are consistent with the
difference in values of ci between the order-Q2 and Q3
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Chiral EFT: N2LO 3N 
First non-vanishing 3N contributions: Next-to-next-to-leading order ⌫ = 3

!see also Coon and Friar "1986# and Eden and Gari
"1996#$. Consequently, there is no 3NF at NLO in the
chiral expansion.

The contributions at N2LO involve one-loop diagrams
with one insertion of the subleading vertices of dimen-
sion !i=1 "see Fig. 12#. The corresponding Lagrangians
read

L"N
"1# = N̄%c1&#+' + c2"v · u#2 + c3u · u

+ c4!S$,S%$u$u% + c5&#̂+'(N ,

L"NN
"1# =

D
2

"N̄N#"N̄S · uN# , "2.17#

where #̂+)#+− &#+' /2 and D, ci are the LECs. The
1"-exchange loop diagram again only lead to renormal-
ization of the corresponding LECs. Similarly, the contri-
bution from the last diagram which involves the two-
nucleon contact interaction can be absorbed into a
redefinition of the LECs CS,T and Ci in Eqs. "2.11# and
"2.14# "provided one is not interested in the quark mass
dependence of the nuclear force#. Further, the football
diagram yields vanishing contribution due to the anti-

symmetric "with respect to pion isospin quantum num-
bers# nature of the Weinberg-Tomozawa vertex. Thus,
the only nonvanishing contribution at this order results
from the 2"-exchange triangle diagram,

VNN
"3# = −

3gA
2

16"F"
4 !2M"

2 "2c1 − c3# − c3q!2$

&"2M"
2 + q!2#A'̃"q# −

gA
2 c4

32"F"
4 !1 · !2"4M"

2

+ q2#A'̃"q#"(! 1 · q!(! 2 · q! − q!2(! 1 · (! 2# , "2.18#

where the loop function A'̃"q# is given by

A'̃"q# = )"'̃ − 2M"#
1

2q
arctan

q"'̃ − 2M"#

q2 + 2'̃M"

. "2.19#

In DR, the expression for A"q# takes the following
simple form:

A"q# ) lim
'̃→*

A'̃"q# =
1

2q
arctan

q
2M"

. "2.20#

Notice that the triangle diagram also generates short-
range contributions which may be absorbed into redefi-
nition of contact interactions. The isoscalar central con-
tribution proportional to the LEC c3 is attractive and
very strong. It is by far the strongest two-pion exchange
contribution and reaches a few tens of MeV "depending
on the choice of regularization# at internucleon distances
of the order +*M"

−1. The origin of the unnaturally
strong subleading 2"-exchange contributions can be
traced back to the "numerically# large values of the
LECs c3,4 and is well understood in terms of resonance
exchange related to ! excitation "Bernard et al., 1997#.
We return to this issue in Sec. II.D where the chiral EFT
formulation with explicit ! degrees of freedom will be
discussed. The central 2"-exchange potential was also
calculated in Robilotta "2001# using the infrared-
regularized version of chiral EFT which enables one to
sum up a certain class of relativistic corrections "Becher
and Leutwyler, 1999#. He found that the results in the
heavy-baryon limit overestimate the ones obtained using
infrared regularization by about 25% !see also Epel-
baum "2006a# for a related discussion$. Last but not
least, the chiral 2"-exchange potential up to N2LO has
been tested in the Nijmegen partial wave analysis
"PWA# of both proton-proton and neutron-proton data
"Rentmeester et al., 1999, 2003# where also an attempt
has been done to determine the values of the LECs c3,4.
As demonstrated in these studies, the representation of
the "strong# long-range interaction based on the combi-
nation of the 1"- and the chiral 2"-exchange potentials
rather than on the pure 1"-exchange potential allows
one to considerably reduce the number of phenomeno-
logical parameters entering the energy-dependent
boundary conditions which are needed to parametrize
the missing short- and medium-range interactions. Also
the extracted values of the LECs c3,4 agree reasonably
well with various determinations in the pion-nucleon

Next−to−leading order

Next−to−next−to−leading order

Next−to−next−to−next−to−leading order

FIG. 13. "Color online# Chiral expansion of the three-nucleon
force up to N3LO. Diagrams in the first line "NLO# yield van-
ishing contributions to the 3NF if one uses energy-independent
formulations as explained in the text. The five topologies at
N3LO involve the two-pion exchange, one-pion-two-pion-
exchange, ring, contact-one-pion exchange, and contact-two-
pion-exchange diagrams in order. Shaded blobs represent the
corresponding amplitudes. For remaining notation see Fig. 12.
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Next-to-next-to-next-to-leading order 

Chiral EFT: N3LO 3N 

Good news: no new constants          Bad news: well, there’s all this 

⌫ = 4

!see also Coon and Friar "1986# and Eden and Gari
"1996#$. Consequently, there is no 3NF at NLO in the
chiral expansion.

