
From QCD to Nuclear Interactions 
How do we determine interactions between nucleons? 

Old view:  
Multiple scales complicate life 
 

No meaningful way to connect them 

Modern view:  
Choose convenient resolution scale 
 

Effective field theory at each scale 
   connected by RG 
 

Ratio of scales – small parameters 
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H (⇤) = T + VNN (⇤) + V3N (⇤) + V4N (⇤) + · · ·



Ideas Behind Effective Theories 
Resolution scale and relevant degrees of freedom 

High energy probe resolves fine details 
 

Need high-energy degrees of freedom 

Overview RG Basics Resolution Forces Filter Coupling

Principle of any effective low-energy description

If system is probed at low energies, fine details not resolved

Use low-energy variables for low-energy processes
Short-distance structure can be replaced by something simpler
without distorting low-energy observables
Could be a model or systematic (e.g., effective field theory)

Physics interpretation often changes with resolution!

Low density , low interaction energy , low resolution (?)

Dick Furnstahl Nuclei at Low Resolution
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Ideas Behind Effective Theories 

Low-energy probe can’t resolve such details 
 

Don’t need high-energy degrees of freedom – replace with something simpler 
 

Use more convenient dofs, but preserve low-energy observables! 

Overview RG Basics Resolution Forces Filter Coupling

Principle of any effective low-energy description

If system is probed at low energies, fine details not resolved
Use low-energy variables for low-energy processes
Short-distance structure can be replaced by something simpler
without distorting low-energy observables
Could be a model or systematic (e.g., effective field theory)

Physics interpretation often changes with resolution!

Low density , low interaction energy , low resolution (?)

Dick Furnstahl Nuclei at Low Resolution

Resolution scale and relevant degrees of freedom 



Ideas Behind Effective Theories 
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physics (like 1π exchange) 
with some scale ML 

Short-distance physics  
(ρ,ω exchange) with 
some scale MS 

Assume underlying theory with cutoff Λ∞ 
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Ideas Behind Effective Theories 

MS 

ML 

Λ∞ 
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And we want a low-energy effective theory for physics up to some 

0 

Assume underlying theory with cutoff Λ∞ 

V = VL + VS

Known long-distance  
physics (like 1π exchange) 
with some scale ML 

Short-distance physics  
(ρ,ω exchange) with 
some scale MS 

ML < ⇤ < MS

Integrate out states above Λ using Renormalization Group (RG) 
 

General form of effective theory: 
 

   where 
 

Also use RG to change resolution scales within particular EFT 

Ve↵ = VL + �Vc.t.(⇤)

�Vc.t.(⇤) = C0(⇤)�
3(r) + C2(⇤)r2�3(r) + · · ·



Ideas Behind Effective Theories 

General form of effective theory:  

Encodes effects of high-E 
dof on low-energy observables  

Universal; depends only  
on symmetries 

Short distance structure of “true theory” captured in several numbers 
 - Calculate from underlying theory 

When short-range physics is unknown or too complicated 
 - Extract from low-energy data 

TWO choices: 

How do we apply these ideas to nuclear forces? 

Ve↵ = VL + �Vc.t.(⇤)

�Vc.t.(⇤) = C0(⇤)�
3(r) + C2(⇤)r2�3(r) + · · ·



Chiral Effective Field Theory: Philosophy 

“At each scale we have different degrees of freedom and different dynamics.   
Physics at a larger scale (largely) decouples from physics at a smaller scale… 
thus a theory at a larger scale remembers only finitely many parameters from the  
theories at smaller scales, and throws the rest of the details away.   
 
More precisely, when we pass from a smaller scale to a larger scale, we average  
out irrelevant degrees of freedom… The general aim of the RG method is to  
explain how this decoupling takes place and why exactly information is  
transmitted from one scale to another through finitely many parameters.” 
-  David Gross 

“The method in its most general form can.. be understood as a way to arrange  
in various theories that the degrees of freedom that you’re talking about are the  
relevant degrees of freedom for the problem at hand.” 
 - Steven Weinberg 
 
5 Steps to constructing such a theory for nuclear forces 



Separation of Scales in Nuclear Physics 

 

Only degrees of freedom relevant to energy scale 

Appropriate separation of scales  
 

Typical momenta in nucleus 

Effective theory: only nucleons and pions 
 
 
 
 
 
                             How low can we go?? 

Step I: Identify appropriate separation of scales, degrees of freedom 

It seems like 
we’re forgetting 
something… 

⇤chiral ⇠ 700MeV

Q ⇠ m⇡



Separation of Scales in Nuclear Physics 

Appropriate separation of scales  
 

Typical momenta in nucleus 

Pionless effective theory: only nucleons 
 
 
 
 
 

Step I: Identify appropriate separation of scales, degrees of freedom 

Could we make a 
different 

separation? 

