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Fig. 7. (a) Nuclear many-body landscape and (b) degrees of freedom and corresponding scales in nuclei [48].

or for octupole enhancement factors of electric dipolemoments. In all cases, we seek theoretical error estimates, particularly
for extrapolations to systems where measurements will be limited or non-existent.

Progress toward such controlled nuclear calculations has long been hindered by the difficulty of the nuclear many-body
problem, when conventional nuclear potentials are used. This has historically been accepted as an unavoidable reality.
Indeed, conventional wisdom among nuclear physicists, as summarized by Bethe in his review of over 30 years ago [49],
holds that successful nuclear matter calculations must be highly non-perturbative in the potential. This is in contrast to
the Coulomb many-body problem, for which Hartree–Fock is a useful starting point and (possibly resummed) many-body
perturbation theory (MBPT) is an effective tool. The possibility of a soft potential providing a more perturbative solution to
the nuclear matter problemwas discarded at that time, and saturation firmly identified with the density dependence due to
the tensor force [49]. Until recent RG-based calculations [9,16,17], subsequent work on the nuclear matter problem [50–53]
had not significantly altered the general perspective or conclusions of Bethe’s review (although the role of three-nucleon
(3N) forces has been increasingly emphasized).

As already noted, non-perturbative behavior in the particle–particle channel for nuclear forces arises from several
sources. First is the strong short-range repulsion, which requires at least a summation of particle–particle-ladder
diagrams [49]. Second is the tensor force, for example, from pion exchanges, which is highly singular at short distances,
and requires iteration in the triplet channels [54,55]. Third is the presence of low-energy bound states or nearly bound
states in the S-waves. These states imply poles in the scattering T matrix that render the perturbative Born series divergent.
All these non-perturbative features are present in conventional high-precision NN potentials.

The philosophy behind the standard approach to nuclear matter is to attack these features head-on. This attitude was
succinctly stated by Bethe [49]:

‘‘The theory must be such that it can deal with any NN force, including hard or ‘soft’ core, tensor forces, and other
complications. It ought not to be necessary to tailor the NN force for the sake of making the computation of nuclear
matter (or finite nuclei) easier, but the force should be chosen on the basis of NN experiments (and possibly subsidiary
experimental evidence, like the binding energy of 3H).’’

In contrast, the EFT and RG perspective has a completely different underlying philosophy, which stresses that the potential
is not an observable to be fixed from experiment (there is no ‘‘true potential’’), but that an infinite number of potentials are
capable of accurately describing low-energy physics [56]. In order to be predictive and systematic, an organization (‘‘power
counting’’) must be present to permit a truncation of possible terms in the potential. If a complete Hamiltonian is used
(includingmany-body forces), then all observables should be equivalent up to truncation errors. The EFT philosophy implies
using this freedom to choose a convenient and efficient potential for the problems of interest.

The use of energy-independent low-momentum interactions is a direct implementation of these ideas. Varying the
cutoff can be used as a powerful tool to study the underlying physics scales, to evaluate the completeness of approximate
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Fig. 9. Schematic illustration of two types of RG evolution for NN potentials in momentum space: (a) Vlow k running in ⇤ and (b) SRG running in �. At each
⇤i or �i , the matrix elements outside of the corresponding lines are zero, so that high- and low-momentum states are decoupled.

Fig. 10. Two types of RG evolution applied to one of the chiral N3LO NN potentials (550/600 MeV) of Ref. [44] in the 3S1 channel: (a) Vlow k running in ⇤
and (b) SRG running in � (see Fig. 27 for plots in k2, which show the diagonal width of order �2).

‘‘At each scale, we have different degrees of freedom and different dynamics. Physics at a larger scale (largely)
decouples from the physics at a smaller scale. . . . Thus, a theory at a larger scale remembers only finitely many
parameters from the theories at smaller scales, and throws the rest of the details away. More precisely, when we
pass from a smaller scale to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the RG
method is to explain how this decoupling takes place and why exactly information is transmitted from scale to scale
through finitely many parameters.’’

The common features of RG for critical phenomena and high-energy scattering are discussed by StevenWeinberg in an essay
in Ref. [64]. He summarizes:

‘‘Themethod in itsmost general form can I think be understood as away to arrange in various theories that the degrees
of freedom that you’re talking about are the relevant degrees of freedom for the problem at hand.’’

This is the heart ofwhat is donewith low-momentum interaction approaches: arrange for the degrees of freedom for nuclear
structure to be the relevant ones. This does not mean that other degrees of freedom cannot be used, but to again quote
Weinberg [64]: ‘‘You can use any degrees of freedom you want, but if you use the wrong ones, you’ll be sorry.’’

There are two major classes of RG transformations used to construct low-momentum interactions, which are illustrated
schematically in Fig. 9. In the Vlow k approach, decoupling is achieved by lowering amomentum cutoff⇤ abovewhichmatrix
elements go to zero. In the SRG approach, decoupling is achieved by lowering a cutoff � (in energy differences �2) using flow
equations, whichmeans evolving toward the diagonal inmomentum space. The technology for carrying out these is outlined
in Section 3, but the effects can be readily seen in the series of contour plots in Fig. 10(a) and (b).

With either approach, lowering the cutoff leaves low-energy observables unchanged by construction, but shifts
contributions between the interaction strengths and the sums over intermediate states in loop integrals. The evolution
of phenomenological or chiral EFT interactions to lower resolution is beneficial, because these shifts can weaken or largely
eliminate sources of non-perturbative behavior, and because lower cutoffs require smaller bases inmany-body calculations,
leading to improved convergence for nuclei. The RG cutoff variation estimates theoretical uncertainties due to higher-
order contributions, to neglected many-body interactions or to an incomplete many-body treatment. When initialized with
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and requires iteration in the triplet channels [54,55]. Third is the presence of low-energy bound states or nearly bound
states in the S-waves. These states imply poles in the scattering T matrix that render the perturbative Born series divergent.
All these non-perturbative features are present in conventional high-precision NN potentials.

The philosophy behind the standard approach to nuclear matter is to attack these features head-on. This attitude was
succinctly stated by Bethe [49]:

‘‘The theory must be such that it can deal with any NN force, including hard or ‘soft’ core, tensor forces, and other
complications. It ought not to be necessary to tailor the NN force for the sake of making the computation of nuclear
matter (or finite nuclei) easier, but the force should be chosen on the basis of NN experiments (and possibly subsidiary
experimental evidence, like the binding energy of 3H).’’

In contrast, the EFT and RG perspective has a completely different underlying philosophy, which stresses that the potential
is not an observable to be fixed from experiment (there is no ‘‘true potential’’), but that an infinite number of potentials are
capable of accurately describing low-energy physics [56]. In order to be predictive and systematic, an organization (‘‘power
counting’’) must be present to permit a truncation of possible terms in the potential. If a complete Hamiltonian is used
(includingmany-body forces), then all observables should be equivalent up to truncation errors. The EFT philosophy implies
using this freedom to choose a convenient and efficient potential for the problems of interest.

The use of energy-independent low-momentum interactions is a direct implementation of these ideas. Varying the
cutoff can be used as a powerful tool to study the underlying physics scales, to evaluate the completeness of approximate
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complications. It ought not to be necessary to tailor the NN force for the sake of making the computation of nuclear
matter (or finite nuclei) easier, but the force should be chosen on the basis of NN experiments (and possibly subsidiary
experimental evidence, like the binding energy of 3H).’’

In contrast, the EFT and RG perspective has a completely different underlying philosophy, which stresses that the potential
is not an observable to be fixed from experiment (there is no ‘‘true potential’’), but that an infinite number of potentials are
capable of accurately describing low-energy physics [56]. In order to be predictive and systematic, an organization (‘‘power
counting’’) must be present to permit a truncation of possible terms in the potential. If a complete Hamiltonian is used
(includingmany-body forces), then all observables should be equivalent up to truncation errors. The EFT philosophy implies
using this freedom to choose a convenient and efficient potential for the problems of interest.

The use of energy-independent low-momentum interactions is a direct implementation of these ideas. Varying the
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‘‘At each scale, we have different degrees of freedom and different dynamics. Physics at a larger scale (largely)
decouples from the physics at a smaller scale. . . . Thus, a theory at a larger scale remembers only finitely many
parameters from the theories at smaller scales, and throws the rest of the details away. More precisely, when we
pass from a smaller scale to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the RG
method is to explain how this decoupling takes place and why exactly information is transmitted from scale to scale
through finitely many parameters.’’

The common features of RG for critical phenomena and high-energy scattering are discussed by StevenWeinberg in an essay
in Ref. [64]. He summarizes:

‘‘Themethod in itsmost general form can I think be understood as away to arrange in various theories that the degrees
of freedom that you’re talking about are the relevant degrees of freedom for the problem at hand.’’

This is the heart ofwhat is donewith low-momentum interaction approaches: arrange for the degrees of freedom for nuclear
structure to be the relevant ones. This does not mean that other degrees of freedom cannot be used, but to again quote
Weinberg [64]: ‘‘You can use any degrees of freedom you want, but if you use the wrong ones, you’ll be sorry.’’

There are two major classes of RG transformations used to construct low-momentum interactions, which are illustrated
schematically in Fig. 9. In the Vlow k approach, decoupling is achieved by lowering amomentum cutoff⇤ abovewhichmatrix
elements go to zero. In the SRG approach, decoupling is achieved by lowering a cutoff � (in energy differences �2) using flow
equations, whichmeans evolving toward the diagonal inmomentum space. The technology for carrying out these is outlined
in Section 3, but the effects can be readily seen in the series of contour plots in Fig. 10(a) and (b).

With either approach, lowering the cutoff leaves low-energy observables unchanged by construction, but shifts
contributions between the interaction strengths and the sums over intermediate states in loop integrals. The evolution
of phenomenological or chiral EFT interactions to lower resolution is beneficial, because these shifts can weaken or largely
eliminate sources of non-perturbative behavior, and because lower cutoffs require smaller bases inmany-body calculations,
leading to improved convergence for nuclei. The RG cutoff variation estimates theoretical uncertainties due to higher-
order contributions, to neglected many-body interactions or to an incomplete many-body treatment. When initialized with
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a b

Fig. 54. Low-lying spectra using shell-model effective Hamiltonians derived from Vlow k and Gmatrix interactions starting from the CD-Bonn potential [19]
for (a) 18O and (b) 134Te [66].

a b c

Fig. 55. Ground-state energies of neutron-rich oxygen isotopesmeasured from the energy of 16O. The experimental energies of the bound oxygen isotopes
16�24O are included for comparison. The left panel (a) shows the energies obtained from the phenomenological forces SDPF-M [232,233] and USD-B [234].
The middle panel (b) gives the energies obtained from a Gmatrix and including Fujita–Miyazawa 3N forces due to 1 excitations [231]. The right panel (c)
presents the energies calculated from Vlow k and including chiral EFT 3N interactions at N2LO as well as only due to 1 excitations [231]. The changes due
to 3N forces based on 1 excitations are highlighted by the shaded areas.

calculations of valence shell-model effective interactions. Moreover, there are promising applications of low-momentum
interactions in the Gamow shell model to handle continuum states [228–230].

The neutron drip-line, which is the limit of neutron-rich nuclei, evolves regularly from light to medium-mass nuclei
except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in theories derived from two-
nucleon forces. In Ref. [231], the first microscopic explanation of the oxygen anomaly based on low-momentum 3N forces
was presented. As shown in Fig. 55, the inclusion of 3N interactions at N2LO or due to 1 excitations leads to repulsive
contributions to the interactions among valence neutrons that change the location of the neutron drip-line from 28O to the
experimentally observed 24O. This 3Nmechanism is robust and general, and therefore expected to impact predictions of the
most neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.

6.4. Density functional theory

While most advances in microscopic nuclear structure theory over the last decade have been through expanding the
reach of few-body calculations, infinite nuclear matter is still a key step to heavier nuclei. In particular, the promising
results using low-momentum interactions open the door to ab initio DFT both directly (through orbital-based methods)
and based on expanding about nuclear matter [169]. This is analogous to the application of DFT in quantum chemistry
and condensed matter starting with the uniform electron gas in local-density approximations and adding constrained
derivative corrections. Phenomenological energy functionals (such as Skyrme) for nuclei have impressive successes but

The Challenge of Ab Initio Nuclear Theory 
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Fig. 7. (a) Nuclear many-body landscape and (b) degrees of freedom and corresponding scales in nuclei [48].

or for octupole enhancement factors of electric dipolemoments. In all cases, we seek theoretical error estimates, particularly
for extrapolations to systems where measurements will be limited or non-existent.

Progress toward such controlled nuclear calculations has long been hindered by the difficulty of the nuclear many-body
problem, when conventional nuclear potentials are used. This has historically been accepted as an unavoidable reality.
Indeed, conventional wisdom among nuclear physicists, as summarized by Bethe in his review of over 30 years ago [49],
holds that successful nuclear matter calculations must be highly non-perturbative in the potential. This is in contrast to
the Coulomb many-body problem, for which Hartree–Fock is a useful starting point and (possibly resummed) many-body
perturbation theory (MBPT) is an effective tool. The possibility of a soft potential providing a more perturbative solution to
the nuclear matter problemwas discarded at that time, and saturation firmly identified with the density dependence due to
the tensor force [49]. Until recent RG-based calculations [9,16,17], subsequent work on the nuclear matter problem [50–53]
had not significantly altered the general perspective or conclusions of Bethe’s review (although the role of three-nucleon
(3N) forces has been increasingly emphasized).

As already noted, non-perturbative behavior in the particle–particle channel for nuclear forces arises from several
sources. First is the strong short-range repulsion, which requires at least a summation of particle–particle-ladder
diagrams [49]. Second is the tensor force, for example, from pion exchanges, which is highly singular at short distances,
and requires iteration in the triplet channels [54,55]. Third is the presence of low-energy bound states or nearly bound
states in the S-waves. These states imply poles in the scattering T matrix that render the perturbative Born series divergent.
All these non-perturbative features are present in conventional high-precision NN potentials.

The philosophy behind the standard approach to nuclear matter is to attack these features head-on. This attitude was
succinctly stated by Bethe [49]:

‘‘The theory must be such that it can deal with any NN force, including hard or ‘soft’ core, tensor forces, and other
complications. It ought not to be necessary to tailor the NN force for the sake of making the computation of nuclear
matter (or finite nuclei) easier, but the force should be chosen on the basis of NN experiments (and possibly subsidiary
experimental evidence, like the binding energy of 3H).’’

In contrast, the EFT and RG perspective has a completely different underlying philosophy, which stresses that the potential
is not an observable to be fixed from experiment (there is no ‘‘true potential’’), but that an infinite number of potentials are
capable of accurately describing low-energy physics [56]. In order to be predictive and systematic, an organization (‘‘power
counting’’) must be present to permit a truncation of possible terms in the potential. If a complete Hamiltonian is used
(includingmany-body forces), then all observables should be equivalent up to truncation errors. The EFT philosophy implies
using this freedom to choose a convenient and efficient potential for the problems of interest.

The use of energy-independent low-momentum interactions is a direct implementation of these ideas. Varying the
cutoff can be used as a powerful tool to study the underlying physics scales, to evaluate the completeness of approximate
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One-Boson Exchange Potentials 
•  Heavy mesons discovered in late 1950s – formed basis for new theories 
•  Intermediate range – attractive central, spin-orbit 
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One-Boson Exchange Potentials 
•  Heavy mesons discovered in late 1950s – formed basis for new theories 
•  Short range; repulsive central force, attractive spin-orbit 

V ! = g2!NN
1

k2 +m2
!

 
1� 3

~L · ~S
2M2

N

!



One-Boson Exchange Potentials 
•  Heavy mesons discovered in late 1950s – formed basis for new theories 
•  Short range; tensor force opposite sign of one-pion exchange 
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Parameterizing the NN Interaction 

Starting from any NN-interaction, first solve: 
 

    Lipmann-Schwinger scattering T-matrix equation: 
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Phase shift is a function of relative momentum k; Figure shows s-wave  
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Fig. 1. NN phase shifts for the Argonne v18 [18] (solid), CD-Bonn [19] (dashed), and one of the chiral N3LO [20] (dotted) potentials in selected channels
(using non-relativistic kinematics). All agree with experiment up to about 300 MeV.

Fig. 2. (a) Several phenomenological NN potentials in the 1S0 channel from Ref. [21]. (b) Momentum–space matrix elements of the Argonne v18 (AV18)
1S0 potential after Fourier (Bessel) transformation (see footnote 1).

heavy meson exchange (⇢, !, ‘‘� ’’). The short-range part of the potentials in Fig. 2(a) is a repulsive core (often called a ‘‘hard
core’’).

Nuclear structure calculations are complicated due to the coupling of low to high momenta by these potentials. This is
made clear by the Fourier transform (that is, the Bessel transform in a given partial wave), as shown in Fig. 2(b). We feature
the Argonne v18 potential [18] because it is used in the most successful high precision (. 1% accuracy) nuclear structure
calculations of nuclei with mass number A 6 12 [22–24]. For our purposes, the equivalent contour plot in Fig. 3 is a clearer
representation and we use such plots throughout this review.1 The elastic regime for NN scattering corresponds to relative
momenta k . 2 fm�1. The strong low- to high-momentum coupling driven by the short-range repulsion is manifested in
Fig. 3(a) by the large regions of non-zero off-diagonal matrix elements. A consequence is a suppression of probability in the
relative wave function (‘‘short-range correlations’’), as seen for the deuteron in Fig. 3(b).

The potentials in Fig. 2(a) are partial-wave local; that is, in each partial wave they are functions of the separation r alone.
This condition, which simplifies certain types of numerical calculations,2 constrains the radial dependence to be similar to
Fig. 2(a) if the potential is to reproduce elastic phase shifts, and in particular necessitates a strong short-range repulsion
in the S-waves. The similarity of all such potentials, perhaps combined with experience from the Coulomb potential, has
led to the (often implicit) misconception that the nuclear potential must have this form. This prejudice has been reinforced
recently by QCD lattice calculations that apparently validate a repulsive core [25–28].

For finite-mass composite particles, locality is a feature we expect at long distances, but non-local interactions would
be more natural at short distances. In fact, the potential at short range is far removed from an observable, and locality is
imposed on potentials for convenience, not because of physical necessity. Recall that we are free to apply a short-range
unitary transformation U to the Hamiltonian (and to other operators at the same time),

En = h n|H| ni =
�
h n|UÑ

�
UHUÑ

�
U| ni

�
= he n|eH|e ni, (1)

1 In units where h̄ = c = m = 1 (with nucleon mass m), the momentum–space potential is given in fm. In addition, we typically express momenta in
fm�1 (the conversion to MeV is using h̄c ⇡ 197 MeV fm).
2 For example, in current implementations of Green’s Function Monte Carlo (GFMC) calculations [22], the potential must be (almost) diagonal in

coordinate space, such as the Argonne v18 potential.

2S+1LJ
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2 For example, in current implementations of Green’s Function Monte Carlo (GFMC) calculations [22], the potential must be (almost) diagonal in
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for Argonne v18 and smooth Vlow k potentials with several cutoffs ⇤. The probability suppression at short distances is called ‘‘short-range correlation’’.

and the physics described by H andeH is indistinguishable by experiment. Thus, there are an infinite number of equally valid
potentials, and once we allow non-locality, a repulsive core and the strong low- to high-momentum coupling is no longer
inevitable.

The EFT approach uses this freedom to construct a systematic expansion of theHamiltonian. A particular EFT is associated
with a momentum scale ⇤b that is the dividing point between resolved, long-range physics, which is treated explicitly, and
unresolved, short-range physics,which is expanded in contact interactions. Results are given order-by-order inQ/⇤b,where
Q is a generic momentum (or light mass) scale of the process being calculated. There is also a cutoff ⇤ needed to regulate
the theory, which suppresses high momenta. Thus, ⇤ acts as a resolution scale for the theory. If ⇤ is chosen to be less than
⇤b, then the truncation error for the EFT will be dominated by powers of Q/⇤ rather than Q/⇤b. In principle, one could
take ⇤ as large as desired but in practice this only works if the renormalization and the numerics involved in matching to
data are sufficiently under control [29].

In general, the forces between nucleons depend on the resolution scale ⇤ and are given by an effective theory for scale-
dependent two-nucleon VNN(⇤) and corresponding many-nucleon interactions V3N(⇤), V4N(⇤) and so on [5,30,31]. This
scale dependence is analogous to the scale dependence of parton distribution functions. At very low momenta Q ⌧ m⇡ ,
the details of pion exchanges are not resolved and nuclear forces can be systematically expanded in contact interactions
and their derivatives [30]. The corresponding pionless EFT (for which ⇤b ⇠ m⇡ ) is very successful in capturing universal
large scattering-length physics (with improvements by including effective range and higher-order terms) in dilute neutron
matter and reactions at astrophysical energies [30,32–35].

For most nuclei, the typical momenta are Q ⇠ m⇡ and therefore pion exchanges are included explicitly in nuclear
forces. The corresponding chiral EFT has been developed for over fifteen years as a systematic approach to nuclear
interactions [30,31,36,37]. This provides a unified approach to NN and many-body forces, and a pathway to direct
connections with QCD through lattice calculations (see, for example, Ref. [38]). Examples of order-by-order improved
calculations of observables are shown in Figs. 4(b), 5(a) and (b). However, some open questions remain [31]: understanding
the power counting with singular pion exchanges [39–41], including 1 degrees of freedom, the counting of relativistic 1/m
corrections. Resolving these questions is important for improving the starting Hamiltonian for low-momentum interactions,
but does not affect our discussion of RG technology.

In chiral EFT [30,31,36,37], the expansion in powers of Q/⇤b has roughly ⇤b . m⇢ . As shown in Fig. 4(a), at a
given order this includes contributions from one- or multi-pion exchanges and from contact interactions, with scale-
dependent short-range couplings that are fit to low-energy data for each ⇤ (experiment captures all short-range effects).
There are natural sizes to many-body force contributions that are made manifest in the EFT power counting and which
explain the phenomenological hierarchy of many-body forces. In addition, the EFT (extended to include chiral perturbation
theory) provides a consistent theory for multi-pion and pion–nucleon systems and electroweak operators, as well as for
hyperon–nucleon interactions [31,42,43].

The highest-order NN interactions available to date are at next-to-next-to-next-to-leading order, N3LO or (Q/⇤b)
3, for

several different cutoffs (⇤ = 450–600 MeV) and two different regulator schemes [20,44]. Representative results for NN
phase shifts at NLO, N2LO, andN3LO are shown in Fig. 4(b), where error bands are determined by the spread in predictions for
different ⇤ ⇠ ⇤b. Contour plots of momentum–space matrix elements for the softest, most commonly used N3LO potential
and one with a higher cutoff are shown in Fig. 6. While they are much softer than Argonne v18 in the 1S0 channel, there
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but does not affect our discussion of RG technology.
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Meson exchange in principle described in Quantum Chromodynamics (QCD) 
Low-energy region non-perturbative – treat in the context of Lattice QCD 
Directly from QCD Lagrangian, solve numerically on discretized space-time 
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T1a. Nuclear Forces 1

a. Overview

The quest for an accurate description of the nuclear force spans eight decades, starting from
Yukawa’s meson theory in 1935. From the early days, pion exchange was understood to be critical
and correctly described the longest-ranged part of the NN interaction. In the 1950’s, attempts to
include multi-pion exchange failed but these were eventually supplanted in the 1960’s and 1970’s
by boson-exchange models (in which the heavier �, ⇢, and ! were exchanged in an organization by
range). Then came quantum chromodynamics.

There is now an abundance of evidence that quantum chromodynamics is the correct theory of
the strong interactions, ranging from validated predictions of perturbative QCD to the increasingly
successful results of lattice QCD (LQCD). But even in the early days one could reasonably ask: If
QCD is the theory of the strong interaction, shouldn’t we use quarks and gluons to describe nuclear
forces? Compare the pictures in Fig. 7; the QCD picture is ultimately correct and would appear
to contain much more physics — isn’t that better? For a period in the 1980’s, the goal (for many
nuclear theorists) was to replace hadronic descriptions at ordinary nuclear densities with a quark
description, since (the story went) QCD is the theory and descriptions with pointlike hadrons had
to be inadequate to account for the quark substructure. But in those early days of QCD (first
20 years), one couldn’t do anything much except crude models (e.g., quark cluster models), which
were not quantitative. (There was also a period where soliton (Skyrmion) models based on the
large NC limit of QCD were the rage, but that never led to sustained progress.)
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Figure 7: Cartoons for quark-gluon and pion-exchange representations of the NN force.