The contributions at N2LO involve one-loop diagrams
with one insertion of the subleading vertices of dimen-
sion !i=1 "see Fig. 12#. The corresponding Lagrangians
read

L"N
"1# = N̄%c1&#+' + c2"v · u#2 + c3u · u

+ c4!S$,S%$u$u% + c5&#̂+'(N ,

L"NN
"1# =

D
2

"N̄N#"N̄S · uN# , "2.17#

where #̂+)#+− &#+' /2 and D, ci are the LECs. The
1"-exchange loop diagram again only lead to renormal-
ization of the corresponding LECs. Similarly, the contri-
bution from the last diagram which involves the two-
nucleon contact interaction can be absorbed into a
redefinition of the LECs CS,T and Ci in Eqs. "2.11# and
"2.14# "provided one is not interested in the quark mass
dependence of the nuclear force#. Further, the football
diagram yields vanishing contribution due to the anti-

symmetric "with respect to pion isospin quantum num-
bers# nature of the Weinberg-Tomozawa vertex. Thus,
the only nonvanishing contribution at this order results
from the 2"-exchange triangle diagram,

VNN
"3# = −

3gA
2

16"F"
4 !2M"

2 "2c1 − c3# − c3q!2$

&"2M"
2 + q!2#A'̃"q# −

gA
2 c4

32"F"
4 !1 · !2"4M"

2

+ q2#A'̃"q#"(! 1 · q!(! 2 · q! − q!2(! 1 · (! 2# , "2.18#

where the loop function A'̃"q# is given by

A'̃"q# = )"'̃ − 2M"#
1

2q
arctan

q"'̃ − 2M"#

q2 + 2'̃M"

. "2.19#

In DR, the expression for A"q# takes the following
simple form:

A"q# ) lim
'̃→*

A'̃"q# =
1

2q
arctan

q
2M"

. "2.20#

Notice that the triangle diagram also generates short-
range contributions which may be absorbed into redefi-
nition of contact interactions. The isoscalar central con-
tribution proportional to the LEC c3 is attractive and
very strong. It is by far the strongest two-pion exchange
contribution and reaches a few tens of MeV "depending
on the choice of regularization# at internucleon distances
of the order +*M"

−1. The origin of the unnaturally
strong subleading 2"-exchange contributions can be
traced back to the "numerically# large values of the
LECs c3,4 and is well understood in terms of resonance
exchange related to ! excitation "Bernard et al., 1997#.
We return to this issue in Sec. II.D where the chiral EFT
formulation with explicit ! degrees of freedom will be
discussed. The central 2"-exchange potential was also
calculated in Robilotta "2001# using the infrared-
regularized version of chiral EFT which enables one to
sum up a certain class of relativistic corrections "Becher
and Leutwyler, 1999#. He found that the results in the
heavy-baryon limit overestimate the ones obtained using
infrared regularization by about 25% !see also Epel-
baum "2006a# for a related discussion$. Last but not
least, the chiral 2"-exchange potential up to N2LO has
been tested in the Nijmegen partial wave analysis
"PWA# of both proton-proton and neutron-proton data
"Rentmeester et al., 1999, 2003# where also an attempt
has been done to determine the values of the LECs c3,4.
As demonstrated in these studies, the representation of
the "strong# long-range interaction based on the combi-
nation of the 1"- and the chiral 2"-exchange potentials
rather than on the pure 1"-exchange potential allows
one to considerably reduce the number of phenomeno-
logical parameters entering the energy-dependent
boundary conditions which are needed to parametrize
the missing short- and medium-range interactions. Also
the extracted values of the LECs c3,4 agree reasonably
well with various determinations in the pion-nucleon

Next−to−leading order

Next−to−next−to−leading order

Next−to−next−to−next−to−leading order

FIG. 13. "Color online# Chiral expansion of the three-nucleon
force up to N3LO. Diagrams in the first line "NLO# yield van-
ishing contributions to the 3NF if one uses energy-independent
formulations as explained in the text. The five topologies at
N3LO involve the two-pion exchange, one-pion-two-pion-
exchange, ring, contact-one-pion exchange, and contact-two-
pion-exchange diagrams in order. Shaded blobs represent the
corresponding amplitudes. For remaining notation see Fig. 12.
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Cutoff Variation with 3N Forces 

Use cutoff variation to assess missing physics in few body systems 
 

Radii of triton and alpha particle calculated from NN+3N forces   

Minimal cutoff variation 

122 S.K. Bogner et al. / Progress in Particle and Nuclear Physics 65 (2010) 94–147

Fig. 34. 3H and 4He radii are approximately cutoff independent with low-momentum NN and 3N interactions [73,133].

can be applied directly in the three-particle space. The right side involves only the Hamiltonian and the generator Gs, which
can be evaluated in a basis without solving bound state or scattering equations. A potential issue is the role of spectator
nucleons; we consider two solutions: first a decoupling of the 3N part inmomentum–space representation and then a direct
solution in a harmonic-oscillator basis. In both cases, we take Gs = Trel and return at the end to other choices.

To show the basic idea in momentum space, we adopt a notation in which V12 means the two-body interaction between
particles 1 and 2, while V123 is the irreducible three-body potential. We start with the Hamiltonian including up to three-
body interactions (keeping in mind that higher-body interactions will be induced as we evolve in s but will not contribute
to three-body systems):

Hs = Trel + V12 + V13 + V23 + V123 ⌘ Trel + Vs. (39)

(Note: all the potentials depend implicitly on s.) The relative kinetic energy operator Trel can be decomposed in three ways:

Trel = T12 + T3 = T13 + T2 = T23 + T1, (40)

and Ti commutes with Vjk,

[T3, V12] = [T2, V13] = [T1, V23] = 0, (41)

so the commutators of Trel with Vjk become [Trel, V12] = [T12, V12] and similarly for V13 and V23.
Because we define Trel to be independent of s, the SRG flow equation, (38), for the three-body Hamiltonian Hs simplifies

to
dVs

ds
= dV12

ds
+ dV13

ds
+ dV23

ds
+ dV123

ds
= [[Trel, Vs],Hs], (42)

with Vs defined by Eq. (39). The corresponding equations for each of the two-body potentials (which are completely
determined by their evolved matrix elements in the two-body systems) are

dV12

ds
= [[T12, V12], (T12 + V12)], (43)

and similarly for V13 and V23. After expanding Eq. (42) using Eq. (39) and the different decompositions of Trel, it is
straightforward to show that the derivatives of two-body potentials on the left side cancel precisely with terms on the
right side, leaving

dV123

ds
= [[T12, V12], (T3 + V13 + V23 + V123)] + [[T13, V13], (T2 + V12 + V23 + V123)]