Q ⇠ m⇡



Chiral EFT Symmetries 
Step II: Identify relevant symmetries of underlying theory (QCD) 

 Missing ingredient in multi-pion-exchange theories of 50’s! 
 
Construct Lagrangian based on these symmetries 

Le↵ = L⇡⇡ + L⇡N + LNN



Chiral EFT Lagrangian 

Pion-pion Lagrangian: U is SU(2) matrix parameterized by three pion fields 

Leading-order pion-nucleon 

Leading-order nucleon-nucleon (encodes unknown short-range physics) 

Step III: Construct Lagrangian based on identified symmetries 



Organize theory in powers of             where                typical nuclear momenta 

EFT Power Counting 
Step IV: Design an organized scheme to distinguish more from 
                less important processes: Power Counting 

Only valid for small expansion parameters, i.e., low momentum 

Irreducible time-ordered diagram has order: 

✓
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N = Number of nucleons

�i = di +
1

2
ni � 2 “Chiral dimension”

L = Number of pion loops
Vi = Number of vertices of type i

n = Number of nucleon field operators
d = Number of derivatives or insertions ofm⇡



the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
nard et al., 1992#:

L"
"0# =

F2

4
%!#U!#U† + $+& ,

L"N
"0# = N̄"iv · D + g̊Au · S#N ,

LNN
"0# = − 1

2CS"N̄N#"N̄N# + 2CT"N̄SN# · "N̄SN# , "2.9#

where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,

U"!# = 1 +
i
F

" · ! −
1

2F2!2 + O""3# , "2.10#

where )i denotes the isospin Pauli matrix. The covariant
derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:

VNN
"0# = −

gA
2

4F"
2

&! 1 · q!&! 2 · q!
q!2 + M"

2 "1 · "2 + CS + CT&! 1 · &! 2,

"2.11#

where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to

Leading order

Next−to−next−to−next−to−leading order

Next−to−leading order

Next−to−next−to−leading order

FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order "N3LO#. Solid dots, filled
circles, squares, and diamonds denote vertices with !i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.
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the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
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!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
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limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"
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2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
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NN contact interaction 

Chiral EFT: Lowest Order (LO) 

Two low-energy constants (LECs): CS, CT 

Step V: Calculate Feynmann diagrams to the desired accuracy 
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Question: What will           look like? 

Chiral EFT 

€ 

ν =1

Answer: No contribution at this order 

Step V: Calculate Feynmann diagrams to the desired accuracy 



the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
nard et al., 1992#:

L"
"0# =

F2

4
%!#U!#U† + $+& ,

L"N
"0# = N̄"iv · D + g̊Au · S#N ,

LNN
"0# = − 1

2CS"N̄N#"N̄N# + 2CT"N̄SN# · "N̄SN# , "2.9#

where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,

U"!# = 1 +
i
F

" · ! −
1

2F2!2 + O""3# , "2.10#

where )i denotes the isospin Pauli matrix. The covariant
derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:
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gA
2

4F"
2
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q!2 + M"
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"2.11#

where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to
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Next−to−next−to−next−to−leading order

Next−to−leading order
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FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order "N3LO#. Solid dots, filled
circles, squares, and diamonds denote vertices with !i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.
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the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
nard et al., 1992#:
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"0# =
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"0# = N̄"iv · D + g̊Au · S#N ,

LNN
"0# = − 1

2CS"N̄N#"N̄N# + 2CT"N̄SN# · "N̄SN# , "2.9#

where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,

U"!# = 1 +
i
F

" · ! −
1

2F2!2 + O""3# , "2.10#

where )i denotes the isospin Pauli matrix. The covariant
derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:

VNN
"0# = −
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2

4F"
2
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where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to
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Next−to−leading order
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FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order "N3LO#. Solid dots, filled
circles, squares, and diamonds denote vertices with !i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.
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Chiral EFT: N2LO 

3 new couplings from ππNN vertex – not LECs! 

Step V: Calculate Feynmann diagrams to the desired accuracy 
 

Next-to-next-to-leading order (N2LO) ⌫ = 3



the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
nard et al., 1992#:

L"
"0# =

F2

4
%!#U!#U† + $+& ,

L"N
"0# = N̄"iv · D + g̊Au · S#N ,

LNN
"0# = − 1

2CS"N̄N#"N̄N# + 2CT"N̄SN# · "N̄SN# , "2.9#

where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,

U"!# = 1 +
i
F

" · ! −
1

2F2!2 + O""3# , "2.10#

where )i denotes the isospin Pauli matrix. The covariant
derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:

VNN
"0# = −

gA
2

4F"
2

&! 1 · q!&! 2 · q!
q!2 + M"