The alternative was a detailed phenomenological parametrization of physics as in the picture on
the right (based on boson exchange plus some additional phenomenology), and that became good
enough to fit the relevant NN data to great accuracy (�2/dof ⇡ 1 up to the inelastic threshold)
and do quantitative calculations in light nuclei. This was a pragmatic approach, but could also be
defended as good physics. We understand the strong forces that bind nuclei as the residual colorless
interactions between the quarks and gluons that comprise hadrons. By analogy, the van der Waals
interactions between neutral atoms at low energies are usefully described by potentials rather than
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Fig. 1. NN phase shifts for the Argonne v18 [18] (solid), CD-Bonn [19] (dashed), and one of the chiral N3LO [20] (dotted) potentials in selected channels
(using non-relativistic kinematics). All agree with experiment up to about 300 MeV.

Fig. 2. (a) Several phenomenological NN potentials in the 1S0 channel from Ref. [21]. (b) Momentum–space matrix elements of the Argonne v18 (AV18)
1S0 potential after Fourier (Bessel) transformation (see footnote 1).

heavy meson exchange (⇢, !, ‘‘� ’’). The short-range part of the potentials in Fig. 2(a) is a repulsive core (often called a ‘‘hard
core’’).

Nuclear structure calculations are complicated due to the coupling of low to high momenta by these potentials. This is
made clear by the Fourier transform (that is, the Bessel transform in a given partial wave), as shown in Fig. 2(b). We feature
the Argonne v18 potential [18] because it is used in the most successful high precision (. 1% accuracy) nuclear structure
calculations of nuclei with mass number A 6 12 [22–24]. For our purposes, the equivalent contour plot in Fig. 3 is a clearer
representation and we use such plots throughout this review.1 The elastic regime for NN scattering corresponds to relative
momenta k . 2 fm�1. The strong low- to high-momentum coupling driven by the short-range repulsion is manifested in
Fig. 3(a) by the large regions of non-zero off-diagonal matrix elements. A consequence is a suppression of probability in the
relative wave function (‘‘short-range correlations’’), as seen for the deuteron in Fig. 3(b).

The potentials in Fig. 2(a) are partial-wave local; that is, in each partial wave they are functions of the separation r alone.
This condition, which simplifies certain types of numerical calculations,2 constrains the radial dependence to be similar to
Fig. 2(a) if the potential is to reproduce elastic phase shifts, and in particular necessitates a strong short-range repulsion
in the S-waves. The similarity of all such potentials, perhaps combined with experience from the Coulomb potential, has
led to the (often implicit) misconception that the nuclear potential must have this form. This prejudice has been reinforced
recently by QCD lattice calculations that apparently validate a repulsive core [25–28].

For finite-mass composite particles, locality is a feature we expect at long distances, but non-local interactions would
be more natural at short distances. In fact, the potential at short range is far removed from an observable, and locality is
imposed on potentials for convenience, not because of physical necessity. Recall that we are free to apply a short-range
unitary transformation U to the Hamiltonian (and to other operators at the same time),

En = h n|H| ni =
�
h n|UÑ

�
UHUÑ

�
U| ni

�
= he n|eH|e ni, (1)

1 In units where h̄ = c = m = 1 (with nucleon mass m), the momentum–space potential is given in fm. In addition, we typically express momenta in
fm�1 (the conversion to MeV is using h̄c ⇡ 197 MeV fm).
2 For example, in current implementations of Green’s Function Monte Carlo (GFMC) calculations [22], the potential must be (almost) diagonal in

coordinate space, such as the Argonne v18 potential.
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Fig. 1. NN phase shifts for the Argonne v18 [18] (solid), CD-Bonn [19] (dashed), and one of the chiral N3LO [20] (dotted) potentials in selected channels
(using non-relativistic kinematics). All agree with experiment up to about 300 MeV.

Fig. 2. (a) Several phenomenological NN potentials in the 1S0 channel from Ref. [21]. (b) Momentum–space matrix elements of the Argonne v18 (AV18)
1S0 potential after Fourier (Bessel) transformation (see footnote 1).

heavy meson exchange (⇢, !, ‘‘� ’’). The short-range part of the potentials in Fig. 2(a) is a repulsive core (often called a ‘‘hard
core’’).

Nuclear structure calculations are complicated due to the coupling of low to high momenta by these potentials. This is
made clear by the Fourier transform (that is, the Bessel transform in a given partial wave), as shown in Fig. 2(b). We feature
the Argonne v18 potential [18] because it is used in the most successful high precision (. 1% accuracy) nuclear structure
calculations of nuclei with mass number A 6 12 [22–24]. For our purposes, the equivalent contour plot in Fig. 3 is a clearer
representation and we use such plots throughout this review.1 The elastic regime for NN scattering corresponds to relative
momenta k . 2 fm�1. The strong low- to high-momentum coupling driven by the short-range repulsion is manifested in
Fig. 3(a) by the large regions of non-zero off-diagonal matrix elements. A consequence is a suppression of probability in the
relative wave function (‘‘short-range correlations’’), as seen for the deuteron in Fig. 3(b).

The potentials in Fig. 2(a) are partial-wave local; that is, in each partial wave they are functions of the separation r alone.
This condition, which simplifies certain types of numerical calculations,2 constrains the radial dependence to be similar to
Fig. 2(a) if the potential is to reproduce elastic phase shifts, and in particular necessitates a strong short-range repulsion
in the S-waves. The similarity of all such potentials, perhaps combined with experience from the Coulomb potential, has
led to the (often implicit) misconception that the nuclear potential must have this form. This prejudice has been reinforced
recently by QCD lattice calculations that apparently validate a repulsive core [25–28].

For finite-mass composite particles, locality is a feature we expect at long distances, but non-local interactions would
be more natural at short distances. In fact, the potential at short range is far removed from an observable, and locality is
imposed on potentials for convenience, not because of physical necessity. Recall that we are free to apply a short-range
unitary transformation U to the Hamiltonian (and to other operators at the same time),

En = h n|H| ni =
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UHUÑ
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U| ni
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= he n|eH|e ni, (1)

1 In units where h̄ = c = m = 1 (with nucleon mass m), the momentum–space potential is given in fm. In addition, we typically express momenta in
fm�1 (the conversion to MeV is using h̄c ⇡ 197 MeV fm).
2 For example, in current implementations of Green’s Function Monte Carlo (GFMC) calculations [22], the potential must be (almost) diagonal in

coordinate space, such as the Argonne v18 potential.
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relative wave function (‘‘short-range correlations’’), as seen for the deuteron in Fig. 3(b).
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Fig. 2(a) if the potential is to reproduce elastic phase shifts, and in particular necessitates a strong short-range repulsion
in the S-waves. The similarity of all such potentials, perhaps combined with experience from the Coulomb potential, has
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be more natural at short distances. In fact, the potential at short range is far removed from an observable, and locality is
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2 For example, in current implementations of Green’s Function Monte Carlo (GFMC) calculations [22], the potential must be (almost) diagonal in

coordinate space, such as the Argonne v18 potential.
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From QCD to Nuclear Interactions 
How do we determine interactions between nucleons? 

Old view:  
Multiple scales complicate life 
 

No meaningful way to connect them 

Modern view:  
Choose convenient resolution scale 
 

Effective field theory at each scale 
   connected by RG 
 

Ratio of scales – small parameters 
 In
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H (⇤) = T + VNN (⇤) + V3N (⇤) + V4N (⇤) + · · ·



Ideas Behind Effective Theories 
Resolution scale and relevant degrees of freedom 

High energy probe resolves fine details 
 

Need high-energy degrees of freedom 

Overview RG Basics Resolution Forces Filter Coupling

Principle of any effective low-energy description

If system is probed at low energies, fine details not resolved

Use low-energy variables for low-energy processes
Short-distance structure can be replaced by something simpler
without distorting low-energy observables
Could be a model or systematic (e.g., effective field theory)

Physics interpretation often changes with resolution!

Low density , low interaction energy , low resolution (?)

Dick Furnstahl Nuclei at Low Resolution
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Could be a model or systematic (e.g., effective field theory)

Physics interpretation often changes with resolution!

Low density , low interaction energy , low resolution (?)

Dick Furnstahl Nuclei at Low Resolution



Ideas Behind Effective Theories 

Low-energy probe can’t resolve such details 
 

Don’t need high-energy degrees of freedom – replace with something simpler 
 

Use more convenient dofs, but preserve low-energy observables! 

Overview RG Basics Resolution Forces Filter Coupling

Principle of any effective low-energy description

If system is probed at low energies, fine details not resolved
Use low-energy variables for low-energy processes
Short-distance structure can be replaced by something simpler
without distorting low-energy observables
Could be a model or systematic (e.g., effective field theory)

Physics interpretation often changes with resolution!

Low density , low interaction energy , low resolution (?)

Dick Furnstahl Nuclei at Low Resolution

Resolution scale and relevant degrees of freedom 



Ideas Behind Effective Theories 

MS 

ML 

Λ∞ 

0 

V = VL + VS

Known long-distance  
physics (like 1π exchange) 
with some scale ML 

Short-distance physics  
(ρ,ω exchange) with 
some scale MS 

Assume underlying theory with cutoff Λ∞ 



Ideas Behind Effective Theories 

MS 

ML 

Λ∞ 

Λ 

And we want a low-energy effective theory for physics up to some 

0 

V = VL + VS

Known long-distance  
physics (like 1π exchange) 
with some scale ML 

Short-distance physics  
(ρ,ω exchange) with 
some scale MS 

ML < ⇤ < MS

Assume underlying theory with cutoff Λ∞ 



Ideas Behind Effective Theories 

MS 

ML 

Λ∞ 

Λ 

And we want a low-energy effective theory for physics up to some 

0 

Assume underlying theory with cutoff Λ∞ 

V = VL + VS

Known long-distance  
physics (like 1π exchange) 
with some scale ML 

Short-distance physics  
(ρ,ω exchange) with 
some scale MS 

ML < ⇤ < MS

Integrate out states above Λ using Renormalization Group (RG) 



Ideas Behind Effective Theories 

MS 

ML 

Λ∞ 

Λ 

And we want a low-energy effective theory for physics up to some 

0 

Assume underlying theory with cutoff Λ∞ 

V = VL + VS

Known long-distance  
physics (like 1π exchange) 
with some scale ML 

Short-distance physics  
(ρ,ω exchange) with 
some scale MS 

ML < ⇤ < MS

Integrate out states above Λ using Renormalization Group (RG) 
 

General form of effective theory: 
 

   where 
 

Also use RG to change resolution scales within particular EFT 

Ve↵ = VL + �Vc.t.(⇤)

�Vc.t.(⇤) = C0(⇤)�
3(r) + C2(⇤)r2�3(r) + · · ·



Ideas Behind Effective Theories 

General form of effective theory:  

Encodes effects of high-E 
dof on low-energy observables  

Universal; depends only  
on symmetries 

Short distance structure of “true theory” captured in several numbers 
 - Calculate from underlying theory 

When short-range physics is unknown or too complicated 
 - Extract from low-energy data 

TWO choices: 

How do we apply these ideas to nuclear forces? 

Ve↵ = VL + �Vc.t.(⇤)

�Vc.t.(⇤) = C0(⇤)�
3(r) + C2(⇤)r2�3(r) + · · ·



Chiral Effective Field Theory: Philosophy 

“At each scale we have different degrees of freedom and different dynamics.   
Physics at a larger scale (largely) decouples from physics at a smaller scale… 
thus a theory at a larger scale remembers only finitely many parameters from the  
theories at smaller scales, and throws the rest of the details away.   
 
More precisely, when we pass from a smaller scale to a larger scale, we average  
out irrelevant degrees of freedom… The general aim of the RG method is to  
explain how this decoupling takes place and why exactly information is  
transmitted from one scale to another through finitely many parameters.” 
-  David Gross 

“The method in its most general form can.. be understood as a way to arrange  
in various theories that the degrees of freedom that you’re talking about are the  
relevant degrees of freedom for the problem at hand.” 
 - Steven Weinberg 
 
5 Steps to constructing such a theory for nuclear forces 



Separation of Scales in Nuclear Physics 

 

Only degrees of freedom relevant to energy scale 

Appropriate separation of scales  
 

Typical momenta in nucleus 

Effective theory: only nucleons and pions 
 
 
 
 
 
                             How low can we go?? 

Step I: Identify appropriate separation of scales, degrees of freedom 

It seems like 
we’re forgetting 
something… 

⇤chiral ⇠ 700MeV

Q ⇠ m⇡



Chiral EFT Symmetries 
Step II: Identify relevant symmetries of underlying theory (QCD) 

 Missing ingredient in multi-pion-exchange theories of 50’s! 
 
Construct Lagrangian based on these symmetries 

Le↵ = L⇡⇡ + L⇡N + LNN



Chiral EFT Lagrangian 

Pion-pion Lagrangian: U is SU(2) matrix parameterized by three pion fields 

Leading-order pion-nucleon 

Leading-order nucleon-nucleon (encodes unknown short-range physics) 

Step III: Construct Lagrangian based on identified symmetries 



Organize theory in powers of             where                typical nuclear momenta 

EFT Power Counting 
Step IV: Design an organized scheme to distinguish more from 
                less important processes: Power Counting 

Only valid for small expansion parameters, i.e., low momentum 

Irreducible time-ordered diagram has order: 

✓
Q

⇤�

◆
Q ⇠ m⇡

✓
Q

⇤�

◆⌫

⌫ = �4 + 2N + 2L+
X

i

Vi�i

N = Number of nucleons

�i = di +
1

2
ni � 2 “Chiral dimension”

L = Number of pion loops
Vi = Number of vertices of type i

n = Number of nucleon field operators
d = Number of derivatives or insertions ofm⇡



the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
nard et al., 1992#:

L"
"0# =

F2

4
%!#U!#U† + $+& ,

L"N
"0# = N̄"iv · D + g̊Au · S#N ,

LNN
"0# = − 1

2CS"N̄N#"N̄N# + 2CT"N̄SN# · "N̄SN# , "2.9#

where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,

U"!# = 1 +
i
F

" · ! −
1

2F2!2 + O""3# , "2.10#

where )i denotes the isospin Pauli matrix. The covariant
derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:

VNN
"0# = −

gA
2

4F"
2

&! 1 · q!&! 2 · q!
q!2 + M"

2 "1 · "2 + CS + CT&! 1 · &! 2,

"2.11#

where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to

Leading order

Next−to−next−to−next−to−leading order

Next−to−leading order

Next−to−next−to−leading order

FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order "N3LO#. Solid dots, filled
circles, squares, and diamonds denote vertices with !i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.
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Chiral EFT: Lowest Order (LO) 
Step V: Calculate Feynmann diagrams to the desired accuracy 
 

Leading order (LO)  

One-pion exchange 

26.1=Ag
MeV 4.92=πF

⌫ = 0

~ki ⌘
1

2
(~p 0

i + ~pi)~qi ⌘ ~p 0
i � ~pi



the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
nard et al., 1992#:

L"
"0# =

F2

4
%!#U!#U† + $+& ,

L"N
"0# = N̄"iv · D + g̊Au · S#N ,

LNN
"0# = − 1

2CS"N̄N#"N̄N# + 2CT"N̄SN# · "N̄SN# , "2.9#

where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,

U"!# = 1 +
i
F

" · ! −
1

2F2!2 + O""3# , "2.10#

where )i denotes the isospin Pauli matrix. The covariant
derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:

VNN
"0# = −

gA
2

4F"
2

&! 1 · q!&! 2 · q!
q!2 + M"

2 "1 · "2 + CS + CT&! 1 · &! 2,

"2.11#

where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to

Leading order

Next−to−next−to−next−to−leading order

Next−to−leading order
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FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order "N3LO#. Solid dots, filled
circles, squares, and diamonds denote vertices with !i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.
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One-pion exchange 
NN contact interaction 

Chiral EFT: Lowest Order (LO) 

Two low-energy constants (LECs): CS, CT 

Step V: Calculate Feynmann diagrams to the desired accuracy 
 

Leading order (LO) ⌫ = 0
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Question: What will           look like? 

Chiral EFT 

€ 

ν =1

Answer: No contribution at this order 

Step V: Calculate Feynmann diagrams to the desired accuracy 



the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
nard et al., 1992#:

L"
"0# =

F2

4
%!#U!#U† + $+& ,

L"N
"0# = N̄"iv · D + g̊Au · S#N ,

LNN
"0# = − 1

2CS"N̄N#"N̄N# + 2CT"N̄SN# · "N̄SN# , "2.9#

where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,

U"!# = 1 +
i
F

" · ! −
1

2F2!2 + O""3# , "2.10#

where )i denotes the isospin Pauli matrix. The covariant
derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:

VNN
"0# = −

gA
2

4F"
2

&! 1 · q!&! 2 · q!
q!2 + M"

2 "1 · "2 + CS + CT&! 1 · &! 2,

"2.11#

where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to

Leading order

Next−to−next−to−next−to−leading order

Next−to−leading order

Next−to−next−to−leading order

FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order "N3LO#. Solid dots, filled
circles, squares, and diamonds denote vertices with !i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.
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Chiral EFT: NLO 

Higher order contact interaction: 7 new LECs, spin-orbit  

Step V: Calculate Feynmann diagrams to the desired accuracy 
 

Next-to-leading order (NLO) ⌫ = 2



the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
nard et al., 1992#:

L"
"0# =

F2

4
%!#U!#U† + $+& ,

L"N
"0# = N̄"iv · D + g̊Au · S#N ,

LNN
"0# = − 1

2CS"N̄N#"N̄N# + 2CT"N̄SN# · "N̄SN# , "2.9#

where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,

U"!# = 1 +
i
F

" · ! −
1

2F2!2 + O""3# , "2.10#

where )i denotes the isospin Pauli matrix. The covariant
derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:

VNN
"0# = −

gA
2

4F"
2

&! 1 · q!&! 2 · q!
q!2 + M"

2 "1 · "2 + CS + CT&! 1 · &! 2,

"2.11#

where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to

Leading order

Next−to−next−to−next−to−leading order

Next−to−leading order

Next−to−next−to−leading order

FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order "N3LO#. Solid dots, filled
circles, squares, and diamonds denote vertices with !i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.
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Chiral EFT: N2LO 

3 new couplings from ππNN vertex – not LECs! 

Step V: Calculate Feynmann diagrams to the desired accuracy 
 

Next-to-next-to-leading order (N2LO) ⌫ = 3



the nuclear Hamiltonian we are finally interested in. The
derivation of the nuclear potentials from field theory is
an old and extensively studied problem in nuclear phys-
ics. Different approaches have been developed in the
1950s of the last century in the context of the so-called
meson theory of nuclear forces !see, e.g., Phillips "1959#$.
In the modern framework of chiral EFT, the most fre-
quently used methods besides the already mentioned
time-ordered perturbation theory are the ones based on
S matrix and the unitary transformation. In the former
scheme, the nuclear potential is defined through match-
ing the amplitude to the iterated Lippmann-Schwinger
equation "Kaiser et al., 1997#. In the second approach,
the potential is obtained by applying an appropriately
chosen unitary transformation to the underlying pion-
nucleon Hamiltonian which eliminates the coupling be-
tween the purely nucleonic Fock space states and the
ones which contain pions !see Epelbaum et al. "1998b#
for more details$. We stress that both methods lead to
energy-independent interactions as opposed by the ones
obtained in time-ordered perturbation theory. The en-
ergy independence of the potential is a welcome feature
which enables applications to three- and more-nucleon
systems.

We are now in the position to discuss the structure of
the nuclear force at lowest orders of the chiral expan-
sion. The leading-order "LO# contribution results, ac-
cording to Eq. "2.8#, from two-nucleon tree diagrams
constructed from the Lagrangian of lowest dimension
!i=0, L"0#, which has the following form in the heavy-
baryon formulation "Jenkins and Manohar, 1991; Ber-
nard et al., 1992#:

L"
"0# =

F2

4
%!#U!#U† + $+& ,

L"N
"0# = N̄"iv · D + g̊Au · S#N ,

LNN
"0# = − 1

2CS"N̄N#"N̄N# + 2CT"N̄SN# · "N̄SN# , "2.9#

where N, v#, and S#'"1/2#i%5&#'v' denote the large
component of the nucleon field, the nucleon four-
velocity, and the covariant spin vector, respectively. The
brackets %¯& denote traces in the flavor space while F
and g!A refer to the chiral-limit values of the pion decay
and the nucleon axial vector coupling constants. The
low-energy constants "LECs# CS and CT determine the
strength of the leading NN short-range interaction. Fur-
ther, the unitary 2(2 matrix U"!#=u2"!# in the flavor
space collects the pion fields,

U"!# = 1 +
i
F

" · ! −
1

2F2!2 + O""3# , "2.10#

where )i denotes the isospin Pauli matrix. The covariant
derivatives of the nucleon and pion fields are defined via
D#="#+ !u† ,"#u$ /2 and u#= i"u†"#u−u"#u†#. The quan-
tity $+=u†$u†+u$†u with $=2BM involves the explicit
chiral symmetry breaking due to the finite light quark
masses, M=diag"mu ,md#. The constant B is related to

the value of the scalar quark condensate in the chiral
limit, %0 ( ūu (0&=−F2B, and relates the pion mass M" to
the quark mass mq via M"

2 =2Bmq+O"mq
2#. For more de-

tails on the notation and the complete expressions for
the pion-nucleon Lagrangian including up to four
derivatives/M" insertions see Fettes et al. "2000#. Ex-
panding the effective Lagrangian in Eqs. "2.9# in powers
of the pion fields one can easily verify that the only pos-
sible connected two-nucleon tree diagrams are the one-
pion exchange and the contact one "see the first line in
Fig. 12#, yielding the following potential in the two-
nucleon center-of-mass system "CMS#:

VNN
"0# = −

gA
2

4F"
2

&! 1 · q!&! 2 · q!
q!2 + M"

2 "1 · "2 + CS + CT&! 1 · &! 2,

"2.11#

where the superscript of VNN denotes the chiral order ',
&i are the Pauli spin matrices, q! =p! −p! is the nucleon
momentum transfer, and p! "p!!# refers to initial "final#
nucleon momenta in the CMS. Further, F"=92.4 MeV
and gA=1.267 denote the pion decay and the nucleon
axial coupling constants, respectively.

The first corrections to the LO result are suppressed
by two powers of the low-momentum scale. The absence
of the contributions at order '=1 can be traced back to

Leading order

Next−to−next−to−next−to−leading order

Next−to−leading order

Next−to−next−to−leading order

FIG. 12. Chiral expansion of the two-nucleon force up to next-
to-next-to-next-to-leading order "N3LO#. Solid dots, filled
circles, squares, and diamonds denote vertices with !i=0, 1, 2,
and 3, respectively. Only irreducible contributions of the dia-
grams are taken in to account as explained in the text.

1786 Epelbaum, Hammer, and Meißner: Modern theory of nuclear forces

Rev. Mod. Phys., Vol. 81, No. 4, October–December 2009

Chiral EFT: N3LO 

Higher order contact interaction: 15 new LECs 

Step V: Calculate Feynmann diagrams to the desired accuracy 
 
Next-to-next-to-next-to-leading order 



Remember: constructing potential involves solving L-S equation 
 

All NN potentials cutoff loop momenta at some value > 1GeV  
 

Impose exponential regulator, Λ, in Chiral EFT potentials – not in integral 

Regularization of Chiral potentials 

LECs will depend on regularization approach and Λ 
 

Infinitely many ways to do this 
 

         Infinitely many chiral potentials! 
 

Indeed, many on the market – some fit well to phase shifts, others not 



Chiral EFT: 
Resulting fits to Phase shifts 

Systematic improvement of chiral EFT potentials fit to phase shifts 
 

Cutoff variation – information about missing physics 
 

NLO: dashed band            9 Parameters 
N2LO: light band             12 Parameters  
N3LO: dark band             27 Parameters 
 

Generally decreasing error and increasing accuracy – not entirely… (exercise) 



Couplings fit to experiment once 

Chiral Effective Field Theory: Nuclear Forces 

Weinberg, van Kolck, Kaplan, Savage, Wise,  
Epelbaum, Kaiser, Meissner,… 

LO 

NLO 

N2LO 

N3LO 

Nucleons interact via pion  
exchanges and contact interactions 
 
 

Consistent treatment of  
NN, 3N, … electroweak operators  

Hierarchy: VNN > V3N > ...   

Meson exchange potentials were an  
admirable effort 
 
 Using ideas of effective field theory: 
 
 

Lower momentum 
Systematic – can assign error 
Connected to QCD 
 
 
 
 



Two chiral potentials with regulators of 500MeV and 600MeV 
 

Still low-to-high momentum coupling: poor convergence, non perturbative, etc. 
 