+ [[T23, V23], (T1 + V12 + V13 + V123)] + [[Trel, V123],Hs]. (44)

The importance of these cancellations is that they eliminate the ‘‘dangerous’’ delta functions, which make setting up the
integral equations for the three-body system problematic [135]. We emphasize that the s-dependence of the two-body
potentials on the right side of Eq. (44) is completely determined by solving the two-body problem in Eq. (22). This is in
contrast to RG methods that run a cutoff on the total energy of the basis states (as in the Bloch–Horowitz or Lee–Suzuki
approaches). Such methods generate ‘‘multi-valued’’ two-body interactions, in the sense that the RG evolution of two-body
operators in A > 2 systems depends on the excitation energies of the unlinked spectator particles [109,136].

Further simplifications of Eq. (44) follow from antisymmetrization and applying the Jacobi identity, but this form is
sufficient to make clear that there are no disconnected pieces. The problem is thus reduced to the technical implementation
of a momentum–space decomposition analogous to Eq. (22). A diagrammatic approach is introduced in Refs. [137,138] to
handle this decomposition. Work is in progress on evolving 3N forces in momentum space. It has been verified that this
formalism leaves eigenvalues invariant for three-particle systems described by simple model Hamiltonians, such as a two-
level system of bosons [137].

To summarize, because only the Hamiltonian enters the SRG flow equations, there are no difficulties from having to solve
T matrices (bound state plus scattering wave functions) in all three-body (including breakup) channels, as required by the
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Fig. 8. Excitation energies (in MeV) in light nuclei calculated using the NCSM with chiral EFT interactions (NN to N3LO and 3N to N2LO) compared to
experiment [57].
Source: Reprinted with permission from Navratil et al. [57], copyright (2007) by the American Physical Society.

calculations, and to estimate truncation errors from omitted higher-order contributions. These variable-cutoff interactions
reveal the resolution or scale dependence of the first two sources of non-perturbative behavior, which are tamed as high
momenta are decoupled. In free space, the third source of non-perturbative behavior remains independent of the cutoff
because the pole positions of weakly and nearly bound states that necessitate fine tuning are physical observables. However,
this fine tuning is eliminated in themedium at sufficiently high density. In short, a repulsive core is not constrained by phase
shifts and is essentially removedby even amoderately low-momentumcutoff (note the⇤dependence in Fig. 3(b)), the short-
range tensor force is tamed by a sufficiently low cutoff, and the weakly and nearly bound states become perturbative as a
result of Pauli blocking. For cutoffs around 2 fm�1, which preserve phase shifts up to 330 MeV laboratory energy, the Born
series in nuclear matter is well converged at second order in the potential, bringing the nuclear and Coulomb many-body
problems closer together [9].

While evolving a soft potential from higher momentum is a new development in nuclear physics [5,58], attempts to use
soft potentials for nuclear matter were made in the mid sixties and early seventies [47,59]. It had long been observed that
a strongly repulsive core is not resolved until eight times nuclear saturation density [49]. Thus, saturation is not driven
by a hard core (unlike liquid 3He). However, these soft potentials were abandoned because they seemed incapable of
quantitatively reproducing nuclear matter properties. Their requiem was given by Bethe [49]:

‘‘Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high
density. In particular, a substantial tensor force is required.’’

From the EFT perspective, a failure to reproduce nuclear matter observables should not be interpreted as showing that the
low-energy potential is wrong, but that it is incomplete. This misconception still persists and has led to the conclusion that
low-momentum NN interactions are ‘‘wrong’’ because they do not give saturation in nuclear matter and finite nuclei are
overbound for lower cutoffs. The missing physics that invalidates this conclusion is many-body forces.

In a low-energy effective theory, many-body forces are inevitable; the relevant question is how large they are. It is
established beyond doubt that 3N forces are required to describe light nuclei [22–24,57,60,61], as shown, for example, in
Fig. 8. For variable-cutoff potentials, three-body (and higher-body) interactions evolve naturally with the resolution scale.

1.3. Renormalization group approaches

A fundamental tenet of renormalization theory is that the relevant details of high-energy physics for calculating low-
energy observables can be captured in the scale-dependent coefficients of operators in a low-energy Hamiltonian [29]. This
principle does not mean that high-energy and low-energy physics is automatically decoupled in every effective theory. In
fact, it implies that we can include as much irrelevant coupling to incorrect high-energy physics as we want by using a
large cutoff, with no consequence to low-energy predictions (assuming we can calculate accurately). But this freedom also
offers the possibility of decoupling, which makes practical calculations more tractable by restricting the necessary degrees
of freedom. This decoupling can be efficiently achieved by evolving nuclear interactions using RG transformations designed
to handle similar problems in relativistic field theories and critical phenomena in condensed matter systems.6

The general purpose of the RG, when dealing with the large range of scales in physical systems was eloquently explained
by David Gross [63]:

6 For an early discussion of decoupling based on Okubo unitary transformations, see Ref. [62].
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Fig. 19. (a) Particle–particle contributions to the energy per nucleon in symmetric nuclear matter as a function of the Fermi momentum kF for the initial
Argonne v18 potential and the RG-evolved Vlow k with⇤ = 2.1 fm�1 [9]. (b) Pair-distribution function g(r) in nuclearmatter for kF = 1.35 fm�1 at different
resolutions, for details see Ref. [10].