2 "1 · "2 + CS + CT&! 1 · &! 2,

"2.11#

where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to

Leading order

Next−to−next−to−next−to−leading order

Next−to−leading order

Next−to−next−to−leading order

FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order "N3LO#. Solid dots, filled
circles, squares, and diamonds denote vertices with !i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.
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Chiral EFT: N3LO 

Higher order contact interaction: 15 new LECs 

Step V: Calculate Feynmann diagrams to the desired accuracy 
 
Next-to-next-to-next-to-leading order 



Chiral EFT: N3LO 
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Remember: constructing potential involves solving L-S equation 
 

All NN potentials cutoff loop momenta at some value > 1GeV  
 

Impose exponential regulator, Λ, in Chiral EFT potentials – not in integral 

Regularization of Chiral potentials 

LECs will depend on regularization approach and Λ 
 

Infinitely many ways to do this 
 

         Infinitely many chiral potentials! 
 

Indeed, many on the market – some fit well to phase shifts, others not 



Chiral EFT: 
Resulting fits to Phase shifts 

Systematic improvement of chiral EFT potentials fit to phase shifts 
 

Cutoff variation – information about missing physics 
 

NLO: dashed band            9 Parameters 
N2LO: light band             12 Parameters  
N3LO: dark band             27 Parameters 
 

Generally decreasing error and increasing accuracy – not entirely… (exercise) 



Couplings fit to experiment once 

Chiral Effective Field Theory: Nuclear Forces 

Weinberg, van Kolck, Kaplan, Savage, Wise,  
Epelbaum, Kaiser, Meissner,… 

LO 

NLO 

N2LO 

N3LO 

Nucleons interact via pion  
exchanges and contact interactions 
 
 

Consistent treatment of  
NN, 3N, … electroweak operators  

Hierarchy: VNN > V3N > ...   

Meson exchange potentials were an  
admirable effort 
 
 Using ideas of effective field theory: 
 
 

Lower momentum 
Systematic – can assign error 
Connected to QCD 
 
 
 
 



Two chiral potentials with regulators of 500MeV and 600MeV 
 

Still low-to-high momentum coupling: poor convergence, non perturbative, etc. 
 
 

Chiral NN Potentials 

How do these compare to the potential you drew? 
 Lesson: Infinitely many phase-shift equivalent potentials 
 
 

NN interaction not observable 
 

Low-to-high momentum makes life difficult for 
low-energy nuclear theorists 

En = h n|H| ni =
�⌦
 n

��U†�
UHU

† (U | ni
�
=

D
 ̃n

���H̃
��� ̃n

E



Chiral EFT Symmetries 
Step II: Identify relevant symmetries of underlying theory (QCD) 

 Missing ingredient in multi-pion-exchange theories of 50’s! 
 
Construct Lagrangian based on these symmetries 

Le↵ = L⇡⇡ + L⇡N + LNN

Sonia BaccaOct 15th 2016

Approximate chiral symmetry  
(left- and right-handed quarks transform independently)

Quark/gluon (high energy) dynamics

QCD chiral 
symmetry
quarks

Compatible with explicit and spontaneous chiral symmetry breaking

Nucleon/pion (low energy) dynamics

p

n

Leff = L⇡⇡ + L⇡N + LNN + . . .

Chiral effective field theory approach

Weinberg
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Fig. 7. (a) Nuclear many-body landscape and (b) degrees of freedom and corresponding scales in nuclei [48].

or for octupole enhancement factors of electric dipolemoments. In all cases, we seek theoretical error estimates, particularly
for extrapolations to systems where measurements will be limited or non-existent.

Progress toward such controlled nuclear calculations has long been hindered by the difficulty of the nuclear many-body
problem, when conventional nuclear potentials are used. This has historically been accepted as an unavoidable reality.
Indeed, conventional wisdom among nuclear physicists, as summarized by Bethe in his review of over 30 years ago [49],
holds that successful nuclear matter calculations must be highly non-perturbative in the potential. This is in contrast to
the Coulomb many-body problem, for which Hartree–Fock is a useful starting point and (possibly resummed) many-body
perturbation theory (MBPT) is an effective tool. The possibility of a soft potential providing a more perturbative solution to
the nuclear matter problemwas discarded at that time, and saturation firmly identified with the density dependence due to
the tensor force [49]. Until recent RG-based calculations [9,16,17], subsequent work on the nuclear matter problem [50–53]
had not significantly altered the general perspective or conclusions of Bethe’s review (although the role of three-nucleon
(3N) forces has been increasingly emphasized).