 

Chiral NN Potentials 

How do these compare to the potential you drew? 
 Lesson: Infinitely many phase-shift equivalent potentials 
 
 

NN interaction not observable 
 

Low-to-high momentum makes life difficult for 
low-energy nuclear theorists 

En = h n|H| ni =
�⌦
 n

��U†�
UHU

† (U | ni
�
=

D
 ̃n

���H̃
��� ̃n

E
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Fig. 7. (a) Nuclear many-body landscape and (b) degrees of freedom and corresponding scales in nuclei [48].

or for octupole enhancement factors of electric dipolemoments. In all cases, we seek theoretical error estimates, particularly
for extrapolations to systems where measurements will be limited or non-existent.

Progress toward such controlled nuclear calculations has long been hindered by the difficulty of the nuclear many-body
problem, when conventional nuclear potentials are used. This has historically been accepted as an unavoidable reality.
Indeed, conventional wisdom among nuclear physicists, as summarized by Bethe in his review of over 30 years ago [49],
holds that successful nuclear matter calculations must be highly non-perturbative in the potential. This is in contrast to
the Coulomb many-body problem, for which Hartree–Fock is a useful starting point and (possibly resummed) many-body
perturbation theory (MBPT) is an effective tool. The possibility of a soft potential providing a more perturbative solution to
the nuclear matter problemwas discarded at that time, and saturation firmly identified with the density dependence due to
the tensor force [49]. Until recent RG-based calculations [9,16,17], subsequent work on the nuclear matter problem [50–53]
had not significantly altered the general perspective or conclusions of Bethe’s review (although the role of three-nucleon
(3N) forces has been increasingly emphasized).

As already noted, non-perturbative behavior in the particle–particle channel for nuclear forces arises from several
sources. First is the strong short-range repulsion, which requires at least a summation of particle–particle-ladder
diagrams [49]. Second is the tensor force, for example, from pion exchanges, which is highly singular at short distances,
and requires iteration in the triplet channels [54,55]. Third is the presence of low-energy bound states or nearly bound
states in the S-waves. These states imply poles in the scattering T matrix that render the perturbative Born series divergent.
All these non-perturbative features are present in conventional high-precision NN potentials.

The philosophy behind the standard approach to nuclear matter is to attack these features head-on. This attitude was
succinctly stated by Bethe [49]:

‘‘The theory must be such that it can deal with any NN force, including hard or ‘soft’ core, tensor forces, and other
complications. It ought not to be necessary to tailor the NN force for the sake of making the computation of nuclear
matter (or finite nuclei) easier, but the force should be chosen on the basis of NN experiments (and possibly subsidiary
experimental evidence, like the binding energy of 3H).’’

In contrast, the EFT and RG perspective has a completely different underlying philosophy, which stresses that the potential
is not an observable to be fixed from experiment (there is no ‘‘true potential’’), but that an infinite number of potentials are
capable of accurately describing low-energy physics [56]. In order to be predictive and systematic, an organization (‘‘power
counting’’) must be present to permit a truncation of possible terms in the potential. If a complete Hamiltonian is used
(includingmany-body forces), then all observables should be equivalent up to truncation errors. The EFT philosophy implies
using this freedom to choose a convenient and efficient potential for the problems of interest.

The use of energy-independent low-momentum interactions is a direct implementation of these ideas. Varying the
cutoff can be used as a powerful tool to study the underlying physics scales, to evaluate the completeness of approximate

How will we approach this problem: 
 

QCD à NN (3N) forces à Renormalize à “Solve” many-body problem à Predictions 

To understand the properties of complex nuclei from first principles 

Renormalizing NN 
Interactions 
 

Basic ideas of RG 
 

Low-momentum interactions 
 

Similarity RG interactions 
 

Benefits of low cutoffs 
 

G-matrix renormalization 
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Fig. 9. Schematic illustration of two types of RG evolution for NN potentials in momentum space: (a) Vlow k running in ⇤ and (b) SRG running in �. At each
⇤i or �i , the matrix elements outside of the corresponding lines are zero, so that high- and low-momentum states are decoupled.

Fig. 10. Two types of RG evolution applied to one of the chiral N3LO NN potentials (550/600 MeV) of Ref. [44] in the 3S1 channel: (a) Vlow k running in ⇤
and (b) SRG running in � (see Fig. 27 for plots in k2, which show the diagonal width of order �2).

‘‘At each scale, we have different degrees of freedom and different dynamics. Physics at a larger scale (largely)
decouples from the physics at a smaller scale. . . . Thus, a theory at a larger scale remembers only finitely many
parameters from the theories at smaller scales, and throws the rest of the details away. More precisely, when we
pass from a smaller scale to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the RG
method is to explain how this decoupling takes place and why exactly information is transmitted from scale to scale
through finitely many parameters.’’

The common features of RG for critical phenomena and high-energy scattering are discussed by StevenWeinberg in an essay
in Ref. [64]. He summarizes:

‘‘Themethod in itsmost general form can I think be understood as away to arrange in various theories that the degrees
of freedom that you’re talking about are the relevant degrees of freedom for the problem at hand.’’

This is the heart ofwhat is donewith low-momentum interaction approaches: arrange for the degrees of freedom for nuclear
structure to be the relevant ones. This does not mean that other degrees of freedom cannot be used, but to again quote
Weinberg [64]: ‘‘You can use any degrees of freedom you want, but if you use the wrong ones, you’ll be sorry.’’

There are two major classes of RG transformations used to construct low-momentum interactions, which are illustrated
schematically in Fig. 9. In the Vlow k approach, decoupling is achieved by lowering amomentum cutoff⇤ abovewhichmatrix
elements go to zero. In the SRG approach, decoupling is achieved by lowering a cutoff � (in energy differences �2) using flow
equations, whichmeans evolving toward the diagonal inmomentum space. The technology for carrying out these is outlined
in Section 3, but the effects can be readily seen in the series of contour plots in Fig. 10(a) and (b).

With either approach, lowering the cutoff leaves low-energy observables unchanged by construction, but shifts
contributions between the interaction strengths and the sums over intermediate states in loop integrals. The evolution
of phenomenological or chiral EFT interactions to lower resolution is beneficial, because these shifts can weaken or largely
eliminate sources of non-perturbative behavior, and because lower cutoffs require smaller bases inmany-body calculations,
leading to improved convergence for nuclei. The RG cutoff variation estimates theoretical uncertainties due to higher-
order contributions, to neglected many-body interactions or to an incomplete many-body treatment. When initialized with

Part II: (S)RG and Low-Momentum Interactions  



Renormalization of Meson-Exchange Potentials 

Can we just make a sharp cut and see if it works? 

Ok, high momentum is a pain. I 
wonder what would happen to 

low-energy observables… 

Low-to-high momentum makes life difficult for 
low-energy nuclear theorists, so let’s get rid of it 

Vfilter(k
0, k) ⌘ 0; k, k0 > 2.2MeV

Sharp cut 



Renormalization of Meson-Exchange Potentials 
Can we just make a sharp cut? 
 

Nope! Low-energy physics is not correct 
 
 
 
 
 
 
 
 

Overview RG Basics Resolution Forces Filter Coupling

Why did our low-pass filter fail?
Basic problem: low k and high k

are coupled (mismatched dof’s!)
E.g., perturbation theory
for (tangent of) phase shift:
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Glad I didn’t bet money 
on that… I wonder what 

went wrong 



Renormalization of Meson-Exchange Potentials 
Can we just make a sharp cut? 
 

Nope! Low-energy physics is not correct 
 
 
 
 
 
 
 
 
Phase shifts involve couplings of low-to-high momenta 
 
 
 
 
Lesson: Must ensure low-energy physics is preserved! 
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q=0

hk|V |qihq|V |k0i
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+
1X

q=⇤

hk|V |qihq|V |k0i
✏k0 � ✏q
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Renormalization of Meson-Exchange Potentials 

To do properly, from T-matrix equation, define low-momentum equation: 

Lower UV cutoff, but preserve low-energy physics! 
 



Renormalization of Meson-Exchange Potentials 

To do properly, from T-matrix equation, define low-momentum equation: 

€ 

Require :   d
dΛ

T = 0 

Lower UV cutoff, but preserve low-energy physics! 
 

Leads to renormalization group equation for low-momentum interactions 

d

d⇤
V ⇤
low k(k

0, k) =
2

⇡

V ⇤
low k(k

0,⇤)T⇤(⇤, k)

1� (k/⇤)2



Renormalization of Meson-Exchange Potentials 

Run cutoff to lower values – decouples high-momentum modes 

Start from some initial 
at high cutoff Λ0 

“Universality” at low momentum 

⇤ ⇡ ⇤Data

VNN



Renormalization of Meson-Exchange Potentials 
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Fig. 17. Diagonal (left) and off-diagonal (right) momentum–space matrix elements for various phenomenological NN potentials initially (upper figures)
and after RG evolution to low-momentum interactions Vlow k [5,6] (lower figures) for a smooth regulator with ⇤ = 2.0 fm�1 and nexp = 4.

Fig. 18. Diagonal (left) and off-diagonal (right) momentum–space matrix elements of different N3LO NN interactions (EM [20] and EGM [44]) initially
(upper figures) and after RG evolution to low-momentum interactions Vlow k [5,6] (lower figures) for a smooth regulator with ⇤ = 2.0 fm�1 and nexp = 4.

Consider the Born series for the T matrix at energy E with Hamiltonian H = H0 + V ,

T (E) = V + V
1

E � H0
V + · · · . (4)

These are all our 
favorite OBE 
NN potentials… 

These are all our 
favorite OBE 
NN potentials…  
at low momentum 

Universal collapse in both diagonal/off-diagonal components, most partial waves 



Renormalization of Chiral EFT Potentials 

These are all our 
favorite Chiral EFT 
NN potentials… 

These are all our 
favorite Chiral EFT  
NN potentials…  
at low momentum 

 Diagonal               Off-diagonal 

Differences remain in off-diagonal matrix elements.  Why? 
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Fig. 17. Diagonal (left) and off-diagonal (right) momentum–space matrix elements for various phenomenological NN potentials initially (upper figures)
and after RG evolution to low-momentum interactions Vlow k [5,6] (lower figures) for a smooth regulator with ⇤ = 2.0 fm�1 and nexp = 4.

Fig. 18. Diagonal (left) and off-diagonal (right) momentum–space matrix elements of different N3LO NN interactions (EM [20] and EGM [44]) initially
(upper figures) and after RG evolution to low-momentum interactions Vlow k [5,6] (lower figures) for a smooth regulator with ⇤ = 2.0 fm�1 and nexp = 4.

Consider the Born series for the T matrix at energy E with Hamiltonian H = H0 + V ,

T (E) = V + V
1

E � H0
V + · · · . (4)



Renormalization of Chiral EFT Potentials 

These are all our 
favorite Chiral EFT 
NN potentials… 

These are all our 
favorite Chiral EFT  
NN potentials…  
at low momentum 

 Diagonal               Off-diagonal 

Differences remain in off-diagonal matrix elements 
 

Sensitive to agreement for phase shifts (not all fit perfectly)  

S.K. Bogner et al. / Progress in Particle and Nuclear Physics 65 (2010) 94–147 107

Fig. 17. Diagonal (left) and off-diagonal (right) momentum–space matrix elements for various phenomenological NN potentials initially (upper figures)
and after RG evolution to low-momentum interactions Vlow k [5,6] (lower figures) for a smooth regulator with ⇤ = 2.0 fm�1 and nexp = 4.

Fig. 18. Diagonal (left) and off-diagonal (right) momentum–space matrix elements of different N3LO NN interactions (EM [20] and EGM [44]) initially
(upper figures) and after RG evolution to low-momentum interactions Vlow k [5,6] (lower figures) for a smooth regulator with ⇤ = 2.0 fm�1 and nexp = 4.

Consider the Born series for the T matrix at energy E with Hamiltonian H = H0 + V ,

T (E) = V + V
1

E � H0
V + · · · . (4)



Renormalization of NN Potentials 

Ve↵ = VL + �Vc.t.(⇤)

28

- main effect of RG evolution is a constant shift (delta function!)
-  tail of deuteron wf doesn’t change 
-  consistent with collapse to “universal” interaction

0 2 4 6 8
r [fm]

0

0.05

0.1

0.15

0.2

0.25

|!
(r

)|2  [f
m

-3
]

Argonne v18

" = 4.0 fm-1

" = 3.0 fm-1

" = 2.0 fm-1

3S1 deuteron probability density

Evidence that Veff = VL + �Vc.t.(�)

symbols: Vlow k " = 2 fm-1

Why is it mostly a 
shift? 
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Renormalization of NN Potentials 

Overall effect of evolving to low momentum 
 

Main effect is shift in momentum space – delta function 
 

Removes hard core (unconstrained short-range physics)! 

Ve↵ = VL + �Vc.t.(⇤)

28

- main effect of RG evolution is a constant shift (delta function!)
-  tail of deuteron wf doesn’t change 
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Improvements in Perturbation Theory 
Explore improvements in symmetric infinite matter calculations 
 

Order by order in many-body perturbation theory (MBPT) 
 
 
 
 
 
 
 
 
 
 
 

No clear convergence with increasing order in bare potential 
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Fig. 19. (a) Particle–particle contributions to the energy per nucleon in symmetric nuclear matter as a function of the Fermi momentum kF for the initial
Argonne v18 potential and the RG-evolved Vlow k with⇤ = 2.1 fm�1 [9]. (b) Pair-distribution function g(r) in nuclearmatter for kF = 1.35 fm�1 at different
resolutions, for details see Ref. [10].

Fig. 20. Trajectories of the largest repulsive Weinberg eigenvalues in the (a) 1S0 and (b) 3S1–3D1 channels as a function of energy for Vlow k evolved from
the Argonne v18 potential [12]. The results for selected cutoffs are indicated by the different symbols. The positions of the symbols on each trajectory mark
the eigenvalues for center-of-mass energies Ecm = 0, 25, 66, 100 and 150 MeV, starting from the filled symbol at 0 MeV. The trajectory with stars are
eigenvalues for the N3LO potential of Ref. [20].

By finding the eigenvalues and eigenvectors of the operator (E � H0)
�1V ,

1
E � H0

V |�⌫i = ⌘⌫(E)|�⌫i, (5)

and then acting with T (E) on the eigenvectors,

T (E)|�⌫i =
�
1 + ⌘⌫(E) + ⌘2

⌫(E) + · · ·
�
V |�⌫i, (6)

it follows that non-perturbative behavior at energy E is signaled by one or more eigenvalues with |⌘⌫(E)| > 1 [75]. A
rearrangement of Eq. (5) gives a simple interpretation of the eigenvalue ⌘⌫(E) as an energy-dependent coupling that must
divide V to produce a solution to the Schrödinger equation at energy E. For negative energies, a purely attractive V gives
positive real ⌘⌫(E) values, while a purely repulsive V gives negative eigenvalues. For this reason, we refer to negative
eigenvalues as repulsive and positive ones as attractive, although the eigenvalues become complex for positive E.

Fig. 20 shows the trajectories of the largest repulsive Weinberg eigenvalue in the 1S0 and 3S1–3D1 channels as a function
of (positive) energy for Vlow k interactions with various cutoffs evolved from the Argonne v18 potential. Themagnitude of the
largest repulsive eigenvalue at all energies decreases rapidly as the cutoff is lowered. This reflects the decrease of the short-
range repulsion present in the initial potential. In the 1S0 channel, the trajectory lies completely inside the shaded unit circle
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Improvements in Perturbation Theory 
Explore improvements in symmetric infinite matter calculations 
 

Order by order in many-body perturbation theory (MBPT) 
 
 
 
 
 
 
 
 
 
 
 

No clear convergence with increasing order in bare potential 
 

Significant improvement with low-momentum interactions! 
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Fig. 19. (a) Particle–particle contributions to the energy per nucleon in symmetric nuclear matter as a function of the Fermi momentum kF for the initial
Argonne v18 potential and the RG-evolved Vlow k with⇤ = 2.1 fm�1 [9]. (b) Pair-distribution function g(r) in nuclearmatter for kF = 1.35 fm�1 at different
resolutions, for details see Ref. [10].

Fig. 20. Trajectories of the largest repulsive Weinberg eigenvalues in the (a) 1S0 and (b) 3S1–3D1 channels as a function of energy for Vlow k evolved from
the Argonne v18 potential [12]. The results for selected cutoffs are indicated by the different symbols. The positions of the symbols on each trajectory mark
the eigenvalues for center-of-mass energies Ecm = 0, 25, 66, 100 and 150 MeV, starting from the filled symbol at 0 MeV. The trajectory with stars are
eigenvalues for the N3LO potential of Ref. [20].

By finding the eigenvalues and eigenvectors of the operator (E � H0)
�1V ,

1
E � H0

V |�⌫i = ⌘⌫(E)|�⌫i, (5)

and then acting with T (E) on the eigenvectors,

T (E)|�⌫i =
�
1 + ⌘⌫(E) + ⌘2

⌫(E) + · · ·
�
V |�⌫i, (6)

it follows that non-perturbative behavior at energy E is signaled by one or more eigenvalues with |⌘⌫(E)| > 1 [75]. A
rearrangement of Eq. (5) gives a simple interpretation of the eigenvalue ⌘⌫(E) as an energy-dependent coupling that must
divide V to produce a solution to the Schrödinger equation at energy E. For negative energies, a purely attractive V gives
positive real ⌘⌫(E) values, while a purely repulsive V gives negative eigenvalues. For this reason, we refer to negative
eigenvalues as repulsive and positive ones as attractive, although the eigenvalues become complex for positive E.

Fig. 20 shows the trajectories of the largest repulsive Weinberg eigenvalue in the 1S0 and 3S1–3D1 channels as a function
of (positive) energy for Vlow k interactions with various cutoffs evolved from the Argonne v18 potential. Themagnitude of the
largest repulsive eigenvalue at all energies decreases rapidly as the cutoff is lowered. This reflects the decrease of the short-
range repulsion present in the initial potential. In the 1S0 channel, the trajectory lies completely inside the shaded unit circle
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Improvements in Perturbation Theory 
Explore improvements in symmetric infinite matter calculations 
 

Order by order in many-body perturbation theory (MBPT) 
 
 
 
 
 
 
 
 
 
 
 

No clear convergence with increasing order in bare potential 
 

Significant improvement with low-momentum interactions! 
 

Ok, the interactions look 
perturbative, but 

something is wrong 
here… 
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Fig. 19. (a) Particle–particle contributions to the energy per nucleon in symmetric nuclear matter as a function of the Fermi momentum kF for the initial
Argonne v18 potential and the RG-evolved Vlow k with⇤ = 2.1 fm�1 [9]. (b) Pair-distribution function g(r) in nuclearmatter for kF = 1.35 fm�1 at different
resolutions, for details see Ref. [10].

Fig. 20. Trajectories of the largest repulsive Weinberg eigenvalues in the (a) 1S0 and (b) 3S1–3D1 channels as a function of energy for Vlow k evolved from
the Argonne v18 potential [12]. The results for selected cutoffs are indicated by the different symbols. The positions of the symbols on each trajectory mark
the eigenvalues for center-of-mass energies Ecm = 0, 25, 66, 100 and 150 MeV, starting from the filled symbol at 0 MeV. The trajectory with stars are
eigenvalues for the N3LO potential of Ref. [20].

By finding the eigenvalues and eigenvectors of the operator (E � H0)
�1V ,

1
E � H0

V |�⌫i = ⌘⌫(E)|�⌫i, (5)

and then acting with T (E) on the eigenvectors,

T (E)|�⌫i =
�
1 + ⌘⌫(E) + ⌘2

⌫(E) + · · ·
�
V |�⌫i, (6)

it follows that non-perturbative behavior at energy E is signaled by one or more eigenvalues with |⌘⌫(E)| > 1 [75]. A
rearrangement of Eq. (5) gives a simple interpretation of the eigenvalue ⌘⌫(E) as an energy-dependent coupling that must
divide V to produce a solution to the Schrödinger equation at energy E. For negative energies, a purely attractive V gives
positive real ⌘⌫(E) values, while a purely repulsive V gives negative eigenvalues. For this reason, we refer to negative
eigenvalues as repulsive and positive ones as attractive, although the eigenvalues become complex for positive E.

Fig. 20 shows the trajectories of the largest repulsive Weinberg eigenvalue in the 1S0 and 3S1–3D1 channels as a function
of (positive) energy for Vlow k interactions with various cutoffs evolved from the Argonne v18 potential. Themagnitude of the
largest repulsive eigenvalue at all energies decreases rapidly as the cutoff is lowered. This reflects the decrease of the short-
range repulsion present in the initial potential. In the 1S0 channel, the trajectory lies completely inside the shaded unit circle



Improvements in Perturbation Theory 
Explore improvements in symmetric infinite matter calculations 
 

Order by order in many-body perturbation theory (MBPT) 
 
 
 
 
 
 
 
 
 
 
 

No clear convergence with increasing order in bare potential 
 

Significant improvement with low-momentum interactions! 
 

Does not saturate – what might be missing? 

Ok, the interactions look 
perturbative, but 

something is wrong 
here… 

108 S.K. Bogner et al. / Progress in Particle and Nuclear Physics 65 (2010) 94–147

Fig. 19. (a) Particle–particle contributions to the energy per nucleon in symmetric nuclear matter as a function of the Fermi momentum kF for the initial
Argonne v18 potential and the RG-evolved Vlow k with⇤ = 2.1 fm�1 [9]. (b) Pair-distribution function g(r) in nuclearmatter for kF = 1.35 fm�1 at different
resolutions, for details see Ref. [10].

Fig. 20. Trajectories of the largest repulsive Weinberg eigenvalues in the (a) 1S0 and (b) 3S1–3D1 channels as a function of energy for Vlow k evolved from
the Argonne v18 potential [12]. The results for selected cutoffs are indicated by the different symbols. The positions of the symbols on each trajectory mark
the eigenvalues for center-of-mass energies Ecm = 0, 25, 66, 100 and 150 MeV, starting from the filled symbol at 0 MeV. The trajectory with stars are
eigenvalues for the N3LO potential of Ref. [20].
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rearrangement of Eq. (5) gives a simple interpretation of the eigenvalue ⌘⌫(E) as an energy-dependent coupling that must
divide V to produce a solution to the Schrödinger equation at energy E. For negative energies, a purely attractive V gives
positive real ⌘⌫(E) values, while a purely repulsive V gives negative eigenvalues. For this reason, we refer to negative
eigenvalues as repulsive and positive ones as attractive, although the eigenvalues become complex for positive E.
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H (⇤) = T + VNN (⇤) + V3N (⇤) + V4N (⇤) + · · ·



Similarity Renormalization Group 

Complementary method to decouple low from high momenta 

Decouples high-momentum 
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2 Types of Renormalization Group Transformations

“Vlow k”
integrate-out high k states
preserves observables for k < !

“Similarity RG”
 eliminate far off-diagonal coupling
 preserves “all” observables 

Very similar consequences despite differences in appearance!
(universal low-momentum interaction, decoupling of high-k, preservation of low E physics)

(technical details in lecture 2)
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Very similar consequences despite differences in appearance!
(universal low-momentum interaction, decoupling of high-k, preservation of low E physics)

(technical details in lecture 2)

Similarity Renormalization Group 
Drives Hamiltonian to band-diagonal 

Wegner, Glazek/Wilson (1990s) 



Similarity Renormalization Group 

Apply a continuous unitary transformation, parameterized by s: 
 
 
where differentiating (exercise) yields: 
 
                                                 where 
 
Never explicitly construct unitary transformation 
 

Instead choose generator to obtain desired behavior: 
 
                                                
Many options, e.g., 
                                        
                                                  Drives H(s) to band-diagonal form 
 

H = T + V ! H(s) = U(s)HU
†(s) ⌘ T + V (s)

dH(s)

ds
= [⌘(s), H(s)] ⌘(s) ⌘ dU(s)

ds
U †(s)

⌘(s) = [T,H(s)]

Wegner, Glazek/Wilson (1990s) 

⌘(s) = [G(s), H(s)]



Illustration of SRG Flow 

Drive H to band-diagonal form with kinetic-energy generator: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s

Overview RG Basics flow

Flow equations in action: NN only
In each partial wave with ✏k = ~2k2/M and �2 = 1/

p
s

dV�

d�
(k , k 0) / �(✏k � ✏k 0)2

V�(k , k
0) +

X

q

(✏k + ✏k 0 � 2✏q)V�(k , q)V�(q, k
0)

Dick Furnstahl Nuclei at Low Resolution
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ArgonneV18
1S0



Illustration of SRG Flow 

Overview RG Basics flow

Flow equations in action: NN only
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Drive H to band-diagonal form with standard choice: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s
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Drive H to band-diagonal form with standard choice: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s



Illustration of SRG Flow 

Overview RG Basics flow

Flow equations in action: NN only
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Drive H to band-diagonal form with standard choice: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s



Illustration of SRG Flow 

Overview RG Basics flow

Flow equations in action: NN only
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Drive H to band-diagonal form with standard choice: 
 
 
 
With alternate definition of flow parameter: 

⌘(s) = [T,H(s)]

�2 =
1p
s



Other Generator Choices: Block Diagonal 

Create block diagonal form like Vlowk? 
 