Fig. 20. Trajectories of the largest repulsive Weinberg eigenvalues in the (a) 1S0 and (b) 3S1–3D1 channels as a function of energy for Vlow k evolved from
the Argonne v18 potential [12]. The results for selected cutoffs are indicated by the different symbols. The positions of the symbols on each trajectory mark
the eigenvalues for center-of-mass energies Ecm = 0, 25, 66, 100 and 150 MeV, starting from the filled symbol at 0 MeV. The trajectory with stars are
eigenvalues for the N3LO potential of Ref. [20].

By finding the eigenvalues and eigenvectors of the operator (E � H0)
�1V ,

1
E � H0

V |�⌫i = ⌘⌫(E)|�⌫i, (5)

and then acting with T (E) on the eigenvectors,

T (E)|�⌫i =
�
1 + ⌘⌫(E) + ⌘2

⌫(E) + · · ·
�
V |�⌫i, (6)

it follows that non-perturbative behavior at energy E is signaled by one or more eigenvalues with |⌘⌫(E)| > 1 [75]. A
rearrangement of Eq. (5) gives a simple interpretation of the eigenvalue ⌘⌫(E) as an energy-dependent coupling that must
divide V to produce a solution to the Schrödinger equation at energy E. For negative energies, a purely attractive V gives
positive real ⌘⌫(E) values, while a purely repulsive V gives negative eigenvalues. For this reason, we refer to negative
eigenvalues as repulsive and positive ones as attractive, although the eigenvalues become complex for positive E.

Fig. 20 shows the trajectories of the largest repulsive Weinberg eigenvalue in the 1S0 and 3S1–3D1 channels as a function
of (positive) energy for Vlow k interactions with various cutoffs evolved from the Argonne v18 potential. Themagnitude of the
largest repulsive eigenvalue at all energies decreases rapidly as the cutoff is lowered. This reflects the decrease of the short-
range repulsion present in the initial potential. In the 1S0 channel, the trajectory lies completely inside the shaded unit circle

H (⇤) = T + VNN (⇤) + V3N (⇤) + V4N (⇤) + · · ·
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In Fig. 2, we show the single-particle energies (SPEs) of
the neutron d5=2, s1=2 and d3=2 orbitals at subshell closures
N ¼ 8, 14, 16, and 20. The evolution of the SPEs is due to
interactions as neutrons are added. For the SPEs based on
NN forces in Fig. 2(a), the d3=2 orbital decreases rapidly as
neutrons occupy the d5=2 orbital, and remains well bound
from N ¼ 14 on. This leads to bound oxygen isotopes out
to N ¼ 20 and puts the neutron drip line incorrectly at 28O.
This result appears to depend only weakly on the renor-
malization method or the NN interaction used. We dem-
onstrate this by showing SPEs calculated in the G matrix
formalism [10], which sums particle-particle ladders, and
based on low-momentum interactions Vlow k [11] obtained
from chiral NN interactions at next-to-next-to-next-to-
leading order (N3LO) [12] using the renormalization
group. Both calculations include core polarization effects
perturbatively [including diagram Fig. 3(d) with the !
replaced by a nucleon and all other second-order diagrams]
and start from empirical SPEs [13] in 17O. The empirical
SPEs contain effects from the core and its excitations,
including effects due to 3N forces.

We next show in Fig. 2(b) the SPEs obtained from the
phenomenological forces SDPF-M [13] and USD-B [14]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2(a): As neutrons occupy the d5=2 orbital, with
N evolving from 8 to 14, the d3=2 orbital remains almost at
the same energy and is not well bound out to N ¼ 20. The
dominant differences between Figs. 2(a) and 2(b) can be
traced to the two-body monopole components, which de-
termine the average interaction between two orbitals. The
monopole components of a general two-body interaction V
are given by an angular average over all possible orienta-
tions of the two nucleons in orbitals lj and l0j0 [15],

Vmono
j;j0 ¼

X

m;m0
hjmj0m0jVjjmj0m0i=

X

m;m0
1; (1)

where the sum over magnetic quantum numbers m and m0

can be restricted by antisymmetry (see [16,17] for details).
The SPE of the orbital j is effectively shifted by Vmono

j;j0

multiplied by the occupation number of the orbital j0. This
leads to the change in the SPE and determines shell struc-
ture and the location of the drip line [16–19].
The comparison of Figs. 2(a) and 2(b) suggests that the

monopole interaction between the d3=2 and d5=2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction on
the d3=2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [20].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repulsive
monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion principle.
Figure 3(a) depicts the leading contribution to NN forces
due to the excitation of a !, induced by the exchange of
pions with another nucleon. Because this is a second-order
perturbation, its contribution to the energy and to the two-
neutron monopole components has to be attractive. This is
part of the attractive d3=2 " d5=2 monopole component
obtained from NN forces.
In nuclei, the process of Fig. 3(a) leads to a change of the