As already noted, non-perturbative behavior in the particle–particle channel for nuclear forces arises from several
sources. First is the strong short-range repulsion, which requires at least a summation of particle–particle-ladder
diagrams [49]. Second is the tensor force, for example, from pion exchanges, which is highly singular at short distances,
and requires iteration in the triplet channels [54,55]. Third is the presence of low-energy bound states or nearly bound
states in the S-waves. These states imply poles in the scattering T matrix that render the perturbative Born series divergent.
All these non-perturbative features are present in conventional high-precision NN potentials.

The philosophy behind the standard approach to nuclear matter is to attack these features head-on. This attitude was
succinctly stated by Bethe [49]:

‘‘The theory must be such that it can deal with any NN force, including hard or ‘soft’ core, tensor forces, and other
complications. It ought not to be necessary to tailor the NN force for the sake of making the computation of nuclear
matter (or finite nuclei) easier, but the force should be chosen on the basis of NN experiments (and possibly subsidiary
experimental evidence, like the binding energy of 3H).’’

In contrast, the EFT and RG perspective has a completely different underlying philosophy, which stresses that the potential
is not an observable to be fixed from experiment (there is no ‘‘true potential’’), but that an infinite number of potentials are
capable of accurately describing low-energy physics [56]. In order to be predictive and systematic, an organization (‘‘power
counting’’) must be present to permit a truncation of possible terms in the potential. If a complete Hamiltonian is used
(includingmany-body forces), then all observables should be equivalent up to truncation errors. The EFT philosophy implies
using this freedom to choose a convenient and efficient potential for the problems of interest.

The use of energy-independent low-momentum interactions is a direct implementation of these ideas. Varying the
cutoff can be used as a powerful tool to study the underlying physics scales, to evaluate the completeness of approximate

How will we approach this problem: 
 

QCD à NN (3N) forces à Renormalize à “Solve” many-body problem à Predictions 

To understand the properties of complex nuclei from first principles 

Renormalizing NN 
Interactions 
 

Basic ideas of RG 
 

Low-momentum interactions 
 

Similarity RG interactions 
 

Benefits of low cutoffs 
 

G-matrix renormalization 
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Fig. 9. Schematic illustration of two types of RG evolution for NN potentials in momentum space: (a) Vlow k running in ⇤ and (b) SRG running in �. At each
⇤i or �i , the matrix elements outside of the corresponding lines are zero, so that high- and low-momentum states are decoupled.

Fig. 10. Two types of RG evolution applied to one of the chiral N3LO NN potentials (550/600 MeV) of Ref. [44] in the 3S1 channel: (a) Vlow k running in ⇤
and (b) SRG running in � (see Fig. 27 for plots in k2, which show the diagonal width of order �2).

‘‘At each scale, we have different degrees of freedom and different dynamics. Physics at a larger scale (largely)
decouples from the physics at a smaller scale. . . . Thus, a theory at a larger scale remembers only finitely many
parameters from the theories at smaller scales, and throws the rest of the details away. More precisely, when we
pass from a smaller scale to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the RG
method is to explain how this decoupling takes place and why exactly information is transmitted from scale to scale
through finitely many parameters.’’

The common features of RG for critical phenomena and high-energy scattering are discussed by StevenWeinberg in an essay
in Ref. [64]. He summarizes:

‘‘Themethod in itsmost general form can I think be understood as away to arrange in various theories that the degrees
of freedom that you’re talking about are the relevant degrees of freedom for the problem at hand.’’

This is the heart ofwhat is donewith low-momentum interaction approaches: arrange for the degrees of freedom for nuclear
structure to be the relevant ones. This does not mean that other degrees of freedom cannot be used, but to again quote
Weinberg [64]: ‘‘You can use any degrees of freedom you want, but if you use the wrong ones, you’ll be sorry.’’

There are two major classes of RG transformations used to construct low-momentum interactions, which are illustrated
schematically in Fig. 9. In the Vlow k approach, decoupling is achieved by lowering amomentum cutoff⇤ abovewhichmatrix
elements go to zero. In the SRG approach, decoupling is achieved by lowering a cutoff � (in energy differences �2) using flow
equations, whichmeans evolving toward the diagonal inmomentum space. The technology for carrying out these is outlined
in Section 3, but the effects can be readily seen in the series of contour plots in Fig. 10(a) and (b).

With either approach, lowering the cutoff leaves low-energy observables unchanged by construction, but shifts
contributions between the interaction strengths and the sums over intermediate states in loop integrals. The evolution
of phenomenological or chiral EFT interactions to lower resolution is beneficial, because these shifts can weaken or largely
eliminate sources of non-perturbative behavior, and because lower cutoffs require smaller bases inmany-body calculations,
leading to improved convergence for nuclei. The RG cutoff variation estimates theoretical uncertainties due to higher-
order contributions, to neglected many-body interactions or to an incomplete many-body treatment. When initialized with

Part II: (S)RG and Low-Momentum Interactions  