 
 
With alternate definition of flow parameter: �2 =

1p
s

G(s) = HBD =

✓
PH(s)P 0

0 QH(s)Q

◆

ArgonneV18
3S1

Overview RG Basics 3NF BD

Block diagonalization via SRG [Gs = HBD]

Can we get a ⇤ = 2 fm�1
Vlow k -like potential with SRG?

Yes! Use dHs

ds
= [[Gs,Hs],Hs] with Gs =

✓
PHsP 0

0 QHsQ

◆

What are the best generators for nuclear applications?
Dick Furnstahl Nuclei at Low Resolution
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Other Generator Choices: Block Diagonal 



� = 2.0 fm�1

Create block diagonal form like Vlowk? 
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SRG Renormalization of Chiral EFT Potentials 

These are all our 
favorite Chiral EFT 
NN potentials… 

These are all our 
favorite Chiral EFT  
NN potentials…  
SRG evolved 

Exhibit similar “universal” behavior as low-momentum interactions! 

Overview RG Basics 3NF BD

Run to lower � via SRG =) ⇡Universal VNN
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Apparently different NN potentials flow to common VNN

Do NNN interactions evolve to universal form? [Hebeler: yes!]
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Renormalization of Nuclear Interactions 

AV18 

N3LO 

Vlow k(Λ): lower cutoffs advantageous for nuclear structure calculations 

Evolve momentum resolution scale of chiral interactions from initial       
Remove coupling to high momenta, low-energy physics unchanged 

€ 

Λχ

Bogner, Kuo, Schwenk, Furnstahl 

Universal at  
low-momentum 

H (⇤) = T + VNN (⇤) + V3N (⇤) + V4N (⇤) + · · ·



Smooth vs. Sharp Cutoffs 

AV18 

N3LO 

Similar but not exact same results – will be differences in calculations 

Can have sharp as well as smooth cutoffs 
Remove coupling to high momenta, low-energy physics unchanged 

Bogner, Kuo, Schwenk, Furnstahl 

AV18 

H (⇤) = T + VNN (⇤) + V3N (⇤) + V4N (⇤) + · · ·



RG flow BD Perturbativeness 3NF A=3,4 Numerical

Flow of different N3LO chiral EFT potentials
1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

Significant decoupling even for “soft” EFT interaction

Dick Furnstahl Nuclei at Low Resolution

RG flow BD Perturbativeness 3NF A=3,4 Numerical

Flow of different N3LO chiral EFT potentials
1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

Significant decoupling even for “soft” EFT interaction

Dick Furnstahl Nuclei at Low Resolution

SRG-Evolution of Different Initial Potentials 

EFT1 

Lots of pretty pictures, but how does it actually help? 

SRG evolution of two different chiral EFT potentials 

EFT2 

H (⇤) = T + VNN (⇤) + V3N (⇤) + V4N (⇤) + · · ·



Revisit Low-Pass Filter Idea 

What’s the difference now? 

Ok, high momentum is a pain. I 
wonder what would happen to 

low-energy observables… 
Low-to-high momentum makes life difficult for 
low-energy nuclear theorists 

Vfilter(k
0, k) ⌘ 0; k, k0 > 2.2MeV

AV18 
SRG 



Revisit Low-Pass Filter Idea 

Low-energy observables were preserved – now sharp cut makes sense! 

Ok, high momentum is a pain. I 
wonder what would happen to 

low-energy observables… 
Low-to-high momentum makes life difficult for 
low-energy nuclear theorists 

Vfilter(k
0, k) ⌘ 0; k, k0 > 2.2MeV

Overview RG Basics flow

Low-pass filters work! [Jurgenson et al. (2008)]
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Benefits of Lower Cutoffs 
Often work in HO basis – does this make a difference there? 
 

Removes coupling from low-to-high harmonic oscillator states 
 

Expect to speed convergence in HO basis 
 
 
 
 
 
 
 
 
 
 
 
 
Explicitly see why this causes problems later! 
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49

many-body methods that expand on finite HO basis converge
much faster (weaker coupling to high momentum)

variational calculations improve (weaker correlations)



Benefits of Lower Cutoffs 
Exactly what happens in no-core shell model calculations 
 

Probably equally helpful in normal shell-model calculations? 
 

Come back to this later… 
134 S.K. Bogner et al. / Progress in Particle and Nuclear Physics 65 (2010) 94–147

Fig. 46. Ground-state energy of 6Li versus oscillator parameter h̄⌦ for different SRG-evolved interactions with � = 3.0, 2.0, 1.5 and 1.0 fm�1. The initial
interaction is the N3LO NN-only potential of Ref. [20]. The NCSM results clearly show improved convergence with the maximum number of oscillator
quanta Nmax for lower cutoffs. Because 3N interactions are neglected, the different NN calculations converge to different ground-state energies. For details,
see Ref. [14].

a b c

Fig. 47. Ground-state energies of (a) 4He, (b) 6Li, and (c) 7Li as a function of � for SRG interactions evolved from the N3LO NN-only potential of Ref. [20].
Error bars for larger � values are from extrapolations in Nmax. The arrowmarks the experimental energy. The characteristic increase in Egs at small � signals
the modification of the long-range attractive interaction [138]. For details see Ref. [14].

energy variation shown in Fig. 47 is comparable to natural-size truncation errors in chiral EFT, with no unnaturally large
contributions from omitted three-body forces for these light nuclei. Further evidence that the evolution preserves the
hierarchy of the underlying chiral EFT is shown in Figs. 35 and 36.

Extensions of ab initio methods to heavier and neutron-rich nuclei are a frontier of nuclear theory. CC theory is the prime
method for systems with up to 100 electrons in quantum chemistry [199] and a powerful method for nuclei for which a
closed-shell reference state provides a good starting point [86,200]. For 3H and 4He, CC results agree with the corresponding
Faddeev and Faddeev–Yakubovsky energies [13]. Combined with rapid convergence for low-momentum interactions, CC
theory has pushed the limits of accurate calculations tomedium-mass nuclei and set new benchmarks for 16O and 40Ca [13].
Using an angular-momentum- coupled scheme, it is possible to extend CC theory to very large spaces (15 major shells on a
single processor) and to obtain near-converged ground-state energies for spherical nuclei, 40Ca, 48Ca, and 48Ni, based on a
N3LO NN potential [201]. The CC developments for medium-mass nuclei are shown in Fig. 48, where the critical importance
of 3N forces for ground-state energies is evident.

Recently, a combination of nuclear and atomic physics techniques led to the first precision measurements of masses and
charge radii of the helium halo nuclei, 6He [202,203] and 8He [204,205], with two or four weakly bound neutrons forming
an extended halo around the 4He core. In Fig. 49, results are shown for the ground-state energies of helium nuclei based
on chiral low-momentum NN interactions [15]. This combines the RG evolution with the exact hyperspherical-harmonics



Benefits of Lower Cutoffs 
Use cutoff dependence to assess missing physics: return to Tjon line 
 

Varying cutoff moves along line  
 

Still never reaches experiment 
 
Lesson: Variation in  
physical observables  
with cutoff indicates  
missing physics  
 
Tool, not a parameter! 
 

3

1) Tells you if you’re missing something

2) Tells you how big it is



Benefits of Lower Cutoffs 
Triton binding energy - again clearly improved convergence behavior 
 

Clear dependence on cutoff – more than one, look closely… 
 

What is the source(s)? 
S.K. Bogner et al. / Progress in Particle and Nuclear Physics 65 (2010) 94–147 117

Fig. 29. (a) Absolute error versus � of the deuteron binding energy from a variational calculation in a fixed-size basis of harmonic oscillators (Nmaxh̄!
excitations). (b) Variational triton binding energy for selected � with NN interactions only, as a function of Nmax. For details, see Ref. [7].

distinct at higher momentum), with the universal low-momentum parts numerically similar to the Vlow k potentials. These
observations are illustrated in Fig. 28(a) for the diagonal and off-diagonal matrix elements.

Similarly, the non-perturbative features associated with strong short-range repulsion and strong short-range tensor
forces are substantially softened as we evolve to lower �. The largest repulsive Weinberg eigenvalues (see Section 2.4) for
E = 0 are shown as a function of � in Fig. 28(b) for the 1S0 and 3S1–3D1 channels. In both channels, the large eigenvalues
decrease rapidly as� evolves to 2 fm�1 and below, as observedwith the Vlow k evolution in Section 2.4. Themore perturbative
potentials at lower � induce weaker short-range correlations in few- andmany-body wave functions, which leads to greatly
improved convergence in variational calculations. This is illustrated in Fig. 29(a) and (b) via calculations of the deuteron and
triton binding energies by diagonalization in a harmonic-oscillator basis. The improvement in convergence is similar to that
found with smoothly cutoff Vlow k interactions [6].

In Fig. 29(b), the calculations for different � converge to different values for the triton binding energy. This reflects the
contributions of the omitted (and evolving) three-body interactions, and follows a similar pattern to that seenwith NN-only
Vlow k calculations [6,8]. The consistent evolution ofmany-body forces is an important issue for low-momentum interactions.
For the SRG, the evolution of 3N forces is readily practical, as discussed in Section 4.2.

3.4. Vlow k from SRG flow equations

A powerful feature of the SRG is that the generator Gs can be tailored to decouple high- and low-momentum physics
in different ways [104]. Block-diagonal decoupling of the sharp Vlow k form can be generated using SRG flow equations by
choosing a block-diagonal flow operator [105,106],

Gs =
✓

PHsP 0
0 QHsQ

◆
, (24)

with projection operators P and Q = 1�P . In a partial-wavemomentum representation, P and Q are step functions defined
by a sharp cutoff⇤ on relativemomenta. This choice forGs, whichmeans that⌘s is non-zero onlywhereGs is zero, suppresses
off-diagonal matrix elements such that the Hamiltonian approaches a block-diagonal form as s increases. If one considers a
measure of the off-diagonal coupling of the Hamiltonian,

Tr[(QHsP)Ñ(QHsP)] = Tr[PHsQHsP] > 0, (25)

then its derivative is easily evaluated by applying the SRG equation, Eq. (21):
d
ds

Tr[PHsQHsP] = Tr[P⌘sQ (QHsQHsP � QHsPHsP)] + Tr[(PHsPHsQ � PHsQHsQ )Q⌘sP]

= � 2 Tr[(Q⌘sP)Ñ(Q⌘sP)] 6 0. (26)

Thus, the off-diagonal QHsP block will decrease in general as s increases [105,106].
The right panels of Fig. 30(a) and (b) result from evolving the N3LO potential of Ref. [20] using the block-diagonal Gs of

Eq. (24) with ⇤ = 2 fm�1 to � = 0.5 fm�1. The agreement between Vlow k and SRG potentials for momenta below ⇤ is
striking, where a similar degree of universality is found in other channels. Deriving an explicit connection between these
approaches is the topic of ongoing research.
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Fig. 29. (a) Absolute error versus � of the deuteron binding energy from a variational calculation in a fixed-size basis of harmonic oscillators (Nmaxh̄!
excitations). (b) Variational triton binding energy for selected � with NN interactions only, as a function of Nmax. For details, see Ref. [7].

distinct at higher momentum), with the universal low-momentum parts numerically similar to the Vlow k potentials. These
observations are illustrated in Fig. 28(a) for the diagonal and off-diagonal matrix elements.

Similarly, the non-perturbative features associated with strong short-range repulsion and strong short-range tensor
forces are substantially softened as we evolve to lower �. The largest repulsive Weinberg eigenvalues (see Section 2.4) for
E = 0 are shown as a function of � in Fig. 28(b) for the 1S0 and 3S1–3D1 channels. In both channels, the large eigenvalues
decrease rapidly as� evolves to 2 fm�1 and below, as observedwith the Vlow k evolution in Section 2.4. Themore perturbative
potentials at lower � induce weaker short-range correlations in few- andmany-body wave functions, which leads to greatly
improved convergence in variational calculations. This is illustrated in Fig. 29(a) and (b) via calculations of the deuteron and
triton binding energies by diagonalization in a harmonic-oscillator basis. The improvement in convergence is similar to that
found with smoothly cutoff Vlow k interactions [6].

In Fig. 29(b), the calculations for different � converge to different values for the triton binding energy. This reflects the
contributions of the omitted (and evolving) three-body interactions, and follows a similar pattern to that seenwith NN-only
Vlow k calculations [6,8]. The consistent evolution ofmany-body forces is an important issue for low-momentum interactions.
For the SRG, the evolution of 3N forces is readily practical, as discussed in Section 4.2.

3.4. Vlow k from SRG flow equations

A powerful feature of the SRG is that the generator Gs can be tailored to decouple high- and low-momentum physics
in different ways [104]. Block-diagonal decoupling of the sharp Vlow k form can be generated using SRG flow equations by
choosing a block-diagonal flow operator [105,106],

Gs =
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PHsP 0
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◆
, (24)

with projection operators P and Q = 1�P . In a partial-wavemomentum representation, P and Q are step functions defined
by a sharp cutoff⇤ on relativemomenta. This choice forGs, whichmeans that⌘s is non-zero onlywhereGs is zero, suppresses
off-diagonal matrix elements such that the Hamiltonian approaches a block-diagonal form as s increases. If one considers a
measure of the off-diagonal coupling of the Hamiltonian,

Tr[(QHsP)Ñ(QHsP)] = Tr[PHsQHsP] > 0, (25)

then its derivative is easily evaluated by applying the SRG equation, Eq. (21):
d
ds

Tr[PHsQHsP] = Tr[P⌘sQ (QHsQHsP � QHsPHsP)] + Tr[(PHsPHsQ � PHsQHsQ )Q⌘sP]

= � 2 Tr[(Q⌘sP)Ñ(Q⌘sP)] 6 0. (26)

Thus, the off-diagonal QHsP block will decrease in general as s increases [105,106].
The right panels of Fig. 30(a) and (b) result from evolving the N3LO potential of Ref. [20] using the block-diagonal Gs of

Eq. (24) with ⇤ = 2 fm�1 to � = 0.5 fm�1. The agreement between Vlow k and SRG potentials for momenta below ⇤ is
striking, where a similar degree of universality is found in other channels. Deriving an explicit connection between these
approaches is the topic of ongoing research.
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Fig. 29. (a) Absolute error versus � of the deuteron binding energy from a variational calculation in a fixed-size basis of harmonic oscillators (Nmaxh̄!
excitations). (b) Variational triton binding energy for selected � with NN interactions only, as a function of Nmax. For details, see Ref. [7].
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observations are illustrated in Fig. 28(a) for the diagonal and off-diagonal matrix elements.

Similarly, the non-perturbative features associated with strong short-range repulsion and strong short-range tensor
forces are substantially softened as we evolve to lower �. The largest repulsive Weinberg eigenvalues (see Section 2.4) for
E = 0 are shown as a function of � in Fig. 28(b) for the 1S0 and 3S1–3D1 channels. In both channels, the large eigenvalues
decrease rapidly as� evolves to 2 fm�1 and below, as observedwith the Vlow k evolution in Section 2.4. Themore perturbative
potentials at lower � induce weaker short-range correlations in few- andmany-body wave functions, which leads to greatly
improved convergence in variational calculations. This is illustrated in Fig. 29(a) and (b) via calculations of the deuteron and
triton binding energies by diagonalization in a harmonic-oscillator basis. The improvement in convergence is similar to that
found with smoothly cutoff Vlow k interactions [6].

In Fig. 29(b), the calculations for different � converge to different values for the triton binding energy. This reflects the
contributions of the omitted (and evolving) three-body interactions, and follows a similar pattern to that seenwith NN-only
Vlow k calculations [6,8]. The consistent evolution ofmany-body forces is an important issue for low-momentum interactions.
For the SRG, the evolution of 3N forces is readily practical, as discussed in Section 4.2.
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A powerful feature of the SRG is that the generator Gs can be tailored to decouple high- and low-momentum physics
in different ways [104]. Block-diagonal decoupling of the sharp Vlow k form can be generated using SRG flow equations by
choosing a block-diagonal flow operator [105,106],
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with projection operators P and Q = 1�P . In a partial-wavemomentum representation, P and Q are step functions defined
by a sharp cutoff⇤ on relativemomenta. This choice forGs, whichmeans that⌘s is non-zero onlywhereGs is zero, suppresses
off-diagonal matrix elements such that the Hamiltonian approaches a block-diagonal form as s increases. If one considers a
measure of the off-diagonal coupling of the Hamiltonian,

Tr[(QHsP)Ñ(QHsP)] = Tr[PHsQHsP] > 0, (25)

then its derivative is easily evaluated by applying the SRG equation, Eq. (21):
d
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Thus, the off-diagonal QHsP block will decrease in general as s increases [105,106].
The right panels of Fig. 30(a) and (b) result from evolving the N3LO potential of Ref. [20] using the block-diagonal Gs of

Eq. (24) with ⇤ = 2 fm�1 to � = 0.5 fm�1. The agreement between Vlow k and SRG potentials for momenta below ⇤ is
striking, where a similar degree of universality is found in other channels. Deriving an explicit connection between these
approaches is the topic of ongoing research.
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Induced 3N Forces 
Effect of including 3N-ind? Exactly initial          up to neglected 4N-ind 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
NN-only clear cutoff dependencs 

RG flow BD Perturbativeness 3NF A=3,4 Numerical

3D SRG evolution with Trel in a Jacobi HO basis
Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]

Here: use anti-symmetric Jacobi HO basis from NCSM
directly obtain SRG matrix elements in HO basis
separate 3-body evolution not needed

Compare 2-body only to full 2 + 3-body evolution:
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Induced 3N Forces 
Effect of including 3N-ind? Exactly initial          up to neglected 4N-ind 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
NN-only clear cutoff dependencs 
 

3N-induced – dramatic reduction in cutoff dependence! 
 

Lesson: SRG cutoff variation a sign of neglected induced forces 
 

Still far from experiment and remaining (minor) cutoff dependence! 

VNN



Summary 
Low-momentum interactions can be constructed from any VNN via RG 

 

Low-to-high momentum coupling not desirable in low-energy nuclear physics 
 

Evolve to low-momentum while preserving low-energy physics 
 

Universality attained near cutoff of data 
 

Low-momentum cutoffs remove low-to-high harmonic oscillator couplings 
 

Cutoff variation assesses missing physics interaction level: tool not a parameter 

RG flow BD Perturbativeness 3NF A=3,4 Numerical

Flow of different N3LO chiral EFT potentials
1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

Significant decoupling even for “soft” EFT interaction
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How will we approach this problem: 
 

QCD à NN (3N) forces à Renormalize à “Solve” many-body problem à Predictions 

To understand the properties of complex nuclei from first principles 

Microscopic Valence- 
Space Interactions 
 

Model spaces 
 

Many-body perturbation  
   theory (MBPT) 
 

Calculating effective  
   interaction 
In-medium Similarity RG 
 

Monopole part of interaction 
 

Deficiencies of this approach 
 

Part III: The Nuclear Many-Body Problem 
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Fig. 7. (a) Nuclear many-body landscape and (b) degrees of freedom and corresponding scales in nuclei [48].

or for octupole enhancement factors of electric dipolemoments. In all cases, we seek theoretical error estimates, particularly
for extrapolations to systems where measurements will be limited or non-existent.

Progress toward such controlled nuclear calculations has long been hindered by the difficulty of the nuclear many-body
problem, when conventional nuclear potentials are used. This has historically been accepted as an unavoidable reality.
Indeed, conventional wisdom among nuclear physicists, as summarized by Bethe in his review of over 30 years ago [49],
holds that successful nuclear matter calculations must be highly non-perturbative in the potential. This is in contrast to
the Coulomb many-body problem, for which Hartree–Fock is a useful starting point and (possibly resummed) many-body
perturbation theory (MBPT) is an effective tool. The possibility of a soft potential providing a more perturbative solution to
the nuclear matter problemwas discarded at that time, and saturation firmly identified with the density dependence due to
the tensor force [49]. Until recent RG-based calculations [9,16,17], subsequent work on the nuclear matter problem [50–53]
had not significantly altered the general perspective or conclusions of Bethe’s review (although the role of three-nucleon
(3N) forces has been increasingly emphasized).

As already noted, non-perturbative behavior in the particle–particle channel for nuclear forces arises from several
sources. First is the strong short-range repulsion, which requires at least a summation of particle–particle-ladder
diagrams [49]. Second is the tensor force, for example, from pion exchanges, which is highly singular at short distances,
and requires iteration in the triplet channels [54,55]. Third is the presence of low-energy bound states or nearly bound
states in the S-waves. These states imply poles in the scattering T matrix that render the perturbative Born series divergent.
All these non-perturbative features are present in conventional high-precision NN potentials.

The philosophy behind the standard approach to nuclear matter is to attack these features head-on. This attitude was
succinctly stated by Bethe [49]:

‘‘The theory must be such that it can deal with any NN force, including hard or ‘soft’ core, tensor forces, and other
complications. It ought not to be necessary to tailor the NN force for the sake of making the computation of nuclear
matter (or finite nuclei) easier, but the force should be chosen on the basis of NN experiments (and possibly subsidiary
experimental evidence, like the binding energy of 3H).’’

In contrast, the EFT and RG perspective has a completely different underlying philosophy, which stresses that the potential
is not an observable to be fixed from experiment (there is no ‘‘true potential’’), but that an infinite number of potentials are
capable of accurately describing low-energy physics [56]. In order to be predictive and systematic, an organization (‘‘power
counting’’) must be present to permit a truncation of possible terms in the potential. If a complete Hamiltonian is used
(includingmany-body forces), then all observables should be equivalent up to truncation errors. The EFT philosophy implies
using this freedom to choose a convenient and efficient potential for the problems of interest.

The use of energy-independent low-momentum interactions is a direct implementation of these ideas. Varying the
cutoff can be used as a powerful tool to study the underlying physics scales, to evaluate the completeness of approximate
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Fig. 9. Schematic illustration of two types of RG evolution for NN potentials in momentum space: (a) Vlow k running in ⇤ and (b) SRG running in �. At each
⇤i or �i , the matrix elements outside of the corresponding lines are zero, so that high- and low-momentum states are decoupled.

Fig. 10. Two types of RG evolution applied to one of the chiral N3LO NN potentials (550/600 MeV) of Ref. [44] in the 3S1 channel: (a) Vlow k running in ⇤
and (b) SRG running in � (see Fig. 27 for plots in k2, which show the diagonal width of order �2).

‘‘At each scale, we have different degrees of freedom and different dynamics. Physics at a larger scale (largely)
decouples from the physics at a smaller scale. . . . Thus, a theory at a larger scale remembers only finitely many
parameters from the theories at smaller scales, and throws the rest of the details away. More precisely, when we
pass from a smaller scale to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the RG
method is to explain how this decoupling takes place and why exactly information is transmitted from scale to scale
through finitely many parameters.’’

The common features of RG for critical phenomena and high-energy scattering are discussed by StevenWeinberg in an essay
in Ref. [64]. He summarizes:

‘‘Themethod in itsmost general form can I think be understood as away to arrange in various theories that the degrees
of freedom that you’re talking about are the relevant degrees of freedom for the problem at hand.’’

This is the heart ofwhat is donewith low-momentum interaction approaches: arrange for the degrees of freedom for nuclear
structure to be the relevant ones. This does not mean that other degrees of freedom cannot be used, but to again quote
Weinberg [64]: ‘‘You can use any degrees of freedom you want, but if you use the wrong ones, you’ll be sorry.’’

There are two major classes of RG transformations used to construct low-momentum interactions, which are illustrated
schematically in Fig. 9. In the Vlow k approach, decoupling is achieved by lowering amomentum cutoff⇤ abovewhichmatrix
elements go to zero. In the SRG approach, decoupling is achieved by lowering a cutoff � (in energy differences �2) using flow
equations, whichmeans evolving toward the diagonal inmomentum space. The technology for carrying out these is outlined
in Section 3, but the effects can be readily seen in the series of contour plots in Fig. 10(a) and (b).

With either approach, lowering the cutoff leaves low-energy observables unchanged by construction, but shifts
contributions between the interaction strengths and the sums over intermediate states in loop integrals. The evolution
of phenomenological or chiral EFT interactions to lower resolution is beneficial, because these shifts can weaken or largely
eliminate sources of non-perturbative behavior, and because lower cutoffs require smaller bases inmany-body calculations,
leading to improved convergence for nuclei. The RG cutoff variation estimates theoretical uncertainties due to higher-
order contributions, to neglected many-body interactions or to an incomplete many-body treatment. When initialized with



The Nuclear Many-Body Problem 
Nucleus strongly interacting many-body system – how to solve A-body problem? 
 