SPE of the j, m orbital due to the excitation of a core
nucleon to a !, as illustrated in Fig. 3(b) where the initial
valence neutron is virtually excited to another j0,m0 orbital.
As discussed, this lowers the energy of the j, m orbital
and thus increases its binding. However, in nuclei this
process is forbidden by the Pauli exclusion principle, if
another neutron occupies the same orbital j0, m0, as shown
in Fig. 3(c). The corresponding contribution must then be
subtracted from the SPE change due to Fig. 3(b). This is
taken into account by the inclusion of the exchange dia-
gram, Fig. 3(d), where the neutrons in the intermediate
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FIG. 2 (color online). Single-particle energies of the neutron
d5=2, s1=2 and d3=2 orbitals measured from the energy of 16O as a
function of neutron number N. (a) SPEs calculated from a G
matrix and from low-momentum interactions Vlow k. (b) SPEs
obtained from the phenomenological forces SDPF-M [13] and
USD-B [14]. (c),(d) SPEs including contributions from 3N
forces due to ! excitations and chiral EFT 3N interactions at
N2LO [25]. The changes due to 3N forces based on ! excitations
are highlighted by the shaded areas.
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In Fig. 2, we show the single-particle energies (SPEs) of
the neutron d5=2, s1=2 and d3=2 orbitals at subshell closures
N ¼ 8, 14, 16, and 20. The evolution of the SPEs is due to
interactions as neutrons are added. For the SPEs based on
NN forces in Fig. 2(a), the d3=2 orbital decreases rapidly as
neutrons occupy the d5=2 orbital, and remains well bound
from N ¼ 14 on. This leads to bound oxygen isotopes out
to N ¼ 20 and puts the neutron drip line incorrectly at 28O.
This result appears to depend only weakly on the renor-
malization method or the NN interaction used. We dem-
onstrate this by showing SPEs calculated in the G matrix
formalism [10], which sums particle-particle ladders, and
based on low-momentum interactions Vlow k [11] obtained
from chiral NN interactions at next-to-next-to-next-to-
leading order (N3LO) [12] using the renormalization
group. Both calculations include core polarization effects
perturbatively [including diagram Fig. 3(d) with the !
replaced by a nucleon and all other second-order diagrams]
and start from empirical SPEs [13] in 17O. The empirical
SPEs contain effects from the core and its excitations,
including effects due to 3N forces.

We next show in Fig. 2(b) the SPEs obtained from the
phenomenological forces SDPF-M [13] and USD-B [14]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2(a): As neutrons occupy the d5=2 orbital, with
N evolving from 8 to 14, the d3=2 orbital remains almost at
the same energy and is not well bound out to N ¼ 20. The
dominant differences between Figs. 2(a) and 2(b) can be
traced to the two-body monopole components, which de-
termine the average interaction between two orbitals. The
monopole components of a general two-body interaction V
are given by an angular average over all possible orienta-
tions of the two nucleons in orbitals lj and l0j0 [15],

Vmono
j;j0 ¼

X

m;m0
hjmj0m0jVjjmj0m0i=

X

m;m0
1; (1)

where the sum over magnetic quantum numbers m and m0

can be restricted by antisymmetry (see [16,17] for details).
The SPE of the orbital j is effectively shifted by Vmono

j;j0

multiplied by the occupation number of the orbital j0. This
leads to the change in the SPE and determines shell struc-
ture and the location of the drip line [16–19].
The comparison of Figs. 2(a) and 2(b) suggests that the

monopole interaction between the d3=2 and d5=2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction on
the d3=2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [20].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repulsive
monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion principle.
Figure 3(a) depicts the leading contribution to NN forces
due to the excitation of a !, induced by the exchange of
pions with another nucleon. Because this is a second-order
perturbation, its contribution to the energy and to the two-
neutron monopole components has to be attractive. This is
part of the attractive d3=2 " d5=2 monopole component
obtained from NN forces.
In nuclei, the process of Fig. 3(a) leads to a change of the

SPE of the j, m orbital due to the excitation of a core
nucleon to a !, as illustrated in Fig. 3(b) where the initial
valence neutron is virtually excited to another j0,m0 orbital.
As discussed, this lowers the energy of the j, m orbital
and thus increases its binding. However, in nuclei this
process is forbidden by the Pauli exclusion principle, if
another neutron occupies the same orbital j0, m0, as shown
in Fig. 3(c). The corresponding contribution must then be
subtracted from the SPE change due to Fig. 3(b). This is
taken into account by the inclusion of the exchange dia-
gram, Fig. 3(d), where the neutrons in the intermediate
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FIG. 2 (color online). Single-particle energies of the neutron
d5=2, s1=2 and d3=2 orbitals measured from the energy of 16O as a
function of neutron number N. (a) SPEs calculated from a G
matrix and from low-momentum interactions Vlow k. (b) SPEs
obtained from the phenomenological forces SDPF-M [13] and
USD-B [14]. (c),(d) SPEs including contributions from 3N
forces due to ! excitations and chiral EFT 3N interactions at
N2LO [25]. The changes due to 3N forces based on ! excitations
are highlighted by the shaded areas.

PRL 105, 032501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
16 JULY 2010

032501-2



state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from 16O, including experimental values of the bound 16–
24 O. Energies obtained from (a) phenomenological forces SDPF-M [13] and USD-B [14], (b) a Gmatrix and including FM 3N forces
due to ! excitations, and (c) from low-momentum interactions Vlow k and including chiral EFT 3N interactions at N2LO as well as only
due to ! excitations [25]. The changes due to 3N forces based on ! excitations are highlighted by the shaded areas. (d) Schematic
illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the 16O core.
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state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from 16O, including experimental values of the bound 16–
24 O. Energies obtained from (a) phenomenological forces SDPF-M [13] and USD-B [14], (b) a Gmatrix and including FM 3N forces
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illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the 16O core.
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In Fig. 2, we show the single-particle energies (SPEs) of
the neutron d5=2, s1=2 and d3=2 orbitals at subshell closures
N ¼ 8, 14, 16, and 20. The evolution of the SPEs is due to
interactions as neutrons are added. For the SPEs based on
NN forces in Fig. 2(a), the d3=2 orbital decreases rapidly as
neutrons occupy the d5=2 orbital, and remains well bound
from N ¼ 14 on. This leads to bound oxygen isotopes out
to N ¼ 20 and puts the neutron drip line incorrectly at 28O.
This result appears to depend only weakly on the renor-
malization method or the NN interaction used. We dem-
onstrate this by showing SPEs calculated in the G matrix
formalism [10], which sums particle-particle ladders, and
based on low-momentum interactions Vlow k [11] obtained
from chiral NN interactions at next-to-next-to-next-to-
leading order (N3LO) [12] using the renormalization
group. Both calculations include core polarization effects
perturbatively [including diagram Fig. 3(d) with the !
replaced by a nucleon and all other second-order diagrams]
and start from empirical SPEs [13] in 17O. The empirical
SPEs contain effects from the core and its excitations,
including effects due to 3N forces.