 
 
 

Quasi-exact solutions only in light nuclei (GFMC, NCSM…) 
 

Large scale: controlled approximations to full Schrödinger Equation  
 

Valence space: diagonalize exactly with reduced number of degrees of freedom 
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From Momentum Space to HO Basis 
To this point interaction matrix elements in momentum space, partial waves 

So transform from momentum space to Harmonic Oscillator Basis 

To go to finite nuclei begin from Hamiltonian 

Assume many particles in the nucleus generate a mean field U: 
 

U a one-body potential simple to solve (typically Harmonic Oscillator) 

One more (ugly) transformation from center-of-mass to lab frame: 
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Valence-Space Ideas 
Begin with degenerate HO levels 

Problem: Can’t solve Schrodinger equation in full Hilbert space 
   

Physics of  V breaks HO degeneracy 
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Valence-Space Ideas 

Assume filled core 

Active nucleons occupy  
valence space 

“sd”-valence space 

Nuclei understood as many-body system starting from closed shell, add nucleons 

Unperturbed 
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Nuclei understood as many-body system starting from closed shell, add nucleons 
 

Valence-space Hamiltonian derived from nuclear forces: 
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Nuclei understood as many-body system starting from closed shell, add nucleons 
 

Valence-space Hamiltonian derived from nuclear forces: 
 
 

Single-particle energies 
 

Interaction matrix elements 
 

Valence-Space Philosophy 

          

Effective valence space Hamiltonian: 
Sum all excitations outside valence space 
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Perturbative Approach 
 

1) Effective Hamiltonian: sum excitations outside valence space 
 

2) Self-consistent single-particle energies 
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Perturbative Approach 
 

1) Effective Hamiltonian: sum excitations outside valence space to MBPT(3) 
 

2) Self-consistent single-particle energies 
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Perturbative Approach 
 

1) Effective Hamiltonian: sum excitations outside valence space to MBPT(3) 
 

2) Self-consistent single-particle energies 
 

3) Harmonic-oscillator basis of 13-15 major shells: converged! 
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Perturbative Approach 
 

1) Effective Hamiltonian: sum excitations outside valence space to MBPT(3) 
 

2) Self-consistent single-particle energies 
 

3) Harmonic-oscillator basis of 13-15 major shells: converged! 
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Aside: G-matrix Renormalization 
Standard method for softening interaction in nuclear structure for decades: 

Infinite summation of ladder diagrams 
 

Need two model spaces:  
    1) M space in which we will want to calculate (excitations allowed in M) 
  

    2) Large space Q in which particle excitations are allowed  
 

To avoid double counting, can’t overlap – matrix elements depend on M 



Gijkl(!) = Vijkl +
X

mn2Q

Vijmn
Q

! � "m � "n
Gmnkl(!)

Aside: G-matrix Renormalization 
Standard method for softening interaction in nuclear structure for decades: 

Iterative procedure 
Dependence on arbitrary starting energy! 



G-matrix Renormalization 
Standard method for softening interaction in nuclear structure for decades: 

What happens 
as we keep 

increasing M? 

Gijkl(!) = Vijkl +
X

mn2Q

Vijmn
Q

! � "m � "n
Gmnkl(!)
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Fig. 33. Gmatrix at saturation density for the Argonne v18 potential [18] (left panels) and the N3LO potential of Ref. [20] (right panels) in the 3S1 channel.
Each set of four panels are (a) initial potential, (b) potential evolved by the SRG to � = 2 fm�1, (c) Gmatrix based on (a), and (d) Gmatrix based on (b).

truncated at the two-body level, as was assumed for part of the history of nuclear structure calculations. However, chiral EFT
reveals the natural scale and hierarchy of many-body forces, which dictates their inclusion in modern calculations of nuclei
and nucleonic matter. Thus, the real concern is whether this hierarchy is maintained as nuclear interactions are evolved.
In this section, we review the current status of RG technology to include many-body interactions and operators and the
presently known impact on the hierarchy.

4.1. Three-nucleon interactions

Three-nucleon interactions are a frontier. They are crucial for binding energies and radii, they play a central role for
spin–orbit effects, spin dependencies, for few-body scattering and the evolution of nuclear structure with isospin, and they
drive the density dependence of nucleonic matter (see Sections 5 and 6) [73]. Three-nucleon interactions are also required
for renormalization [125,126]. The construction of 3N forces based on chiral EFT provides a systematic organization of the
physics and an operator basis that can be used to approximate the evolution of low-momentum 3N interactions.

In chiral EFT without explicit 1 isobars, 3N forces first enter at N2LO (see Fig. 4) and contain a long-range 2⇡-exchange
part Vc , an intermediate-range 1⇡-exchange part VD and a short-range contact interaction VE [127,128]:

(31)
The 2⇡-exchange interaction is given by

Vc = 1
2

✓
gA
2f⇡

◆2 X

i6=j6=k

(�i · qi)(�j · qj)

(q2i + m2
⇡ )(q2j + m2

⇡ )
F↵�
ijk ⌧↵

i ⌧
�
j , (32)

where qi = k0
i � ki denotes the difference of initial and final nucleon momenta (i, j and k = 1, 2, 3) and

F↵�
ijk = �↵�


�4c1m2

⇡

f 2⇡
+ 2c3

f 2⇡
qi · qj

�
+

X

�

c4
f 2⇡

✏↵�� ⌧
�
k �k · (qi ⇥ qj), (33)

while the 1⇡-exchange and contact interactions are given, respectively, by

VD = � gA
8f 2⇡

cD
f 2⇡ ⇤�

X

i6=j6=k

�j · qj

q2j + m2
⇡

(⌧ i · ⌧ j) (�i · qj), (34)

VE = cE
2f 4⇡ ⇤�

X

j6=k

(⌧ j · ⌧k). (35)

Typical values for applying Eqs. (32)–(35) are gA = 1.29, f⇡ = 92.4 MeV, m⇡ = 138.04 MeV and ⇤� = 700 MeV. In the RG
calculations based on chiral EFT interactions discussed here, the 3N force contributions are regulated as in Ref. [16] using

fR(p, q) = exp

� (p2 + 3q2/4)2

⇤4
3NF

�
, (36)

G-matrix Renormalization 
Results of G-matrix renormalization vs. SRG 
 

AV18 N3LO 

Removes some diagonal high-momentum components 
 

Still large low-to-high coupling in both interactions 
 

No indication of universality 
 

Clear difference compared with SRG-evolved interactions! 

G-mat 
G-mat 

SRG 

SRG+ 
G-mat 

SRG 

SRG+ 
G-mat 



Perturbative Approach 
 

1) Effective Hamiltonian: sum excitations outside valence space to MBPT(3) 
 

2) Self-consistent single-particle energies 
 

3) Harmonic-oscillator basis of 13-15 major shells: converged! 
 
 
 

 
 
 
 

 
 
 
 
 
 
Compare vs G-matrix (no sign of convergence) 
 

Clear benefit of low-momentum interactions! 
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1) Effective Hamiltonian: sum excitations outside valence space to MBPT(3) 
 

2) Self-consistent single-particle energies 
 

3) Harmonic-oscillator basis of 13-15 major shells 
 

4) Nuclear forces from chiral EFT 
 

5) Requires extended valence spaces 
 

 
 
 
 
 
 
 

8 

28   

20   

50   

0p3/2 

0d5/2 

1s1/2 

0d3/2 

0p1/2 

0g9/2 
0f5/2 

1p3/2 

1p1/2 

0f7/2 

8 

28   

20   

50   

0p3/2 

0d5/2 

1s1/2 

0d3/2 

0p1/2 

0g9/2 
0f5/2 

1p3/2 

1p1/2 

0f7/2 

16O 

Perturbative Approach 

Treat higher orbits nonperturbatively 
 



Where is the nuclear dripline? 
Limits defined as last isotope with positive neutron separation energy 
    - Nucleons “drip” out of nucleus 
Neutron dripline experimentally established to Z=8 (Oxygen) 

Limits of Nuclear Existence: Oxygen Anomaly 



Where is the nuclear dripline? 
Limits defined as last isotope with positive neutron separation energy 
    - Nucleons “drip” out of nucleus 
Neutron dripline experimentally established to Z=8 (Oxygen) 

Regular dripline trend… except oxygen 
Adding one proton binds 6 additional neutrons 

Limits of Nuclear Existence: Oxygen Anomaly 



Where is the nuclear dripline? 
Limits defined as last isotope with positive neutron separation energy 
    - Nucleons “drip” out of nucleus 
Neutron dripline experimentally established to Z=8 (Oxygen) 

Microscopic picture: NN-forces too attractive 
Incorrect prediction of dripline 

Prediction with NN forces 

Limits of Nuclear Existence: Oxygen Anomaly 
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Monopoles: 
Angular average of interaction 

Monopole Part of Valence-Space Interactions 

Determines interaction of orbit a with b: evolution of orbital energies 

Deficiencies improved adjusting particular two-body matrix elements  

Microscopic low-momentum interactions 
 

Phenomenological USD interactions 

Clear shifts in low-lying orbitals: 
 - T=1 repulsive shift 

Microscopic MBPT – effective interaction in chosen model space  
 

Works near closed shells: deteriorates beyond this 
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P
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Calculate evolution of sd-orbital energies from interactions 
Physics in Oxygen Isotopes 

- 16O - 24O - 28O - 22O 

- 16O 

Phenomenological Models 
d3/2 orbit unbound 

Microscopic NN Theories    
   d3/2 orbit bound to 28O 

- 16O - 24O - 28O - 22O 

Fit to experiment 
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Calculate evolution of sd-orbital energies from interactions 
Physics in Oxygen Isotopes 

- 16O - 24O - 28O - 22O 

Phenomenological Models 
d3/2 orbit unbound 
   Dripline at 24O  
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(c) NN + 3N
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Oxygen anomaly unexplained with NN forces 

Microscopic NN Theories    
   d3/2 orbit bound to 28O 
   Dripline at 28O 

- 16O - 24O - 28O - 22O 

Fit to experiment 

Origin of monopole shifts: Neglected 3N forces  
   -- See lecture of A. Poves 
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Perturbative Approach 
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Limitations 
 

•  Uncertain perturbative convergence 
 

•  Core physics inconsistent or absent 
 

•  Degenerate valence space requires HO basis (HF requires nontrivial extension) 
•  Must treat additional orbitals nonperturbatively (extend valence space) 

 

1) Effective Hamiltonian: sum excitations outside valence space to MBPT(3) 
 

2) Self-consistent single-particle energies 
 

3) Harmonic-oscillator basis of 13-15 major shells 
 

4) Nuclear forces from chiral EFT 
 

5) Requires extended valence spaces 
 

 
 
 
 
 
 
 



Particle/Hole Excitations 
Consider basis states as excitations from some reference state: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hamiltonian schematically given in  
terms of ph excitations  

Unoccupied 
(Particles) 

 

Occupied 
(Holes) 

|�i =
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SRG Overview Methods Lattice NCSM

In-medium SRG decoupling [slides from H. Hergert]

Consider SRG with 0p–0h reference state (instead of vacuum)

H. Hergert - Ohio State University - ANL Theory Seminar, 03/22/12

Decoupling in A-Body Space
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Normal-Ordered Hamiltonian 
Now rewrite exactly the initial Hamiltonian in normal-ordered form 
 
 
 
 
 
 
 
 
 
 
 
 
 
Normal-ordered Hamiltonian w.r.t. reference state 
 

Loop = sum over occupied states 
 

Include dominant 1-,2-,3-body physics in NO  

HN.O. = E0 +
X
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H. Hergert - “Progress in Ab Initio Techniques in Nuclear Physics”, TRIUMF, Vancouver, 02/19/2015

Normal-Ordered Hamiltonian

Normal-Ordered Hamiltonian
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two-body formalism with 

in-medium contributions from 


three-body interactions
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In-Medium SRG continuous unitary trans. drives off-diagonal physics to zero  
 
 
From uncorrelated Hartree-Fock reference state (e.g., 16O) define:  
 
 
 
 
 
 
 
 
 
 

Drives all n-particle n-hole couplings to 0 – decouples core from excitations 

Nonperturbative In-Medium SRG 
Tsukiyama, Bogner, Schwenk, PRL (2011) 

hi|H|ji

H(s) = U(s)HU
†(s) ⌘ H

d(s) +H
od(s) ! H

d(1)

H
od = hp|H|hi+ hpp|H|hhi+ · · ·+ h.c.

SRG Overview Methods Lattice NCSM

In-medium SRG decoupling [slides from H. Hergert]

Consider SRG with 0p–0h reference state (instead of vacuum)

H. Hergert - Ohio State University - ANL Theory Seminar, 03/22/12

Decoupling in A-Body Space
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SRG Overview Methods Lattice NCSM

In-medium SRG decoupling [H. Hergert]

Aim: decouple reference state (0p–0h) from excitations

H. Hergert - Ohio State University - ANL Theory Seminar, 03/22/12

Decoupling in A-Body Space
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Define U(s) implicitly from particular choice of generator: 
 
 
chosen for desired decoupling behavior – e.g., 
 
 

 
Solve flow equation for Hamiltonian (coupled DEs for 0,1,2-body parts) 
 
 
 

Hamiltonian and generator truncated at 2-body level: IM-SRG(2) 
 

0-body flow drives uncorrelated ref. state to fully correlated ground state 
 
 

Ab initio method for energies of closed-shell systems 

IM-SRG: Flow Equation Formulation 

⌘(s) ⌘ (dU(s)/ds)U†(s)

dH(s)

ds
= [⌘(s), H(s)]

⌘I (s) =
⇥
H

d(s), Hod(s)
⇤

Wegner (1994) 

E0(1) ! CoreEnergy

H(s) = E0(s) + f(s) + �(s) + · · ·



Open-shell systems 
 

Separate p states into valence states (v) and those above valence space (q) 
 
 
  

 
 
 
 
 
 
 
 
Redefine Hod to decouple valence space from excitations outside v 

IM-SRG: Valence-Space Hamiltonians 
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Valence Space Decoupling

• construct generator from off-diagonal Hamiltonian
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Open-shell systems 
 

Separate p states into valence states (v) and those above valence space (q) 
 
  
 
 
 
 
 
 
 
 

Core physics included consistently (absolute energies, radii…) 
 

Inherently nonperturbative – no need for extended valence space 
 

Non-degenerate valence-space orbitals 

IM-SRG: Valence-Space Hamiltonians 
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Valence Space Decoupling

• construct generator from off-diagonal Hamiltonian
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Monopoles: 
Angular average of interaction 

NN-only IM-SRG Monopoles 

NN-only significantly too attractive 
 

NN+3N-ind improved but d3/2 
monopoles too attractive 

Improvements over MBPT? 
 

V T
ab =

P
J (2J + 1)V JT
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Testing ab initio IM-SRG shell model monopoles 
 



Comparison with Large-Space Methods 

Results from SRG-evolved NN and NN+3N-ind forces 
 
 
 
 
 
 
 
 
 
 
Dripline still not reproduced 
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Large-space methods with same SRG-evolved NN+3N-ind forces 
 
 
 
 
 
 
 
 
 
 
Agreement between all methods with same input forces 
 

No reproduction of dripline in any case 
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Phenomenological vs. Microscopic 
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Many-body method insufficient? 
Benchmark against ab-initio Coupled Cluster at NN-only level 
 

 
 
 
 
 
 
 
 
 
 
 

SPEs: one-particle attached CC energies in 17O and 41Ca 
 

Small difference in many-body methods 
 
 

Include 3N forces to improve agreement with experiment 

Comparison to Coupled Cluster 

16 18 20 22 24 26 28
Mass Number A

-100
-90
-80
-70
-60
-50
-40
-30
-20
-10

0

En
er

gy
 [M

eV
]

CC
MBPT
Experiment

(a) CC/MBPT

40 44 48 52 56 60
Mass Number A

-300

-250

-200

-150

-100

-50

0

En
er

gy
 [M

eV
]

CC
MBPT

CC/MBPT

Oxygen Calcium 



How will we approach this problem: 
 

QCD à NN (3N) forces à Renormalize à “Solve” many-body problem à Predictions 

To understand the properties of complex nuclei from first principles 

Three-Nucleon Forces 
 

Basic ideas – why needed? 
 

3N from chiral EFT 
 

Implementing in shell model 
 

Relation to monopoles 
 

Predictions/new discoveries 
 

Connections beyond structure 
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Fig. 7. (a) Nuclear many-body landscape and (b) degrees of freedom and corresponding scales in nuclei [48].

or for octupole enhancement factors of electric dipolemoments. In all cases, we seek theoretical error estimates, particularly
for extrapolations to systems where measurements will be limited or non-existent.

Progress toward such controlled nuclear calculations has long been hindered by the difficulty of the nuclear many-body
problem, when conventional nuclear potentials are used. This has historically been accepted as an unavoidable reality.
Indeed, conventional wisdom among nuclear physicists, as summarized by Bethe in his review of over 30 years ago [49],
holds that successful nuclear matter calculations must be highly non-perturbative in the potential. This is in contrast to
the Coulomb many-body problem, for which Hartree–Fock is a useful starting point and (possibly resummed) many-body
perturbation theory (MBPT) is an effective tool. The possibility of a soft potential providing a more perturbative solution to
the nuclear matter problemwas discarded at that time, and saturation firmly identified with the density dependence due to
the tensor force [49]. Until recent RG-based calculations [9,16,17], subsequent work on the nuclear matter problem [50–53]
had not significantly altered the general perspective or conclusions of Bethe’s review (although the role of three-nucleon
(3N) forces has been increasingly emphasized).

As already noted, non-perturbative behavior in the particle–particle channel for nuclear forces arises from several
sources. First is the strong short-range repulsion, which requires at least a summation of particle–particle-ladder
diagrams [49]. Second is the tensor force, for example, from pion exchanges, which is highly singular at short distances,
and requires iteration in the triplet channels [54,55]. Third is the presence of low-energy bound states or nearly bound
states in the S-waves. These states imply poles in the scattering T matrix that render the perturbative Born series divergent.
All these non-perturbative features are present in conventional high-precision NN potentials.

The philosophy behind the standard approach to nuclear matter is to attack these features head-on. This attitude was
succinctly stated by Bethe [49]:

‘‘The theory must be such that it can deal with any NN force, including hard or ‘soft’ core, tensor forces, and other
complications. It ought not to be necessary to tailor the NN force for the sake of making the computation of nuclear
matter (or finite nuclei) easier, but the force should be chosen on the basis of NN experiments (and possibly subsidiary
experimental evidence, like the binding energy of 3H).’’

In contrast, the EFT and RG perspective has a completely different underlying philosophy, which stresses that the potential
is not an observable to be fixed from experiment (there is no ‘‘true potential’’), but that an infinite number of potentials are
capable of accurately describing low-energy physics [56]. In order to be predictive and systematic, an organization (‘‘power
counting’’) must be present to permit a truncation of possible terms in the potential. If a complete Hamiltonian is used
(includingmany-body forces), then all observables should be equivalent up to truncation errors. The EFT philosophy implies
using this freedom to choose a convenient and efficient potential for the problems of interest.

The use of energy-independent low-momentum interactions is a direct implementation of these ideas. Varying the
cutoff can be used as a powerful tool to study the underlying physics scales, to evaluate the completeness of approximate
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Fig. 9. Schematic illustration of two types of RG evolution for NN potentials in momentum space: (a) Vlow k running in ⇤ and (b) SRG running in �. At each
⇤i or �i , the matrix elements outside of the corresponding lines are zero, so that high- and low-momentum states are decoupled.

Fig. 10. Two types of RG evolution applied to one of the chiral N3LO NN potentials (550/600 MeV) of Ref. [44] in the 3S1 channel: (a) Vlow k running in ⇤
and (b) SRG running in � (see Fig. 27 for plots in k2, which show the diagonal width of order �2).

‘‘At each scale, we have different degrees of freedom and different dynamics. Physics at a larger scale (largely)
decouples from the physics at a smaller scale. . . . Thus, a theory at a larger scale remembers only finitely many
parameters from the theories at smaller scales, and throws the rest of the details away. More precisely, when we
pass from a smaller scale to a larger scale, we average over irrelevant degrees of freedom. . . . The general aim of the RG
method is to explain how this decoupling takes place and why exactly information is transmitted from scale to scale
through finitely many parameters.’’

The common features of RG for critical phenomena and high-energy scattering are discussed by StevenWeinberg in an essay
in Ref. [64]. He summarizes:

‘‘Themethod in itsmost general form can I think be understood as away to arrange in various theories that the degrees
of freedom that you’re talking about are the relevant degrees of freedom for the problem at hand.’’

This is the heart ofwhat is donewith low-momentum interaction approaches: arrange for the degrees of freedom for nuclear
structure to be the relevant ones. This does not mean that other degrees of freedom cannot be used, but to again quote
Weinberg [64]: ‘‘You can use any degrees of freedom you want, but if you use the wrong ones, you’ll be sorry.’’

There are two major classes of RG transformations used to construct low-momentum interactions, which are illustrated
schematically in Fig. 9. In the Vlow k approach, decoupling is achieved by lowering amomentum cutoff⇤ abovewhichmatrix
elements go to zero. In the SRG approach, decoupling is achieved by lowering a cutoff � (in energy differences �2) using flow
equations, whichmeans evolving toward the diagonal inmomentum space. The technology for carrying out these is outlined
in Section 3, but the effects can be readily seen in the series of contour plots in Fig. 10(a) and (b).

With either approach, lowering the cutoff leaves low-energy observables unchanged by construction, but shifts
contributions between the interaction strengths and the sums over intermediate states in loop integrals. The evolution
of phenomenological or chiral EFT interactions to lower resolution is beneficial, because these shifts can weaken or largely
eliminate sources of non-perturbative behavior, and because lower cutoffs require smaller bases inmany-body calculations,
leading to improved convergence for nuclei. The RG cutoff variation estimates theoretical uncertainties due to higher-
order contributions, to neglected many-body interactions or to an incomplete many-body treatment. When initialized with
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a b

Fig. 54. Low-lying spectra using shell-model effective Hamiltonians derived from Vlow k and Gmatrix interactions starting from the CD-Bonn potential [19]
for (a) 18O and (b) 134Te [66].

a b c

Fig. 55. Ground-state energies of neutron-rich oxygen isotopesmeasured from the energy of 16O. The experimental energies of the bound oxygen isotopes
16�24O are included for comparison. The left panel (a) shows the energies obtained from the phenomenological forces SDPF-M [232,233] and USD-B [234].
The middle panel (b) gives the energies obtained from a Gmatrix and including Fujita–Miyazawa 3N forces due to 1 excitations [231]. The right panel (c)
presents the energies calculated from Vlow k and including chiral EFT 3N interactions at N2LO as well as only due to 1 excitations [231]. The changes due
to 3N forces based on 1 excitations are highlighted by the shaded areas.

calculations of valence shell-model effective interactions. Moreover, there are promising applications of low-momentum
interactions in the Gamow shell model to handle continuum states [228–230].

The neutron drip-line, which is the limit of neutron-rich nuclei, evolves regularly from light to medium-mass nuclei
except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in theories derived from two-
nucleon forces. In Ref. [231], the first microscopic explanation of the oxygen anomaly based on low-momentum 3N forces
was presented. As shown in Fig. 55, the inclusion of 3N interactions at N2LO or due to 1 excitations leads to repulsive
contributions to the interactions among valence neutrons that change the location of the neutron drip-line from 28O to the
experimentally observed 24O. This 3Nmechanism is robust and general, and therefore expected to impact predictions of the
most neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.

6.4. Density functional theory

While most advances in microscopic nuclear structure theory over the last decade have been through expanding the
reach of few-body calculations, infinite nuclear matter is still a key step to heavier nuclei. In particular, the promising
results using low-momentum interactions open the door to ab initio DFT both directly (through orbital-based methods)
and based on expanding about nuclear matter [169]. This is analogous to the application of DFT in quantum chemistry
and condensed matter starting with the uniform electron gas in local-density approximations and adding constrained
derivative corrections. Phenomenological energy functionals (such as Skyrme) for nuclei have impressive successes but

Part IV: Three-Nucleon Forces to Nuclei 
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system. These studies provide confirmation of the im-
portant role of the 2!-exchange potential in nucleon-
nucleon scattering observables !see, however, Entem
and Machleidt "2003b# for a criticism$. For a similar
work utilizing the distorted-wave methods see Birse and
McGovern "2004# and Birse "2007#.

The first nonvanishing contributions to the 3NF also
show up at N2LO and arise from tree diagrams shown in
Fig. 13 which involve a single insertion of the subleading
vertices L"1# in Eq. "2.17# and

LNNN
"1# = −

E
2

"N̄N#"N̄!N# · "N̄!N# , "2.21#

where E is a low-energy constant. The corresponding
3NF expression reads

V3N
"3# =

gA
2

8F!
4

"! 1 · q!1"! 3 · q!3

!q1
2 + M!

2 $!q3
2 + M!

2 $
!!1 · !3"− 4c1M!

2

+ 2c3q!1 · q!3# + c4!1 # !3 · !2q!1 # q!3 · "! 2$

−
gAD
8F!

2
"! 3 · q!3

q3
2 + M!

2 !1 · !3"! 1 · q!3 +
1
2

E!2 · !3, "2.22#

where the subscripts refer to the nucleon labels and q! i
=p! i!−p! i, with p! i! and p! i the final and initial momenta of
the nucleon i. The expressions in Eq. "2.22# correspond
to a particular choice of nucleon labels. The full expres-
sion for the 3NF results by taking into account all pos-
sible permutations of the nucleons "for three nucleons
there are altogether six permutations#, i.e.,

V3N
full = V3N + all permutations. "2.23#

We further emphasize that the expressions for the 3NF
given in Ordonez and van Kolck "1992# and van Kolck
"1994# contain one redundant 1!-exchange and two re-
dundant contact interactions. As shown in Epelbaum,
Nogga, Glöckle, Kamada, Meißner, and Witała "2002#,
only one independent linear combination contributes in
each case if one considers matrix elements between an-
tisymmetrized few-nucleon states !see also Bedaque et
al. "2000# for a related discussion$.

We now turn to N3LO and discuss first the corrections
to the 2NF. As follows from Eq. "2.8#, one has to account
for contributions from tree diagrams with one insertion
from L"4# or two insertions from L"2#, one-loop diagrams
with one insertion from L"2# or two insertions from L"1#

as well as two-loop graphs constructed from the lowest-
order vertices "see Fig. 12#. Apart from renormalization
of various LECs, the 1!-exchange potential receives at
this order !in the scheme based on the counting m
%O"$2 /M!#$ the first relativistic corrections propor-
tional to m−2. These are scheme-dependent and have to
be chosen consistently with the 1/m corrections to the
2!-exchange potential and the relativistic extension of
the dynamical equation !see Friar "1999# for a compre-
hensive discussion.$ The two-pion exchange contribu-
tions at N3LO were worked out in Kaiser "2001a# based

on the one-loop representation of the !N scattering am-
plitude. We refrain from giving here the rather involved
expressions for the subsubleading 2!-exchange potential
and refer to the original work "Kaiser, 2001a# where the
results are given in terms of the corresponding spectral
functions. For certain classes of contributions, the inte-
grals over the two-pion exchange spectrum could be per-
formed analytically and are given in Entem and
Machleidt "2002#. Notice further that the subleading
"i.e., the ones proportional to m−2# relativistic correc-
tions of the 2!-exchange range have also been worked
out in Kaiser "2002a#. In the counting scheme with m
%O"$2 /M!#, these terms, however, would only appear
at next-to-next-to-next-to-next-to-next leading order
"N5LO#. It should also be emphasized that the N3LO
contributions to the 2!-exchange potential were worked
out in the covariant version of chiral EFT !more pre-
cisely, using the formulation in Becher and Leutwyler
"1999#$ by Higa et al. "Higa and Robilotta 2003; Higa et
al., 2004, 2005#.

3!-exchange contributions also appear at this order in
the chiral expansion and have been worked out in Kai-
ser "2000a, 2000b# !see also Pupin and Robilotta "1999#
for a related work$. The resulting potentials turn out to
be rather weak. For example, the strongest contribution
is of the isoscalar spin-spin type "i.e., proportional to
"! 1 ·"! 2# and about ten times weaker than the correspond-
ing 2!-exchange contribution at the same order at rela-
tive distances r%M!

−1. It should, however, be empha-
sized that the subleading 3!-exchange contributions at
next-to-next-to-next-to-next leading order "N4LO# are
larger in size "Kaiser, 2001b# which, again, can be traced
back to the large values of the LECs ci. Finally, the last
type of the 2NF corrections at this order results from
diagrams involving contact interactions. The most gen-
eral polynomial "in momenta# representation of the
short-range part of the potential involves, apart from the
two leading and seven subleading terms given in Eqs.
"2.11# and "2.14#, 15 new contact interactions "in the iso-
spin invariant sector# yielding in total 24 LECs to be
determined from nucleon-nucleon data.

The 3NF contributions at N3LO feed into five differ-
ent topologies "see Fig. 13# and are currently being
worked out. Presently, the expressions for the first three
topologies which do not involve short-range contact in-
teractions are available. The one-loop corrections to the
2!-exchange diagrams can, to a large extent, be ac-
counted for by a finite shift ci→ c̄i=ci+%ci of the LECs ci
"Ishikawa and Robilotta, 2007; Bernard et al., 2008#,

%c1 = − gA
2 M!/64!F!

2 , %c3 = − %c4 = gA
4 M!/16!F!

2 .

"2.24#

Numerically, these corrections are of the order of 20%
of the corresponding LECs and are consistent with the
difference in values of ci between the order-Q2 and Q3
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Chiral EFT: N2LO 3N 
First non-vanishing 3N contributions: Next-to-next-to-leading order ⌫ = 3

!see also Coon and Friar "1986# and Eden and Gari
"1996#$. Consequently, there is no 3NF at NLO in the
chiral expansion.

The contributions at N2LO involve one-loop diagrams
with one insertion of the subleading vertices of dimen-
sion !i=1 "see Fig. 12#. The corresponding Lagrangians
read

L"N
"1# = N̄%c1&#+' + c2"v · u#2 + c3u · u

+ c4!S$,S%$u$u% + c5&#̂+'(N ,

L"NN
"1# =

D
2

"N̄N#"N̄S · uN# , "2.17#

where #̂+)#+− &#+' /2 and D, ci are the LECs. The
1"-exchange loop diagram again only lead to renormal-
ization of the corresponding LECs. Similarly, the contri-
bution from the last diagram which involves the two-
nucleon contact interaction can be absorbed into a
redefinition of the LECs CS,T and Ci in Eqs. "2.11# and
"2.14# "provided one is not interested in the quark mass
dependence of the nuclear force#. Further, the football
diagram yields vanishing contribution due to the anti-

symmetric "with respect to pion isospin quantum num-
bers# nature of the Weinberg-Tomozawa vertex. Thus,
the only nonvanishing contribution at this order results
from the 2"-exchange triangle diagram,

VNN
"3# = −

3gA
2

16"F"
4 !2M"

2 "2c1 − c3# − c3q!2$

&"2M"
2 + q!2#A'̃"q# −

gA
2 c4

32"F"
4 !1 · !2"4M"

2

+ q2#A'̃"q#"(! 1 · q!(! 2 · q! − q!2(! 1 · (! 2# , "2.18#

where the loop function A'̃"q# is given by

A'̃"q# = )"'̃ − 2M"#
1

2q
arctan

q"'̃ − 2M"#

q2 + 2'̃M"

. "2.19#

In DR, the expression for A"q# takes the following
simple form:

A"q# ) lim
'̃→*

A'̃"q# =
1

2q
arctan

q
2M"

. "2.20#

Notice that the triangle diagram also generates short-
range contributions which may be absorbed into redefi-
nition of contact interactions. The isoscalar central con-
tribution proportional to the LEC c3 is attractive and
very strong. It is by far the strongest two-pion exchange
contribution and reaches a few tens of MeV "depending
on the choice of regularization# at internucleon distances
of the order +*M"

−1. The origin of the unnaturally
strong subleading 2"-exchange contributions can be
traced back to the "numerically# large values of the
LECs c3,4 and is well understood in terms of resonance
exchange related to ! excitation "Bernard et al., 1997#.
We return to this issue in Sec. II.D where the chiral EFT
formulation with explicit ! degrees of freedom will be
discussed. The central 2"-exchange potential was also
calculated in Robilotta "2001# using the infrared-
regularized version of chiral EFT which enables one to
sum up a certain class of relativistic corrections "Becher
and Leutwyler, 1999#. He found that the results in the
heavy-baryon limit overestimate the ones obtained using
infrared regularization by about 25% !see also Epel-
baum "2006a# for a related discussion$. Last but not
least, the chiral 2"-exchange potential up to N2LO has
been tested in the Nijmegen partial wave analysis
"PWA# of both proton-proton and neutron-proton data
"Rentmeester et al., 1999, 2003# where also an attempt
has been done to determine the values of the LECs c3,4.
As demonstrated in these studies, the representation of
the "strong# long-range interaction based on the combi-
nation of the 1"- and the chiral 2"-exchange potentials
rather than on the pure 1"-exchange potential allows
one to considerably reduce the number of phenomeno-
logical parameters entering the energy-dependent
boundary conditions which are needed to parametrize
the missing short- and medium-range interactions. Also
the extracted values of the LECs c3,4 agree reasonably
well with various determinations in the pion-nucleon

Next−to−leading order

Next−to−next−to−leading order

Next−to−next−to−next−to−leading order

FIG. 13. "Color online# Chiral expansion of the three-nucleon
force up to N3LO. Diagrams in the first line "NLO# yield van-
ishing contributions to the 3NF if one uses energy-independent
formulations as explained in the text. The five topologies at
N3LO involve the two-pion exchange, one-pion-two-pion-
exchange, ring, contact-one-pion exchange, and contact-two-
pion-exchange diagrams in order. Shaded blobs represent the
corresponding amplitudes. For remaining notation see Fig. 12.
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Chiral EFT: N2LO 3N 
First non-vanishing 3N contributions: Next-to-next-to-leading order ⌫ = 3

!see also Coon and Friar "1986# and Eden and Gari
"1996#$. Consequently, there is no 3NF at NLO in the
chiral expansion.

The contributions at N2LO involve one-loop diagrams
with one insertion of the subleading vertices of dimen-
sion !i=1 "see Fig. 12#. The corresponding Lagrangians
read

L"N
"1# = N̄%c1&#+' + c2"v · u#2 + c3u · u

+ c4!S$,S%$u$u% + c5&#̂+'(N ,
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2

"N̄N#"N̄S · uN# , "2.17#

where #̂+)#+− &#+' /2 and D, ci are the LECs. The
1"-exchange loop diagram again only lead to renormal-
ization of the corresponding LECs. Similarly, the contri-
bution from the last diagram which involves the two-
nucleon contact interaction can be absorbed into a
redefinition of the LECs CS,T and Ci in Eqs. "2.11# and
"2.14# "provided one is not interested in the quark mass
dependence of the nuclear force#. Further, the football
diagram yields vanishing contribution due to the anti-

symmetric "with respect to pion isospin quantum num-
bers# nature of the Weinberg-Tomozawa vertex. Thus,
the only nonvanishing contribution at this order results
from the 2"-exchange triangle diagram,
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simple form:
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Notice that the triangle diagram also generates short-
range contributions which may be absorbed into redefi-
nition of contact interactions. The isoscalar central con-
tribution proportional to the LEC c3 is attractive and
very strong. It is by far the strongest two-pion exchange
contribution and reaches a few tens of MeV "depending
on the choice of regularization# at internucleon distances
of the order +*M"

−1. The origin of the unnaturally
strong subleading 2"-exchange contributions can be
traced back to the "numerically# large values of the
LECs c3,4 and is well understood in terms of resonance
exchange related to ! excitation "Bernard et al., 1997#.
We return to this issue in Sec. II.D where the chiral EFT
formulation with explicit ! degrees of freedom will be
discussed. The central 2"-exchange potential was also
calculated in Robilotta "2001# using the infrared-
regularized version of chiral EFT which enables one to
sum up a certain class of relativistic corrections "Becher
and Leutwyler, 1999#. He found that the results in the
heavy-baryon limit overestimate the ones obtained using
infrared regularization by about 25% !see also Epel-
baum "2006a# for a related discussion$. Last but not
least, the chiral 2"-exchange potential up to N2LO has
been tested in the Nijmegen partial wave analysis
"PWA# of both proton-proton and neutron-proton data
"Rentmeester et al., 1999, 2003# where also an attempt
has been done to determine the values of the LECs c3,4.
As demonstrated in these studies, the representation of
the "strong# long-range interaction based on the combi-
nation of the 1"- and the chiral 2"-exchange potentials
rather than on the pure 1"-exchange potential allows
one to considerably reduce the number of phenomeno-
logical parameters entering the energy-dependent
boundary conditions which are needed to parametrize
the missing short- and medium-range interactions. Also
the extracted values of the LECs c3,4 agree reasonably
well with various determinations in the pion-nucleon

Next−to−leading order

Next−to−next−to−leading order

Next−to−next−to−next−to−leading order

FIG. 13. "Color online# Chiral expansion of the three-nucleon
force up to N3LO. Diagrams in the first line "NLO# yield van-
ishing contributions to the 3NF if one uses energy-independent
formulations as explained in the text. The five topologies at
N3LO involve the two-pion exchange, one-pion-two-pion-
exchange, ring, contact-one-pion exchange, and contact-two-
pion-exchange diagrams in order. Shaded blobs represent the
corresponding amplitudes. For remaining notation see Fig. 12.
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Three undetermined πN couplings from NN fit 

system. These studies provide confirmation of the im-
portant role of the 2!-exchange potential in nucleon-
nucleon scattering observables !see, however, Entem
and Machleidt "2003b# for a criticism$. For a similar
work utilizing the distorted-wave methods see Birse and
McGovern "2004# and Birse "2007#.

The first nonvanishing contributions to the 3NF also
show up at N2LO and arise from tree diagrams shown in
Fig. 13 which involve a single insertion of the subleading
vertices L"1# in Eq. "2.17# and

LNNN
"1# = −

E
2

"N̄N#"N̄!N# · "N̄!N# , "2.21#

where E is a low-energy constant. The corresponding
3NF expression reads

V3N
"3# =

gA
2

8F!
4

"! 1 · q!1"! 3 · q!3

!q1
2 + M!

2 $!q3
2 + M!

2 $
!!1 · !3"− 4c1M!

2

+ 2c3q!1 · q!3# + c4!1 # !3 · !2q!1 # q!3 · "! 2$

−
gAD
8F!

2
"! 3 · q!3

q3
2 + M!

2 !1 · !3"! 1 · q!3 +
1
2

E!2 · !3, "2.22#

where the subscripts refer to the nucleon labels and q! i
=p! i!−p! i, with p! i! and p! i the final and initial momenta of
the nucleon i. The expressions in Eq. "2.22# correspond
to a particular choice of nucleon labels. The full expres-
sion for the 3NF results by taking into account all pos-
sible permutations of the nucleons "for three nucleons
there are altogether six permutations#, i.e.,

V3N
full = V3N + all permutations. "2.23#

We further emphasize that the expressions for the 3NF
given in Ordonez and van Kolck "1992# and van Kolck
"1994# contain one redundant 1!-exchange and two re-
dundant contact interactions. As shown in Epelbaum,
Nogga, Glöckle, Kamada, Meißner, and Witała "2002#,
only one independent linear combination contributes in
each case if one considers matrix elements between an-
tisymmetrized few-nucleon states !see also Bedaque et
al. "2000# for a related discussion$.

We now turn to N3LO and discuss first the corrections
to the 2NF. As follows from Eq. "2.8#, one has to account
for contributions from tree diagrams with one insertion
from L"4# or two insertions from L"2#, one-loop diagrams
with one insertion from L"2# or two insertions from L"1#

as well as two-loop graphs constructed from the lowest-
order vertices "see Fig. 12#. Apart from renormalization
of various LECs, the 1!-exchange potential receives at
this order !in the scheme based on the counting m
%O"$2 /M!#$ the first relativistic corrections propor-
tional to m−2. These are scheme-dependent and have to
be chosen consistently with the 1/m corrections to the
2!-exchange potential and the relativistic extension of
the dynamical equation !see Friar "1999# for a compre-
hensive discussion.$ The two-pion exchange contribu-
tions at N3LO were worked out in Kaiser "2001a# based

on the one-loop representation of the !N scattering am-
plitude. We refrain from giving here the rather involved
expressions for the subsubleading 2!-exchange potential
and refer to the original work "Kaiser, 2001a# where the
results are given in terms of the corresponding spectral
functions. For certain classes of contributions, the inte-
grals over the two-pion exchange spectrum could be per-
formed analytically and are given in Entem and
Machleidt "2002#. Notice further that the subleading
"i.e., the ones proportional to m−2# relativistic correc-
tions of the 2!-exchange range have also been worked
out in Kaiser "2002a#. In the counting scheme with m
%O"$2 /M!#, these terms, however, would only appear
at next-to-next-to-next-to-next-to-next leading order
"N5LO#. It should also be emphasized that the N3LO
contributions to the 2!-exchange potential were worked
out in the covariant version of chiral EFT !more pre-
cisely, using the formulation in Becher and Leutwyler
"1999#$ by Higa et al. "Higa and Robilotta 2003; Higa et
al., 2004, 2005#.

3!-exchange contributions also appear at this order in
the chiral expansion and have been worked out in Kai-
ser "2000a, 2000b# !see also Pupin and Robilotta "1999#
for a related work$. The resulting potentials turn out to
be rather weak. For example, the strongest contribution
is of the isoscalar spin-spin type "i.e., proportional to
"! 1 ·"! 2# and about ten times weaker than the correspond-
ing 2!-exchange contribution at the same order at rela-
tive distances r%M!

−1. It should, however, be empha-
sized that the subleading 3!-exchange contributions at
next-to-next-to-next-to-next leading order "N4LO# are
larger in size "Kaiser, 2001b# which, again, can be traced
back to the large values of the LECs ci. Finally, the last
type of the 2NF corrections at this order results from
diagrams involving contact interactions. The most gen-
eral polynomial "in momenta# representation of the
short-range part of the potential involves, apart from the
two leading and seven subleading terms given in Eqs.
"2.11# and "2.14#, 15 new contact interactions "in the iso-
spin invariant sector# yielding in total 24 LECs to be
determined from nucleon-nucleon data.

The 3NF contributions at N3LO feed into five differ-
ent topologies "see Fig. 13# and are currently being
worked out. Presently, the expressions for the first three
topologies which do not involve short-range contact in-
teractions are available. The one-loop corrections to the
2!-exchange diagrams can, to a large extent, be ac-
counted for by a finite shift ci→ c̄i=ci+%ci of the LECs ci
"Ishikawa and Robilotta, 2007; Bernard et al., 2008#,

%c1 = − gA
2 M!/64!F!

2 , %c3 = − %c4 = gA
4 M!/16!F!

2 .

"2.24#

Numerically, these corrections are of the order of 20%
of the corresponding LECs and are consistent with the
difference in values of ci between the order-Q2 and Q3
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Next-to-next-to-next-to-leading order 

Chiral EFT: N3LO 3N 

Good news: no new constants          Bad news: well, there’s all this 

⌫ = 4

!see also Coon and Friar "1986# and Eden and Gari
"1996#$. Consequently, there is no 3NF at NLO in the
chiral expansion.

The contributions at N2LO involve one-loop diagrams
with one insertion of the subleading vertices of dimen-
sion !i=1 "see Fig. 12#. The corresponding Lagrangians
read

L"N
"1# = N̄%c1&#+' + c2"v · u#2 + c3u · u

+ c4!S$,S%$u$u% + c5&#̂+'(N ,

L"NN
"1# =

D
2

"N̄N#"N̄S · uN# , "2.17#

where #̂+)#+− &#+' /2 and D, ci are the LECs. The
1"-exchange loop diagram again only lead to renormal-
ization of the corresponding LECs. Similarly, the contri-
bution from the last diagram which involves the two-
nucleon contact interaction can be absorbed into a
redefinition of the LECs CS,T and Ci in Eqs. "2.11# and
"2.14# "provided one is not interested in the quark mass
dependence of the nuclear force#. Further, the football
diagram yields vanishing contribution due to the anti-

symmetric "with respect to pion isospin quantum num-
bers# nature of the Weinberg-Tomozawa vertex. Thus,
the only nonvanishing contribution at this order results
from the 2"-exchange triangle diagram,

VNN
"3# = −

3gA
2

16"F"
4 !2M"

2 "2c1 − c3# − c3q!2$

&"2M"
2 + q!2#A'̃"q# −

gA
2 c4

32"F"
4 !1 · !2"4M"

2

+ q2#A'̃"q#"(! 1 · q!(! 2 · q! − q!2(! 1 · (! 2# , "2.18#

where the loop function A'̃"q# is given by

A'̃"q# = )"'̃ − 2M"#
1

2q
arctan

q"'̃ − 2M"#

q2 + 2'̃M"

. "2.19#

In DR, the expression for A"q# takes the following
simple form:

A"q# ) lim
'̃→*

A'̃"q# =
1

2q
arctan

q
2M"

. "2.20#

Notice that the triangle diagram also generates short-
range contributions which may be absorbed into redefi-
nition of contact interactions. The isoscalar central con-
tribution proportional to the LEC c3 is attractive and
very strong. It is by far the strongest two-pion exchange
contribution and reaches a few tens of MeV "depending
on the choice of regularization# at internucleon distances
of the order +*M"

−1. The origin of the unnaturally
strong subleading 2"-exchange contributions can be
traced back to the "numerically# large values of the
LECs c3,4 and is well understood in terms of resonance
exchange related to ! excitation "Bernard et al., 1997#.
We return to this issue in Sec. II.D where the chiral EFT
formulation with explicit ! degrees of freedom will be
discussed. The central 2"-exchange potential was also
calculated in Robilotta "2001# using the infrared-
regularized version of chiral EFT which enables one to
sum up a certain class of relativistic corrections "Becher
and Leutwyler, 1999#. He found that the results in the
heavy-baryon limit overestimate the ones obtained using
infrared regularization by about 25% !see also Epel-
baum "2006a# for a related discussion$. Last but not
least, the chiral 2"-exchange potential up to N2LO has
been tested in the Nijmegen partial wave analysis
"PWA# of both proton-proton and neutron-proton data
"Rentmeester et al., 1999, 2003# where also an attempt
has been done to determine the values of the LECs c3,4.
As demonstrated in these studies, the representation of
the "strong# long-range interaction based on the combi-
nation of the 1"- and the chiral 2"-exchange potentials
rather than on the pure 1"-exchange potential allows
one to considerably reduce the number of phenomeno-
logical parameters entering the energy-dependent
boundary conditions which are needed to parametrize
the missing short- and medium-range interactions. Also
the extracted values of the LECs c3,4 agree reasonably
well with various determinations in the pion-nucleon

Next−to−leading order

Next−to−next−to−leading order

Next−to−next−to−next−to−leading order

FIG. 13. "Color online# Chiral expansion of the three-nucleon
force up to N3LO. Diagrams in the first line "NLO# yield van-
ishing contributions to the 3NF if one uses energy-independent
formulations as explained in the text. The five topologies at
N3LO involve the two-pion exchange, one-pion-two-pion-
exchange, ring, contact-one-pion exchange, and contact-two-
pion-exchange diagrams in order. Shaded blobs represent the
corresponding amplitudes. For remaining notation see Fig. 12.
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Aside: Effects of Adding Explicit Deltas 

Reshuffles effects to different chiral orders 
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SRG Evolution in HO Basis 
Most common to SRG evolve 3N in HO basis: 

 
 
 
 
 
 
 
 
1) SRG-evolve both NN and 3N: NN+3N-full 
 

2) NN Vlowk, refit 3N: NN+3N-fit 

RG flow BD Perturbativeness 3NF A=3,4 Numerical

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space
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SRG Evolution in HO Basis 
Most common to SRG evolve 3N in HO basis: 

 
 
 
 
 
 
 
 
1) SRG-evolve both NN and 3N: NN+3N-full 
 

2) NN Vlowk, refit 3N: NN+3N-fit 

RG flow BD Perturbativeness 3NF A=3,4 Numerical

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space
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SRG Evolution in HO Basis 
Most common to SRG evolve 3N in HO basis: 

 
 
 
 
 
 
 
 
1) SRG-evolve both NN and 3N: NN+3N-full 
 

2) NN Vlowk, refit 3N: NN+3N-fit 

RG flow BD Perturbativeness 3NF A=3,4 Numerical

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]SRG Evolution in Three-Body Space
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Induced 3N Forces 
Effect of including 3N-ind? Exactly initial          up to neglected 4N-ind 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
NN-only clear cutoff dependencs 
 

3N-ind: dramatic reduction in cutoff dependence, no agreement with experiment 
 
 

 

RG flow BD Perturbativeness 3NF A=3,4 Numerical

3D SRG evolution with Trel in a Jacobi HO basis
Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]

Here: use anti-symmetric Jacobi HO basis from NCSM
directly obtain SRG matrix elements in HO basis
separate 3-body evolution not needed

Compare 2-body only to full 2 + 3-body evolution:
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Induced 3N Forces 
Effect of including 3N-ind? Exactly initial          up to neglected 4N-ind 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
NN-only clear cutoff dependencs 
 

3N-ind: dramatic reduction in cutoff dependence, no agreement with experiment 
 

NN+3N-full retains cutoff independence, reproduces experiment! 
 