We next show in Fig. 2(b) the SPEs obtained from the
phenomenological forces SDPF-M [13] and USD-B [14]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2(a): As neutrons occupy the d5=2 orbital, with
N evolving from 8 to 14, the d3=2 orbital remains almost at
the same energy and is not well bound out to N ¼ 20. The
dominant differences between Figs. 2(a) and 2(b) can be
traced to the two-body monopole components, which de-
termine the average interaction between two orbitals. The
monopole components of a general two-body interaction V
are given by an angular average over all possible orienta-
tions of the two nucleons in orbitals lj and l0j0 [15],

Vmono
j;j0 ¼

X

m;m0
hjmj0m0jVjjmj0m0i=

X

m;m0
1; (1)

where the sum over magnetic quantum numbers m and m0

can be restricted by antisymmetry (see [16,17] for details).
The SPE of the orbital j is effectively shifted by Vmono

j;j0

multiplied by the occupation number of the orbital j0. This
leads to the change in the SPE and determines shell struc-
ture and the location of the drip line [16–19].
The comparison of Figs. 2(a) and 2(b) suggests that the

monopole interaction between the d3=2 and d5=2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction on
the d3=2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [20].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repulsive
monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion principle.
Figure 3(a) depicts the leading contribution to NN forces
due to the excitation of a !, induced by the exchange of
pions with another nucleon. Because this is a second-order
perturbation, its contribution to the energy and to the two-
neutron monopole components has to be attractive. This is
part of the attractive d3=2 " d5=2 monopole component
obtained from NN forces.
In nuclei, the process of Fig. 3(a) leads to a change of the

SPE of the j, m orbital due to the excitation of a core
nucleon to a !, as illustrated in Fig. 3(b) where the initial
valence neutron is virtually excited to another j0,m0 orbital.
As discussed, this lowers the energy of the j, m orbital
and thus increases its binding. However, in nuclei this
process is forbidden by the Pauli exclusion principle, if
another neutron occupies the same orbital j0, m0, as shown
in Fig. 3(c). The corresponding contribution must then be
subtracted from the SPE change due to Fig. 3(b). This is
taken into account by the inclusion of the exchange dia-
gram, Fig. 3(d), where the neutrons in the intermediate
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FIG. 2 (color online). Single-particle energies of the neutron
d5=2, s1=2 and d3=2 orbitals measured from the energy of 16O as a
function of neutron number N. (a) SPEs calculated from a G
matrix and from low-momentum interactions Vlow k. (b) SPEs
obtained from the phenomenological forces SDPF-M [13] and
USD-B [14]. (c),(d) SPEs including contributions from 3N
forces due to ! excitations and chiral EFT 3N interactions at
N2LO [25]. The changes due to 3N forces based on ! excitations
are highlighted by the shaded areas.
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In Fig. 2, we show the single-particle energies (SPEs) of
the neutron d5=2, s1=2 and d3=2 orbitals at subshell closures
N ¼ 8, 14, 16, and 20. The evolution of the SPEs is due to
interactions as neutrons are added. For the SPEs based on
NN forces in Fig. 2(a), the d3=2 orbital decreases rapidly as
neutrons occupy the d5=2 orbital, and remains well bound
from N ¼ 14 on. This leads to bound oxygen isotopes out
to N ¼ 20 and puts the neutron drip line incorrectly at 28O.
This result appears to depend only weakly on the renor-
malization method or the NN interaction used. We dem-
onstrate this by showing SPEs calculated in the G matrix
formalism [10], which sums particle-particle ladders, and
based on low-momentum interactions Vlow k [11] obtained
from chiral NN interactions at next-to-next-to-next-to-
leading order (N3LO) [12] using the renormalization
group. Both calculations include core polarization effects
perturbatively [including diagram Fig. 3(d) with the !
replaced by a nucleon and all other second-order diagrams]
and start from empirical SPEs [13] in 17O. The empirical
SPEs contain effects from the core and its excitations,
including effects due to 3N forces.