 

RG flow BD Perturbativeness 3NF A=3,4 Numerical

3D SRG evolution with Trel in a Jacobi HO basis
Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]

Here: use anti-symmetric Jacobi HO basis from NCSM
directly obtain SRG matrix elements in HO basis
separate 3-body evolution not needed

Compare 2-body only to full 2 + 3-body evolution:
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RG flow BD Perturbativeness 3NF A=3,4 Numerical

3D SRG evolution with Trel in a Jacobi HO basis
Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]

Here: use anti-symmetric Jacobi HO basis from NCSM
directly obtain SRG matrix elements in HO basis
separate 3-body evolution not needed

Compare 2-body only to full 2 + 3-body evolution:
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Benefits of Lower Cutoffs 
Use cutoff dependence to assess missing physics: return to Tjon line 
 

Varying cutoff moves along line  
 

Still never reaches experiment 
 
Tool, not a parameter! 
 
 

3

1) Tells you if you’re missing something

2) Tells you how big it is



Benefits of Lower Cutoffs 
Use cutoff dependence to assess missing physics: return to Tjon line 
 

Varying cutoff moves along line  
 

Still never reaches experiment 
 
Tool, not a parameter! 
 

Including 3N reaches expt. 
 
Why not perfect fit? 
 

3

1) Tells you if you’re missing something

2) Tells you how big it is

SRG Overview Methods Lattice 3NF Perturbativeness Numerical

Tjon line revisited
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Cutoff Variation with 3N Forces 

Use cutoff variation to assess missing physics in few body systems 
 

Radii of triton and alpha particle calculated from NN+3N forces   

Minimal cutoff variation 

122 S.K. Bogner et al. / Progress in Particle and Nuclear Physics 65 (2010) 94–147

Fig. 34. 3H and 4He radii are approximately cutoff independent with low-momentum NN and 3N interactions [73,133].

can be applied directly in the three-particle space. The right side involves only the Hamiltonian and the generator Gs, which
can be evaluated in a basis without solving bound state or scattering equations. A potential issue is the role of spectator
nucleons; we consider two solutions: first a decoupling of the 3N part inmomentum–space representation and then a direct
solution in a harmonic-oscillator basis. In both cases, we take Gs = Trel and return at the end to other choices.

To show the basic idea in momentum space, we adopt a notation in which V12 means the two-body interaction between
particles 1 and 2, while V123 is the irreducible three-body potential. We start with the Hamiltonian including up to three-
body interactions (keeping in mind that higher-body interactions will be induced as we evolve in s but will not contribute
to three-body systems):

Hs = Trel + V12 + V13 + V23 + V123 ⌘ Trel + Vs. (39)

(Note: all the potentials depend implicitly on s.) The relative kinetic energy operator Trel can be decomposed in three ways:

Trel = T12 + T3 = T13 + T2 = T23 + T1, (40)

and Ti commutes with Vjk,

[T3, V12] = [T2, V13] = [T1, V23] = 0, (41)

so the commutators of Trel with Vjk become [Trel, V12] = [T12, V12] and similarly for V13 and V23.
Because we define Trel to be independent of s, the SRG flow equation, (38), for the three-body Hamiltonian Hs simplifies

to
dVs

ds
= dV12

ds
+ dV13

ds
+ dV23

ds
+ dV123

ds
= [[Trel, Vs],Hs], (42)

with Vs defined by Eq. (39). The corresponding equations for each of the two-body potentials (which are completely
determined by their evolved matrix elements in the two-body systems) are

dV12

ds
= [[T12, V12], (T12 + V12)], (43)

and similarly for V13 and V23. After expanding Eq. (42) using Eq. (39) and the different decompositions of Trel, it is
straightforward to show that the derivatives of two-body potentials on the left side cancel precisely with terms on the
right side, leaving

dV123

ds
= [[T12, V12], (T3 + V13 + V23 + V123)] + [[T13, V13], (T2 + V12 + V23 + V123)]

+ [[T23, V23], (T1 + V12 + V13 + V123)] + [[Trel, V123],Hs]. (44)

The importance of these cancellations is that they eliminate the ‘‘dangerous’’ delta functions, which make setting up the
integral equations for the three-body system problematic [135]. We emphasize that the s-dependence of the two-body
potentials on the right side of Eq. (44) is completely determined by solving the two-body problem in Eq. (22). This is in
contrast to RG methods that run a cutoff on the total energy of the basis states (as in the Bloch–Horowitz or Lee–Suzuki
approaches). Such methods generate ‘‘multi-valued’’ two-body interactions, in the sense that the RG evolution of two-body
operators in A > 2 systems depends on the excitation energies of the unlinked spectator particles [109,136].

Further simplifications of Eq. (44) follow from antisymmetrization and applying the Jacobi identity, but this form is
sufficient to make clear that there are no disconnected pieces. The problem is thus reduced to the technical implementation
of a momentum–space decomposition analogous to Eq. (22). A diagrammatic approach is introduced in Refs. [137,138] to
handle this decomposition. Work is in progress on evolving 3N forces in momentum space. It has been verified that this
formalism leaves eigenvalues invariant for three-particle systems described by simple model Hamiltonians, such as a two-
level system of bosons [137].

To summarize, because only the Hamiltonian enters the SRG flow equations, there are no difficulties from having to solve
T matrices (bound state plus scattering wave functions) in all three-body (including breakup) channels, as required by the
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Fig. 8. Excitation energies (in MeV) in light nuclei calculated using the NCSM with chiral EFT interactions (NN to N3LO and 3N to N2LO) compared to
experiment [57].
Source: Reprinted with permission from Navratil et al. [57], copyright (2007) by the American Physical Society.

calculations, and to estimate truncation errors from omitted higher-order contributions. These variable-cutoff interactions
reveal the resolution or scale dependence of the first two sources of non-perturbative behavior, which are tamed as high
momenta are decoupled. In free space, the third source of non-perturbative behavior remains independent of the cutoff
because the pole positions of weakly and nearly bound states that necessitate fine tuning are physical observables. However,
this fine tuning is eliminated in themedium at sufficiently high density. In short, a repulsive core is not constrained by phase
shifts and is essentially removedby even amoderately low-momentumcutoff (note the⇤dependence in Fig. 3(b)), the short-
range tensor force is tamed by a sufficiently low cutoff, and the weakly and nearly bound states become perturbative as a
result of Pauli blocking. For cutoffs around 2 fm�1, which preserve phase shifts up to 330 MeV laboratory energy, the Born
series in nuclear matter is well converged at second order in the potential, bringing the nuclear and Coulomb many-body
problems closer together [9].

While evolving a soft potential from higher momentum is a new development in nuclear physics [5,58], attempts to use
soft potentials for nuclear matter were made in the mid sixties and early seventies [47,59]. It had long been observed that
a strongly repulsive core is not resolved until eight times nuclear saturation density [49]. Thus, saturation is not driven
by a hard core (unlike liquid 3He). However, these soft potentials were abandoned because they seemed incapable of
quantitatively reproducing nuclear matter properties. Their requiem was given by Bethe [49]:

‘‘Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high
density. In particular, a substantial tensor force is required.’’

From the EFT perspective, a failure to reproduce nuclear matter observables should not be interpreted as showing that the
low-energy potential is wrong, but that it is incomplete. This misconception still persists and has led to the conclusion that
low-momentum NN interactions are ‘‘wrong’’ because they do not give saturation in nuclear matter and finite nuclei are
overbound for lower cutoffs. The missing physics that invalidates this conclusion is many-body forces.

In a low-energy effective theory, many-body forces are inevitable; the relevant question is how large they are. It is
established beyond doubt that 3N forces are required to describe light nuclei [22–24,57,60,61], as shown, for example, in
Fig. 8. For variable-cutoff potentials, three-body (and higher-body) interactions evolve naturally with the resolution scale.

1.3. Renormalization group approaches

A fundamental tenet of renormalization theory is that the relevant details of high-energy physics for calculating low-
energy observables can be captured in the scale-dependent coefficients of operators in a low-energy Hamiltonian [29]. This
principle does not mean that high-energy and low-energy physics is automatically decoupled in every effective theory. In
fact, it implies that we can include as much irrelevant coupling to incorrect high-energy physics as we want by using a
large cutoff, with no consequence to low-energy predictions (assuming we can calculate accurately). But this freedom also
offers the possibility of decoupling, which makes practical calculations more tractable by restricting the necessary degrees
of freedom. This decoupling can be efficiently achieved by evolving nuclear interactions using RG transformations designed
to handle similar problems in relativistic field theories and critical phenomena in condensed matter systems.6

The general purpose of the RG, when dealing with the large range of scales in physical systems was eloquently explained
by David Gross [63]:

6 For an early discussion of decoupling based on Okubo unitary transformations, see Ref. [62].
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Fig. 19. (a) Particle–particle contributions to the energy per nucleon in symmetric nuclear matter as a function of the Fermi momentum kF for the initial
Argonne v18 potential and the RG-evolved Vlow k with⇤ = 2.1 fm�1 [9]. (b) Pair-distribution function g(r) in nuclearmatter for kF = 1.35 fm�1 at different
resolutions, for details see Ref. [10].

Fig. 20. Trajectories of the largest repulsive Weinberg eigenvalues in the (a) 1S0 and (b) 3S1–3D1 channels as a function of energy for Vlow k evolved from
the Argonne v18 potential [12]. The results for selected cutoffs are indicated by the different symbols. The positions of the symbols on each trajectory mark
the eigenvalues for center-of-mass energies Ecm = 0, 25, 66, 100 and 150 MeV, starting from the filled symbol at 0 MeV. The trajectory with stars are
eigenvalues for the N3LO potential of Ref. [20].

By finding the eigenvalues and eigenvectors of the operator (E � H0)
�1V ,

1
E � H0

V |�⌫i = ⌘⌫(E)|�⌫i, (5)

and then acting with T (E) on the eigenvectors,

T (E)|�⌫i =
�
1 + ⌘⌫(E) + ⌘2

⌫(E) + · · ·
�
V |�⌫i, (6)

it follows that non-perturbative behavior at energy E is signaled by one or more eigenvalues with |⌘⌫(E)| > 1 [75]. A
rearrangement of Eq. (5) gives a simple interpretation of the eigenvalue ⌘⌫(E) as an energy-dependent coupling that must
divide V to produce a solution to the Schrödinger equation at energy E. For negative energies, a purely attractive V gives
positive real ⌘⌫(E) values, while a purely repulsive V gives negative eigenvalues. For this reason, we refer to negative
eigenvalues as repulsive and positive ones as attractive, although the eigenvalues become complex for positive E.

Fig. 20 shows the trajectories of the largest repulsive Weinberg eigenvalue in the 1S0 and 3S1–3D1 channels as a function
of (positive) energy for Vlow k interactions with various cutoffs evolved from the Argonne v18 potential. Themagnitude of the
largest repulsive eigenvalue at all energies decreases rapidly as the cutoff is lowered. This reflects the decrease of the short-
range repulsion present in the initial potential. In the 1S0 channel, the trajectory lies completely inside the shaded unit circle

H (⇤) = T + VNN (⇤) + V3N (⇤) + V4N (⇤) + · · ·



Perturbative in Symmetric Nuclear Matter? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now NN+3N-fit remain perturbative and reproduce saturation! 
 

Minor but non-negligible cutoff variation 

H (⇤) = T + VNN (⇤) + V3N (⇤) + V4N (⇤) + · · ·
Advances in nuclear matter theory 

Is nuclear matter perturbative with chiral EFT and RG evolution? 

 

 

 

 

 

 

 

 

 

 
 

exciting: empirical saturation with theoretical uncertainties 

improved 3N treatment see also Holt, Kaiser, Weise (2010) 
 

input to develop a universal energy density functional for all nuclei 

Hebeler, Bogner, Furnstahl, Nogga, AS (2009, 2010) 

empirical 



Normal-ordered 3N: contribution to valence neutron interactions 

3N Forces for Valence-Shell Theories 
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Normal-ordered 3N: microscopic contributions to inputs for CI Hamiltonian 

3N Forces for Valence-Shell Theories 

Effects of residual 3N between 3 valence nucleons? 

Hagen, Papenbrock et al. (2007) 

Coupled-Cluster theory with 3N: 
  benchmark of 4He 

0- 1- and 2-body of 3NF dominate   
  Residual 3N can be neglected  
Work on 16O in progress 

Approximated residual 3N by summing over valence nucleon 
   – Nucleus-dependent: effect small, not negligible by 24O 

Effects of residual 3N between 3 valence nucleons? 
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Oxygen Anomaly 
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3N repulsion amplified with N: crucial for neutron-rich nuclei 

Probe limits of nuclear existence with 3N forces 

In Fig. 2, we show the single-particle energies (SPEs) of
the neutron d5=2, s1=2 and d3=2 orbitals at subshell closures
N ¼ 8, 14, 16, and 20. The evolution of the SPEs is due to
interactions as neutrons are added. For the SPEs based on
NN forces in Fig. 2(a), the d3=2 orbital decreases rapidly as
neutrons occupy the d5=2 orbital, and remains well bound
from N ¼ 14 on. This leads to bound oxygen isotopes out
to N ¼ 20 and puts the neutron drip line incorrectly at 28O.
This result appears to depend only weakly on the renor-
malization method or the NN interaction used. We dem-
onstrate this by showing SPEs calculated in the G matrix
formalism [10], which sums particle-particle ladders, and
based on low-momentum interactions Vlow k [11] obtained
from chiral NN interactions at next-to-next-to-next-to-
leading order (N3LO) [12] using the renormalization
group. Both calculations include core polarization effects
perturbatively [including diagram Fig. 3(d) with the !
replaced by a nucleon and all other second-order diagrams]
and start from empirical SPEs [13] in 17O. The empirical
SPEs contain effects from the core and its excitations,
including effects due to 3N forces.

We next show in Fig. 2(b) the SPEs obtained from the
phenomenological forces SDPF-M [13] and USD-B [14]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2(a): As neutrons occupy the d5=2 orbital, with
N evolving from 8 to 14, the d3=2 orbital remains almost at
the same energy and is not well bound out to N ¼ 20. The
dominant differences between Figs. 2(a) and 2(b) can be
traced to the two-body monopole components, which de-
termine the average interaction between two orbitals. The
monopole components of a general two-body interaction V
are given by an angular average over all possible orienta-
tions of the two nucleons in orbitals lj and l0j0 [15],

Vmono
j;j0 ¼

X

m;m0
hjmj0m0jVjjmj0m0i=

X

m;m0
1; (1)

where the sum over magnetic quantum numbers m and m0

can be restricted by antisymmetry (see [16,17] for details).
The SPE of the orbital j is effectively shifted by Vmono

j;j0

multiplied by the occupation number of the orbital j0. This
leads to the change in the SPE and determines shell struc-
ture and the location of the drip line [16–19].
The comparison of Figs. 2(a) and 2(b) suggests that the

monopole interaction between the d3=2 and d5=2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction on
the d3=2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [20].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repulsive
monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion principle.
Figure 3(a) depicts the leading contribution to NN forces
due to the excitation of a !, induced by the exchange of
pions with another nucleon. Because this is a second-order
perturbation, its contribution to the energy and to the two-
neutron monopole components has to be attractive. This is
part of the attractive d3=2 " d5=2 monopole component
obtained from NN forces.
In nuclei, the process of Fig. 3(a) leads to a change of the

SPE of the j, m orbital due to the excitation of a core
nucleon to a !, as illustrated in Fig. 3(b) where the initial
valence neutron is virtually excited to another j0,m0 orbital.
As discussed, this lowers the energy of the j, m orbital
and thus increases its binding. However, in nuclei this
process is forbidden by the Pauli exclusion principle, if
another neutron occupies the same orbital j0, m0, as shown
in Fig. 3(c). The corresponding contribution must then be
subtracted from the SPE change due to Fig. 3(b). This is
taken into account by the inclusion of the exchange dia-
gram, Fig. 3(d), where the neutrons in the intermediate
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FIG. 2 (color online). Single-particle energies of the neutron
d5=2, s1=2 and d3=2 orbitals measured from the energy of 16O as a
function of neutron number N. (a) SPEs calculated from a G
matrix and from low-momentum interactions Vlow k. (b) SPEs
obtained from the phenomenological forces SDPF-M [13] and
USD-B [14]. (c),(d) SPEs including contributions from 3N
forces due to ! excitations and chiral EFT 3N interactions at
N2LO [25]. The changes due to 3N forces based on ! excitations
are highlighted by the shaded areas.
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In Fig. 2, we show the single-particle energies (SPEs) of
the neutron d5=2, s1=2 and d3=2 orbitals at subshell closures
N ¼ 8, 14, 16, and 20. The evolution of the SPEs is due to
interactions as neutrons are added. For the SPEs based on
NN forces in Fig. 2(a), the d3=2 orbital decreases rapidly as
neutrons occupy the d5=2 orbital, and remains well bound
from N ¼ 14 on. This leads to bound oxygen isotopes out
to N ¼ 20 and puts the neutron drip line incorrectly at 28O.
This result appears to depend only weakly on the renor-
malization method or the NN interaction used. We dem-
onstrate this by showing SPEs calculated in the G matrix
formalism [10], which sums particle-particle ladders, and
based on low-momentum interactions Vlow k [11] obtained
from chiral NN interactions at next-to-next-to-next-to-
leading order (N3LO) [12] using the renormalization
group. Both calculations include core polarization effects
perturbatively [including diagram Fig. 3(d) with the !
replaced by a nucleon and all other second-order diagrams]
and start from empirical SPEs [13] in 17O. The empirical
SPEs contain effects from the core and its excitations,
including effects due to 3N forces.

We next show in Fig. 2(b) the SPEs obtained from the
phenomenological forces SDPF-M [13] and USD-B [14]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2(a): As neutrons occupy the d5=2 orbital, with
N evolving from 8 to 14, the d3=2 orbital remains almost at
the same energy and is not well bound out to N ¼ 20. The
dominant differences between Figs. 2(a) and 2(b) can be
traced to the two-body monopole components, which de-
termine the average interaction between two orbitals. The
monopole components of a general two-body interaction V
are given by an angular average over all possible orienta-
tions of the two nucleons in orbitals lj and l0j0 [15],

Vmono
j;j0 ¼

X

m;m0
hjmj0m0jVjjmj0m0i=

X

m;m0
1; (1)

where the sum over magnetic quantum numbers m and m0

can be restricted by antisymmetry (see [16,17] for details).
The SPE of the orbital j is effectively shifted by Vmono

j;j0

multiplied by the occupation number of the orbital j0. This
leads to the change in the SPE and determines shell struc-
ture and the location of the drip line [16–19].
The comparison of Figs. 2(a) and 2(b) suggests that the

monopole interaction between the d3=2 and d5=2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction on
the d3=2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [20].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repulsive
monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion principle.
Figure 3(a) depicts the leading contribution to NN forces
due to the excitation of a !, induced by the exchange of
pions with another nucleon. Because this is a second-order
perturbation, its contribution to the energy and to the two-
neutron monopole components has to be attractive. This is
part of the attractive d3=2 " d5=2 monopole component
obtained from NN forces.
In nuclei, the process of Fig. 3(a) leads to a change of the

SPE of the j, m orbital due to the excitation of a core
nucleon to a !, as illustrated in Fig. 3(b) where the initial
valence neutron is virtually excited to another j0,m0 orbital.
As discussed, this lowers the energy of the j, m orbital
and thus increases its binding. However, in nuclei this
process is forbidden by the Pauli exclusion principle, if
another neutron occupies the same orbital j0, m0, as shown
in Fig. 3(c). The corresponding contribution must then be
subtracted from the SPE change due to Fig. 3(b). This is
taken into account by the inclusion of the exchange dia-
gram, Fig. 3(d), where the neutrons in the intermediate
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FIG. 2 (color online). Single-particle energies of the neutron
d5=2, s1=2 and d3=2 orbitals measured from the energy of 16O as a
function of neutron number N. (a) SPEs calculated from a G
matrix and from low-momentum interactions Vlow k. (b) SPEs
obtained from the phenomenological forces SDPF-M [13] and
USD-B [14]. (c),(d) SPEs including contributions from 3N
forces due to ! excitations and chiral EFT 3N interactions at
N2LO [25]. The changes due to 3N forces based on ! excitations
are highlighted by the shaded areas.
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state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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(d)  Schematic picture of two-
       valence-neutron interaction
       induced from 3N force

FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from 16O, including experimental values of the bound 16–
24 O. Energies obtained from (a) phenomenological forces SDPF-M [13] and USD-B [14], (b) a Gmatrix and including FM 3N forces
due to ! excitations, and (c) from low-momentum interactions Vlow k and including chiral EFT 3N interactions at N2LO as well as only
due to ! excitations [25]. The changes due to 3N forces based on ! excitations are highlighted by the shaded areas. (d) Schematic
illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the 16O core.

PRL 105, 032501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
16 JULY 2010

032501-3

state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from 16O, including experimental values of the bound 16–
24 O. Energies obtained from (a) phenomenological forces SDPF-M [13] and USD-B [14], (b) a Gmatrix and including FM 3N forces
due to ! excitations, and (c) from low-momentum interactions Vlow k and including chiral EFT 3N interactions at N2LO as well as only
due to ! excitations [25]. The changes due to 3N forces based on ! excitations are highlighted by the shaded areas. (d) Schematic
illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the 16O core.
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In Fig. 2, we show the single-particle energies (SPEs) of
the neutron d5=2, s1=2 and d3=2 orbitals at subshell closures
N ¼ 8, 14, 16, and 20. The evolution of the SPEs is due to
interactions as neutrons are added. For the SPEs based on
NN forces in Fig. 2(a), the d3=2 orbital decreases rapidly as
neutrons occupy the d5=2 orbital, and remains well bound
from N ¼ 14 on. This leads to bound oxygen isotopes out
to N ¼ 20 and puts the neutron drip line incorrectly at 28O.
This result appears to depend only weakly on the renor-
malization method or the NN interaction used. We dem-
onstrate this by showing SPEs calculated in the G matrix
formalism [10], which sums particle-particle ladders, and
based on low-momentum interactions Vlow k [11] obtained
from chiral NN interactions at next-to-next-to-next-to-
leading order (N3LO) [12] using the renormalization
group. Both calculations include core polarization effects
perturbatively [including diagram Fig. 3(d) with the !
replaced by a nucleon and all other second-order diagrams]
and start from empirical SPEs [13] in 17O. The empirical
SPEs contain effects from the core and its excitations,
including effects due to 3N forces.

We next show in Fig. 2(b) the SPEs obtained from the
phenomenological forces SDPF-M [13] and USD-B [14]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2(a): As neutrons occupy the d5=2 orbital, with
N evolving from 8 to 14, the d3=2 orbital remains almost at
the same energy and is not well bound out to N ¼ 20. The
dominant differences between Figs. 2(a) and 2(b) can be
traced to the two-body monopole components, which de-
termine the average interaction between two orbitals. The
monopole components of a general two-body interaction V
are given by an angular average over all possible orienta-
tions of the two nucleons in orbitals lj and l0j0 [15],

Vmono
j;j0 ¼

X

m;m0
hjmj0m0jVjjmj0m0i=

X

m;m0
1; (1)

where the sum over magnetic quantum numbers m and m0

can be restricted by antisymmetry (see [16,17] for details).
The SPE of the orbital j is effectively shifted by Vmono

j;j0

multiplied by the occupation number of the orbital j0. This
leads to the change in the SPE and determines shell struc-
ture and the location of the drip line [16–19].
The comparison of Figs. 2(a) and 2(b) suggests that the

monopole interaction between the d3=2 and d5=2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction on
the d3=2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [20].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repulsive
monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion principle.
Figure 3(a) depicts the leading contribution to NN forces
due to the excitation of a !, induced by the exchange of
pions with another nucleon. Because this is a second-order
perturbation, its contribution to the energy and to the two-
neutron monopole components has to be attractive. This is
part of the attractive d3=2 " d5=2 monopole component
obtained from NN forces.
In nuclei, the process of Fig. 3(a) leads to a change of the

SPE of the j, m orbital due to the excitation of a core
nucleon to a !, as illustrated in Fig. 3(b) where the initial
valence neutron is virtually excited to another j0,m0 orbital.
As discussed, this lowers the energy of the j, m orbital
and thus increases its binding. However, in nuclei this
process is forbidden by the Pauli exclusion principle, if
another neutron occupies the same orbital j0, m0, as shown
in Fig. 3(c). The corresponding contribution must then be
subtracted from the SPE change due to Fig. 3(b). This is
taken into account by the inclusion of the exchange dia-
gram, Fig. 3(d), where the neutrons in the intermediate
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FIG. 2 (color online). Single-particle energies of the neutron
d5=2, s1=2 and d3=2 orbitals measured from the energy of 16O as a
function of neutron number N. (a) SPEs calculated from a G
matrix and from low-momentum interactions Vlow k. (b) SPEs
obtained from the phenomenological forces SDPF-M [13] and
USD-B [14]. (c),(d) SPEs including contributions from 3N
forces due to ! excitations and chiral EFT 3N interactions at
N2LO [25]. The changes due to 3N forces based on ! excitations
are highlighted by the shaded areas.