We next show in Fig. 2(b) the SPEs obtained from the
phenomenological forces SDPF-M [13] and USD-B [14]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2(a): As neutrons occupy the d5=2 orbital, with
N evolving from 8 to 14, the d3=2 orbital remains almost at
the same energy and is not well bound out to N ¼ 20. The
dominant differences between Figs. 2(a) and 2(b) can be
traced to the two-body monopole components, which de-
termine the average interaction between two orbitals. The
monopole components of a general two-body interaction V
are given by an angular average over all possible orienta-
tions of the two nucleons in orbitals lj and l0j0 [15],

Vmono
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1; (1)

where the sum over magnetic quantum numbers m and m0

can be restricted by antisymmetry (see [16,17] for details).
The SPE of the orbital j is effectively shifted by Vmono

j;j0

multiplied by the occupation number of the orbital j0. This
leads to the change in the SPE and determines shell struc-
ture and the location of the drip line [16–19].
The comparison of Figs. 2(a) and 2(b) suggests that the

monopole interaction between the d3=2 and d5=2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction on
the d3=2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [20].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repulsive
monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion principle.
Figure 3(a) depicts the leading contribution to NN forces
due to the excitation of a !, induced by the exchange of
pions with another nucleon. Because this is a second-order
perturbation, its contribution to the energy and to the two-
neutron monopole components has to be attractive. This is
part of the attractive d3=2 " d5=2 monopole component
obtained from NN forces.
In nuclei, the process of Fig. 3(a) leads to a change of the

SPE of the j, m orbital due to the excitation of a core
nucleon to a !, as illustrated in Fig. 3(b) where the initial
valence neutron is virtually excited to another j0,m0 orbital.
As discussed, this lowers the energy of the j, m orbital
and thus increases its binding. However, in nuclei this
process is forbidden by the Pauli exclusion principle, if
another neutron occupies the same orbital j0, m0, as shown
in Fig. 3(c). The corresponding contribution must then be
subtracted from the SPE change due to Fig. 3(b). This is
taken into account by the inclusion of the exchange dia-
gram, Fig. 3(d), where the neutrons in the intermediate
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FIG. 2 (color online). Single-particle energies of the neutron
d5=2, s1=2 and d3=2 orbitals measured from the energy of 16O as a
function of neutron number N. (a) SPEs calculated from a G
matrix and from low-momentum interactions Vlow k. (b) SPEs
obtained from the phenomenological forces SDPF-M [13] and
USD-B [14]. (c),(d) SPEs including contributions from 3N
forces due to ! excitations and chiral EFT 3N interactions at
N2LO [25]. The changes due to 3N forces based on ! excitations
are highlighted by the shaded areas.
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Large-space methods with same SRG-evolved NN+3N-full forces 
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Benefits of Lower Cutoffs 
Triton binding energy - again clearly improved convergence behavior 
 

Clear dependence on cutoff – more than one, look closely… 
 

What is the source(s)? 
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Fig. 29. (a) Absolute error versus � of the deuteron binding energy from a variational calculation in a fixed-size basis of harmonic oscillators (Nmaxh̄!
excitations). (b) Variational triton binding energy for selected � with NN interactions only, as a function of Nmax. For details, see Ref. [7].

distinct at higher momentum), with the universal low-momentum parts numerically similar to the Vlow k potentials. These
observations are illustrated in Fig. 28(a) for the diagonal and off-diagonal matrix elements.

Similarly, the non-perturbative features associated with strong short-range repulsion and strong short-range tensor
forces are substantially softened as we evolve to lower �. The largest repulsive Weinberg eigenvalues (see Section 2.4) for
E = 0 are shown as a function of � in Fig. 28(b) for the 1S0 and 3S1–3D1 channels. In both channels, the large eigenvalues
decrease rapidly as� evolves to 2 fm�1 and below, as observedwith the Vlow k evolution in Section 2.4. Themore perturbative
potentials at lower � induce weaker short-range correlations in few- andmany-body wave functions, which leads to greatly
improved convergence in variational calculations. This is illustrated in Fig. 29(a) and (b) via calculations of the deuteron and
triton binding energies by diagonalization in a harmonic-oscillator basis. The improvement in convergence is similar to that
found with smoothly cutoff Vlow k interactions [6].

In Fig. 29(b), the calculations for different � converge to different values for the triton binding energy. This reflects the
contributions of the omitted (and evolving) three-body interactions, and follows a similar pattern to that seenwith NN-only
Vlow k calculations [6,8]. The consistent evolution ofmany-body forces is an important issue for low-momentum interactions.
For the SRG, the evolution of 3N forces is readily practical, as discussed in Section 4.2.

3.4. Vlow k from SRG flow equations

A powerful feature of the SRG is that the generator Gs can be tailored to decouple high- and low-momentum physics
in different ways [104]. Block-diagonal decoupling of the sharp Vlow k form can be generated using SRG flow equations by
choosing a block-diagonal flow operator [105,106],

Gs =
✓

PHsP 0
0 QHsQ

◆
, (24)

with projection operators P and Q = 1�P . In a partial-wavemomentum representation, P and Q are step functions defined
by a sharp cutoff⇤ on relativemomenta. This choice forGs, whichmeans that⌘s is non-zero onlywhereGs is zero, suppresses
off-diagonal matrix elements such that the Hamiltonian approaches a block-diagonal form as s increases. If one considers a
measure of the off-diagonal coupling of the Hamiltonian,

Tr[(QHsP)Ñ(QHsP)] = Tr[PHsQHsP] > 0, (25)

then its derivative is easily evaluated by applying the SRG equation, Eq. (21):
d
ds

Tr[PHsQHsP] = Tr[P⌘sQ (QHsQHsP � QHsPHsP)] + Tr[(PHsPHsQ � PHsQHsQ )Q⌘sP]

= � 2 Tr[(Q⌘sP)Ñ(Q⌘sP)] 6 0. (26)

Thus, the off-diagonal QHsP block will decrease in general as s increases [105,106].
The right panels of Fig. 30(a) and (b) result from evolving the N3LO potential of Ref. [20] using the block-diagonal Gs of

Eq. (24) with ⇤ = 2 fm�1 to � = 0.5 fm�1. The agreement between Vlow k and SRG potentials for momenta below ⇤ is
striking, where a similar degree of universality is found in other channels. Deriving an explicit connection between these
approaches is the topic of ongoing research.
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distinct at higher momentum), with the universal low-momentum parts numerically similar to the Vlow k potentials. These
observations are illustrated in Fig. 28(a) for the diagonal and off-diagonal matrix elements.

Similarly, the non-perturbative features associated with strong short-range repulsion and strong short-range tensor
forces are substantially softened as we evolve to lower �. The largest repulsive Weinberg eigenvalues (see Section 2.4) for
E = 0 are shown as a function of � in Fig. 28(b) for the 1S0 and 3S1–3D1 channels. In both channels, the large eigenvalues
decrease rapidly as� evolves to 2 fm�1 and below, as observedwith the Vlow k evolution in Section 2.4. Themore perturbative
potentials at lower � induce weaker short-range correlations in few- andmany-body wave functions, which leads to greatly
improved convergence in variational calculations. This is illustrated in Fig. 29(a) and (b) via calculations of the deuteron and
triton binding energies by diagonalization in a harmonic-oscillator basis. The improvement in convergence is similar to that
found with smoothly cutoff Vlow k interactions [6].

In Fig. 29(b), the calculations for different � converge to different values for the triton binding energy. This reflects the
contributions of the omitted (and evolving) three-body interactions, and follows a similar pattern to that seenwith NN-only
Vlow k calculations [6,8]. The consistent evolution ofmany-body forces is an important issue for low-momentum interactions.
For the SRG, the evolution of 3N forces is readily practical, as discussed in Section 4.2.

3.4. Vlow k from SRG flow equations

A powerful feature of the SRG is that the generator Gs can be tailored to decouple high- and low-momentum physics
in different ways [104]. Block-diagonal decoupling of the sharp Vlow k form can be generated using SRG flow equations by
choosing a block-diagonal flow operator [105,106],

Gs =
✓

PHsP 0
0 QHsQ

◆
, (24)

with projection operators P and Q = 1�P . In a partial-wavemomentum representation, P and Q are step functions defined
by a sharp cutoff⇤ on relativemomenta. This choice forGs, whichmeans that⌘s is non-zero onlywhereGs is zero, suppresses
off-diagonal matrix elements such that the Hamiltonian approaches a block-diagonal form as s increases. If one considers a
measure of the off-diagonal coupling of the Hamiltonian,

Tr[(QHsP)Ñ(QHsP)] = Tr[PHsQHsP] > 0, (25)

then its derivative is easily evaluated by applying the SRG equation, Eq. (21):
d
ds

Tr[PHsQHsP] = Tr[P⌘sQ (QHsQHsP � QHsPHsP)] + Tr[(PHsPHsQ � PHsQHsQ )Q⌘sP]

= � 2 Tr[(Q⌘sP)Ñ(Q⌘sP)] 6 0. (26)

Thus, the off-diagonal QHsP block will decrease in general as s increases [105,106].
The right panels of Fig. 30(a) and (b) result from evolving the N3LO potential of Ref. [20] using the block-diagonal Gs of

Eq. (24) with ⇤ = 2 fm�1 to � = 0.5 fm�1. The agreement between Vlow k and SRG potentials for momenta below ⇤ is
striking, where a similar degree of universality is found in other channels. Deriving an explicit connection between these
approaches is the topic of ongoing research.
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Case 1: Price of Low Cutoffs = Induced Forces 
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Consider Hamiltonian with only two-body forces: 
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Simply expand with creation/annihilation operators: 
 

H = T + VNN

⌘(s) = [T,H(s)]

dH(s)

ds
= [⌘(s), H(s)] = [[T, T + V (s)] , T + V (s)]
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Three-body terms will appear even when initial 3-body forces absent 
 

Call these induced 3N forces (3N-ind) 

H = T + VNN

⌘(s) = [T,H(s)]

dH(s)
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Induced 3N Forces 
Effect of including 3N-ind? Exactly initial          up to neglected 4N-ind 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
NN-only clear cutoff dependencs 

RG flow BD Perturbativeness 3NF A=3,4 Numerical

3D SRG evolution with Trel in a Jacobi HO basis
Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]

Here: use anti-symmetric Jacobi HO basis from NCSM
directly obtain SRG matrix elements in HO basis
separate 3-body evolution not needed

Compare 2-body only to full 2 + 3-body evolution:
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NN-only clear cutoff dependencs 
 

3N-induced – dramatic reduction in cutoff dependence! 
 

Lesson: SRG cutoff variation a sign of neglected induced forces 
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Induced 3N Forces 
Effect of including 3N-ind? Exactly initial          up to neglected 4N-ind 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
NN-only clear cutoff dependencs 
 

3N-induced – dramatic reduction in cutoff dependence! 
 

Lesson: SRG cutoff variation a sign of neglected induced forces 
 

Still far from experiment and remaining (minor) cutoff dependence! 

VNN



� = 2.0 fm�1

Create block diagonal form like Vlowk? 
 
 
 
With alternate definition of flow parameter: �2 =

1p
s

G(s) = HBD =

✓
PH(s)P 0

0 QH(s)Q

◆

ArgonneV18
3S1

Overview RG Basics 3NF BD

Block diagonalization via SRG [Gs = HBD]

Can we get a ⇤ = 2 fm�1
Vlow k -like potential with SRG?

Yes! Use dHs

ds
= [[Gs,Hs],Hs] with Gs =

✓
PHsP 0

0 QHsQ

◆

What are the best generators for nuclear applications?
Dick Furnstahl Nuclei at Low Resolution

Other Generator Choices: Block Diagonal 