PRL 105, 032501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
16 JULY 2010

032501-2

In Fig. 2, we show the single-particle energies (SPEs) of
the neutron d5=2, s1=2 and d3=2 orbitals at subshell closures
N ¼ 8, 14, 16, and 20. The evolution of the SPEs is due to
interactions as neutrons are added. For the SPEs based on
NN forces in Fig. 2(a), the d3=2 orbital decreases rapidly as
neutrons occupy the d5=2 orbital, and remains well bound
from N ¼ 14 on. This leads to bound oxygen isotopes out
to N ¼ 20 and puts the neutron drip line incorrectly at 28O.
This result appears to depend only weakly on the renor-
malization method or the NN interaction used. We dem-
onstrate this by showing SPEs calculated in the G matrix
formalism [10], which sums particle-particle ladders, and
based on low-momentum interactions Vlow k [11] obtained
from chiral NN interactions at next-to-next-to-next-to-
leading order (N3LO) [12] using the renormalization
group. Both calculations include core polarization effects
perturbatively [including diagram Fig. 3(d) with the !
replaced by a nucleon and all other second-order diagrams]
and start from empirical SPEs [13] in 17O. The empirical
SPEs contain effects from the core and its excitations,
including effects due to 3N forces.

We next show in Fig. 2(b) the SPEs obtained from the
phenomenological forces SDPF-M [13] and USD-B [14]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2(a): As neutrons occupy the d5=2 orbital, with
N evolving from 8 to 14, the d3=2 orbital remains almost at
the same energy and is not well bound out to N ¼ 20. The
dominant differences between Figs. 2(a) and 2(b) can be
traced to the two-body monopole components, which de-
termine the average interaction between two orbitals. The
monopole components of a general two-body interaction V
are given by an angular average over all possible orienta-
tions of the two nucleons in orbitals lj and l0j0 [15],

Vmono
j;j0 ¼

X

m;m0
hjmj0m0jVjjmj0m0i=

X

m;m0
1; (1)

where the sum over magnetic quantum numbers m and m0

can be restricted by antisymmetry (see [16,17] for details).
The SPE of the orbital j is effectively shifted by Vmono

j;j0

multiplied by the occupation number of the orbital j0. This
leads to the change in the SPE and determines shell struc-
ture and the location of the drip line [16–19].
The comparison of Figs. 2(a) and 2(b) suggests that the

monopole interaction between the d3=2 and d5=2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction on
the d3=2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [20].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repulsive
monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion principle.
Figure 3(a) depicts the leading contribution to NN forces
due to the excitation of a !, induced by the exchange of
pions with another nucleon. Because this is a second-order
perturbation, its contribution to the energy and to the two-
neutron monopole components has to be attractive. This is
part of the attractive d3=2 " d5=2 monopole component
obtained from NN forces.
In nuclei, the process of Fig. 3(a) leads to a change of the

SPE of the j, m orbital due to the excitation of a core
nucleon to a !, as illustrated in Fig. 3(b) where the initial
valence neutron is virtually excited to another j0,m0 orbital.
As discussed, this lowers the energy of the j, m orbital
and thus increases its binding. However, in nuclei this
process is forbidden by the Pauli exclusion principle, if
another neutron occupies the same orbital j0, m0, as shown
in Fig. 3(c). The corresponding contribution must then be
subtracted from the SPE change due to Fig. 3(b). This is
taken into account by the inclusion of the exchange dia-
gram, Fig. 3(d), where the neutrons in the intermediate
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FIG. 2 (color online). Single-particle energies of the neutron
d5=2, s1=2 and d3=2 orbitals measured from the energy of 16O as a
function of neutron number N. (a) SPEs calculated from a G
matrix and from low-momentum interactions Vlow k. (b) SPEs
obtained from the phenomenological forces SDPF-M [13] and
USD-B [14]. (c),(d) SPEs including contributions from 3N
forces due to ! excitations and chiral EFT 3N interactions at
N2LO [25]. The changes due to 3N forces based on ! excitations
are highlighted by the shaded areas.
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Large-space methods with same SRG-evolved NN+3N-ind forces 
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Normal-Ordered Hamiltonian 
Now rewrite exactly the initial Hamiltonian in normal-ordered form 
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Normal-Ordered Hamiltonian 
Now rewrite exactly the initial Hamiltonian in normal-ordered form 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Neglect residual 3N 
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Large-space methods with same SRG-evolved NN+3N-full forces 
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Self-consistent Green’s Function with same SRG-evolved NN+3N forces 
 

 
 
 
 
 
 
 
 
 
Robust mechanism driving dripline behavior 
 

3N repulsion raises d3/2, lessens decrease across shell 
 

Similar to first MBPT NN+3N calculations in oxygen 

Oxygen Dripline Mechanism 

(Fig. 1) is over bound at !130:8ð1Þ MeV but in close
agreement with the !130:5ð1Þ MeV obtained from
IM-SRG [11], giving further confirmation of the accuracy
achieved by different many-body methods. Note that the
energies of 15O and 23O can be obtained in two different
ways, from either neutron addition or removal on neigh-
boring subshell closures. Results in Fig. 2 differ by at most
400 keV, again within the estimated uncertainty of our
many-body truncation scheme. The c.m. correction in
Eq. (10) is crucial to obtain this agreement. For @! ¼
24 MeV and !SRG ¼ 2:0 fm!1, the discrepancy in 15O
(23O) is 1.65 MeV (1.03 MeV) when neglecting the
changes in kinetic energy of the c.m. but it reduces to
only 190 keV (20 keV) when this is accounted for. This
gives us confidence that a proper separation of the center of
mass motion is being reached.

Figure 2 also gives a first remarkable demonstration of
the predictive power of chiral 2N þ 3N interactions:
accounting for the precision of our many-body approach
and dependence on !SRG found in Ref. [28], we expect an
accuracy of at least 5% on binding energies. All calculated
values agree with the experiment within this limit. Note
that the interactions employed were only constrained by
2N and 3H and 4He data.

Figures 3 and 4 collect our results for the oxygen, nitro-
gen and fluorine isotopes calculated with @! ¼ 24 MeV
and !SRG ¼ 2:0 fm!1. The top panel of Fig. 3 shows the
predicted evolution of neutron single particle spectrum
(addition and separation energies) of oxygen isotopes in
the sd shell. Induced 3NFs reproduce the overall trend but
predict a bound d3=2 when the shell is filled. Adding pre-
existing 3NFs—the full Hamiltonian—raises this orbit
above the continuum also for the highest masses. This
gives a first principle confirmation of the repulsive effects
of the two-pion exchange Fujita-Miyazawa interaction
discussed in Ref. [3]. The consequences of this trend are
demonstrated by the calculated ground state energies
shown in the bottom panel and in Fig. 4: the induced
Hamiltonian systematically under binds the whole isotopic
chain and erroneously places the drip line at 28O due to the
lack of repulsion in the d3=2 orbit. The contribution from
full 3NFs increase with the mass number up to 24O, when
the unbound d3=2 orbit starts being filled. Other bound
quasihole states are lowered resulting in additional overall
binding. As a result, the inclusion of NNLO 3NFs consis-
tently brings calculations close to the experiment and
reproduces the observed dripline at 24O [41–43]. Our cal-
culations predict 25O to be particle unbound by 1.54 MeV,
larger than the experimental value of 770 keV [44] but
within the estimated errors. The ground state resonance for
28O is suggested to be unbound by 5.2 MeV with respect to
24O. However, this estimate is likely to be affected by the
presence of the continuum which is important for this
nucleus but neglected in the present work.
The same mechanism affects neighboring isotopic

chains. This is demonstrated in Fig. 4 for the semimagic
odd-even isotopes of nitrogen and fluorine. Induced 3NF
forces consistently under bind these isotopes and even
predict a 27N close in energy to 23N. This is fully cor-
rected by full 3NFs that strongly bind 23N with respect to
27N, in accordance with the experimentally observed drip
line. The repulsive effects of filling the d3=2 is also
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(Fig. 1) is over bound at !130:8ð1Þ MeV but in close
agreement with the !130:5ð1Þ MeV obtained from
IM-SRG [11], giving further confirmation of the accuracy
achieved by different many-body methods. Note that the
energies of 15O and 23O can be obtained in two different
ways, from either neutron addition or removal on neigh-
boring subshell closures. Results in Fig. 2 differ by at most
400 keV, again within the estimated uncertainty of our
many-body truncation scheme. The c.m. correction in
Eq. (10) is crucial to obtain this agreement. For @! ¼
24 MeV and !SRG ¼ 2:0 fm!1, the discrepancy in 15O
(23O) is 1.65 MeV (1.03 MeV) when neglecting the
changes in kinetic energy of the c.m. but it reduces to
only 190 keV (20 keV) when this is accounted for. This
gives us confidence that a proper separation of the center of
mass motion is being reached.

Figure 2 also gives a first remarkable demonstration of
the predictive power of chiral 2N þ 3N interactions:
accounting for the precision of our many-body approach
and dependence on !SRG found in Ref. [28], we expect an
accuracy of at least 5% on binding energies. All calculated
values agree with the experiment within this limit. Note
that the interactions employed were only constrained by
2N and 3H and 4He data.

Figures 3 and 4 collect our results for the oxygen, nitro-
gen and fluorine isotopes calculated with @! ¼ 24 MeV
and !SRG ¼ 2:0 fm!1. The top panel of Fig. 3 shows the
predicted evolution of neutron single particle spectrum
(addition and separation energies) of oxygen isotopes in
the sd shell. Induced 3NFs reproduce the overall trend but
predict a bound d3=2 when the shell is filled. Adding pre-
existing 3NFs—the full Hamiltonian—raises this orbit
above the continuum also for the highest masses. This
gives a first principle confirmation of the repulsive effects
of the two-pion exchange Fujita-Miyazawa interaction
discussed in Ref. [3]. The consequences of this trend are
demonstrated by the calculated ground state energies
shown in the bottom panel and in Fig. 4: the induced
Hamiltonian systematically under binds the whole isotopic
chain and erroneously places the drip line at 28O due to the
lack of repulsion in the d3=2 orbit. The contribution from
full 3NFs increase with the mass number up to 24O, when
the unbound d3=2 orbit starts being filled. Other bound
quasihole states are lowered resulting in additional overall
binding. As a result, the inclusion of NNLO 3NFs consis-
tently brings calculations close to the experiment and
reproduces the observed dripline at 24O [41–43]. Our cal-
culations predict 25O to be particle unbound by 1.54 MeV,
larger than the experimental value of 770 keV [44] but
within the estimated errors. The ground state resonance for
28O is suggested to be unbound by 5.2 MeV with respect to
24O. However, this estimate is likely to be affected by the
presence of the continuum which is important for this
nucleus but neglected in the present work.
The same mechanism affects neighboring isotopic

chains. This is demonstrated in Fig. 4 for the semimagic
odd-even isotopes of nitrogen and fluorine. Induced 3NF
forces consistently under bind these isotopes and even
predict a 27N close in energy to 23N. This is fully cor-
rected by full 3NFs that strongly bind 23N with respect to
27N, in accordance with the experimentally observed drip
line. The repulsive effects of filling the d3=2 is also
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Koltun SR and the poles of propagator (1), compared to experi-
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Recent calculations at N2LO without 3N forces found a remarkable result 
 
 

 
 
 
 
 
 
 
 
 
Oxygen dripline reproduced with NN forces only! 
 

What does this mean about 3N? 
 

Optimized Chiral Forces N2LO NN-Only 

systems. We find that the binding energies of 3H, 3He, and
4He do not uniquely determine cD and cE, and the para-
metric dependence of both LECs is very similar to those
found in previous studies [6,32,33]. Therefore, we choose
cD ¼ "0:2 guided by the triton half life [33] and obtain
cE ¼ "0:36 from optimization to the binding energies.
The resulting point charge radii of 4He are also in good
agreement with experiment; see Table IV.

Performance of NNLOopt for light- and medium-mass

nuclei and neutron matter.—In this Letter, we apply
NNLOopt to 10B, isotopes of oxygen and calcium, and

neutron matter. The considered systems are particularly
interesting because the current NN chiral interactions at
N3LO completely fail to describe key aspects of their
structure.
To study the ground state and first excited state in 10B, we

carry out no-core shell model (configuration interaction)
calculations [34] using the bare NNLOopt in model spaces

of up toNmax ¼ 10 harmonic oscillator (HO) shells (10 @!)
above the unperturbed configuration. These model spaces
are not large enough to provide fully converged results for
the ground state and first excited state of 10B. Still, the
variational upper bounds for the energies are "54:35 MeV
for the 1þ state and "54:32 MeV for the 3þ state. The
energies are very close, in contrast toN3LOEM, which yields
a level spacing of about 1.2 MeV between the J! ¼ 1þ

ground state and the J! ¼ 3þ excited state [6].
Chiral NN interactions at N3LO fail to explain the

neutron drip-line in oxygen isotopes, and 3NFs have
been the key element for understanding the structure of
nuclei around 24O [7,8]. Figure 2 shows the experimental
ground-state energies of oxygen isotopes and compares
the results from coupled-cluster (CC) computations in the
" triples approximation [35–37]. Our CC calculations
employ a Hartree-Fock basis built from Nmax ¼ 15 HO
shells at @! ¼ 20 MeV. Because of the ‘‘softness’’ of
NNLOopt, this model space is sufficiently large to converge

the ground states and excited states of the nuclei

TABLE III. Scattering lengths a and effective ranges r (both in
fm). The superscripts N and C for the proton-proton observables
refer to nuclear forces and Coulomb-plus-nuclear forces, respec-
tively. BD, rD, QD, and PD denote the deuteron binding energy,
radius, quadrupole moment, and D-state probability, respec-
tively. QD and rD are calculated without meson-exchange cur-
rents and relativistic corrections.

N3LOEM NNLOopt Exp. Ref.

aCpp "7:8188 "7:8174 "7:8196ð26Þ [26]
"7:8149ð29Þ [27]

rCpp 2.795 2.755 2.790(14) [26]
2.769(14) [27]

aNpp "17:083 "17:825
rNpp 2.876 2.817
ann "18:900 "18:889 "18:95ð40Þ [28,29]
rnn 2.838 2.797 2.75(11) [30]
anp "23:732 "23:749 "23:740ð20Þ [24]
rnp 2.725 2.684 2.77(5) [24]
BD (MeV) 2.224 575 2.224 582 2.224 575(9) [24]
rD (fm) 1.975 1.967 1.975 35(85) [31]
QD (fm2) 0.275 0.272 0.2859(3) [24]
PD (%) 4.51 4.05
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FIG. 1 (color online). Computed np phase shifts of the opti-
mized NNLO potential of this work (solid, red line), the NNLO
potential of Ref. [3] (dashed, blue line), and the N3LO potential
[4] (green, dotted line) compared with the Nijmegen phase shift
analysis [18] (solid dots) and the VPI/GWU analysis SM99 [43]
(open circles).

TABLE IV. Ground-state energies (inMeV)andpoint proton radii
(in fm) for 3H, 3He, and 4He using the NNLOopt with and without

the NNLO 3NF interaction for cD ¼ "0:20 and cE ¼ "0:36.

Eð3HÞ Eð3HeÞ Eð4HeÞ rpð4HeÞ
NNLO "8:249 "7:501 "27:759 1.43(8)
NNLO+NNN "8:469 "7:722 "28:417 1.43(8)
Experiment "8:482 "7:717 "28:296 1.467(13)
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FIG. 2 (color online). The ground-state energies of oxygen
isotopes obtained in CC with the NNLOopt and N3LOEM inter-

actions compared with experiment. The inset shows SM results.
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Recent calculations at N2LO without 3N forces found a remarkable result 
 
 

 
 
 
 
 
 
 
 
 
Oxygen dripline reproduced with NN forces only! 
 

Power counting dictates 3N forces be included 
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systems. We find that the binding energies of 3H, 3He, and
4He do not uniquely determine cD and cE, and the para-
metric dependence of both LECs is very similar to those
found in previous studies [6,32,33]. Therefore, we choose
cD ¼ "0:2 guided by the triton half life [33] and obtain
cE ¼ "0:36 from optimization to the binding energies.
The resulting point charge radii of 4He are also in good
agreement with experiment; see Table IV.

Performance of NNLOopt for light- and medium-mass

nuclei and neutron matter.—In this Letter, we apply
NNLOopt to 10B, isotopes of oxygen and calcium, and

neutron matter. The considered systems are particularly
interesting because the current NN chiral interactions at
N3LO completely fail to describe key aspects of their
structure.
To study the ground state and first excited state in 10B, we

carry out no-core shell model (configuration interaction)
calculations [34] using the bare NNLOopt in model spaces

of up toNmax ¼ 10 harmonic oscillator (HO) shells (10 @!)
above the unperturbed configuration. These model spaces
are not large enough to provide fully converged results for
the ground state and first excited state of 10B. Still, the
variational upper bounds for the energies are "54:35 MeV
for the 1þ state and "54:32 MeV for the 3þ state. The
energies are very close, in contrast toN3LOEM, which yields
a level spacing of about 1.2 MeV between the J! ¼ 1þ

ground state and the J! ¼ 3þ excited state [6].
Chiral NN interactions at N3LO fail to explain the

neutron drip-line in oxygen isotopes, and 3NFs have
been the key element for understanding the structure of
nuclei around 24O [7,8]. Figure 2 shows the experimental
ground-state energies of oxygen isotopes and compares
the results from coupled-cluster (CC) computations in the
" triples approximation [35–37]. Our CC calculations
employ a Hartree-Fock basis built from Nmax ¼ 15 HO
shells at @! ¼ 20 MeV. Because of the ‘‘softness’’ of
NNLOopt, this model space is sufficiently large to converge

the ground states and excited states of the nuclei

TABLE III. Scattering lengths a and effective ranges r (both in
fm). The superscripts N and C for the proton-proton observables
refer to nuclear forces and Coulomb-plus-nuclear forces, respec-
tively. BD, rD, QD, and PD denote the deuteron binding energy,
radius, quadrupole moment, and D-state probability, respec-
tively. QD and rD are calculated without meson-exchange cur-
rents and relativistic corrections.

N3LOEM NNLOopt Exp. Ref.

aCpp "7:8188 "7:8174 "7:8196ð26Þ [26]
"7:8149ð29Þ [27]

rCpp 2.795 2.755 2.790(14) [26]
2.769(14) [27]

aNpp "17:083 "17:825
rNpp 2.876 2.817
ann "18:900 "18:889 "18:95ð40Þ [28,29]
rnn 2.838 2.797 2.75(11) [30]
anp "23:732 "23:749 "23:740ð20Þ [24]
rnp 2.725 2.684 2.77(5) [24]
BD (MeV) 2.224 575 2.224 582 2.224 575(9) [24]
rD (fm) 1.975 1.967 1.975 35(85) [31]
QD (fm2) 0.275 0.272 0.2859(3) [24]
PD (%) 4.51 4.05
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FIG. 1 (color online). Computed np phase shifts of the opti-
mized NNLO potential of this work (solid, red line), the NNLO
potential of Ref. [3] (dashed, blue line), and the N3LO potential
[4] (green, dotted line) compared with the Nijmegen phase shift
analysis [18] (solid dots) and the VPI/GWU analysis SM99 [43]
(open circles).

TABLE IV. Ground-state energies (inMeV)andpoint proton radii
(in fm) for 3H, 3He, and 4He using the NNLOopt with and without

the NNLO 3NF interaction for cD ¼ "0:20 and cE ¼ "0:36.

Eð3HÞ Eð3HeÞ Eð4HeÞ rpð4HeÞ
NNLO "8:249 "7:501 "27:759 1.43(8)
NNLO+NNN "8:469 "7:722 "28:417 1.43(8)
Experiment "8:482 "7:717 "28:296 1.467(13)
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FIG. 2 (color online). The ground-state energies of oxygen
isotopes obtained in CC with the NNLOopt and N3LOEM inter-

actions compared with experiment. The inset shows SM results.
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Recent calculations at N2LO without 3N forces found a remarkable result 
 
 

 
 
 
 
 
 
 
 
 
Oxygen dripline reproduced with NN forces only 
 

Unnaturally large couplings when 3N fit in 3H(?) – results off the plot! 
 

Lesson: 3N forces unavoidable part of theory – must investigate importance 
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systems. We find that the binding energies of 3H, 3He, and
4He do not uniquely determine cD and cE, and the para-
metric dependence of both LECs is very similar to those
found in previous studies [6,32,33]. Therefore, we choose
cD ¼ "0:2 guided by the triton half life [33] and obtain
cE ¼ "0:36 from optimization to the binding energies.
The resulting point charge radii of 4He are also in good
agreement with experiment; see Table IV.

Performance of NNLOopt for light- and medium-mass

nuclei and neutron matter.—In this Letter, we apply
NNLOopt to 10B, isotopes of oxygen and calcium, and

neutron matter. The considered systems are particularly
interesting because the current NN chiral interactions at
N3LO completely fail to describe key aspects of their
structure.
To study the ground state and first excited state in 10B, we

carry out no-core shell model (configuration interaction)
calculations [34] using the bare NNLOopt in model spaces

of up toNmax ¼ 10 harmonic oscillator (HO) shells (10 @!)
above the unperturbed configuration. These model spaces
are not large enough to provide fully converged results for
the ground state and first excited state of 10B. Still, the
variational upper bounds for the energies are "54:35 MeV
for the 1þ state and "54:32 MeV for the 3þ state. The
energies are very close, in contrast toN3LOEM, which yields
a level spacing of about 1.2 MeV between the J! ¼ 1þ

ground state and the J! ¼ 3þ excited state [6].
Chiral NN interactions at N3LO fail to explain the

neutron drip-line in oxygen isotopes, and 3NFs have
been the key element for understanding the structure of
nuclei around 24O [7,8]. Figure 2 shows the experimental
ground-state energies of oxygen isotopes and compares
the results from coupled-cluster (CC) computations in the
" triples approximation [35–37]. Our CC calculations
employ a Hartree-Fock basis built from Nmax ¼ 15 HO
shells at @! ¼ 20 MeV. Because of the ‘‘softness’’ of
NNLOopt, this model space is sufficiently large to converge

the ground states and excited states of the nuclei

TABLE III. Scattering lengths a and effective ranges r (both in
fm). The superscripts N and C for the proton-proton observables
refer to nuclear forces and Coulomb-plus-nuclear forces, respec-
tively. BD, rD, QD, and PD denote the deuteron binding energy,
radius, quadrupole moment, and D-state probability, respec-
tively. QD and rD are calculated without meson-exchange cur-
rents and relativistic corrections.

N3LOEM NNLOopt Exp. Ref.

aCpp "7:8188 "7:8174 "7:8196ð26Þ [26]
"7:8149ð29Þ [27]

rCpp 2.795 2.755 2.790(14) [26]
2.769(14) [27]

aNpp "17:083 "17:825
rNpp 2.876 2.817
ann "18:900 "18:889 "18:95ð40Þ [28,29]
rnn 2.838 2.797 2.75(11) [30]
anp "23:732 "23:749 "23:740ð20Þ [24]
rnp 2.725 2.684 2.77(5) [24]
BD (MeV) 2.224 575 2.224 582 2.224 575(9) [24]
rD (fm) 1.975 1.967 1.975 35(85) [31]
QD (fm2) 0.275 0.272 0.2859(3) [24]
PD (%) 4.51 4.05
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FIG. 1 (color online). Computed np phase shifts of the opti-
mized NNLO potential of this work (solid, red line), the NNLO
potential of Ref. [3] (dashed, blue line), and the N3LO potential
[4] (green, dotted line) compared with the Nijmegen phase shift
analysis [18] (solid dots) and the VPI/GWU analysis SM99 [43]
(open circles).

TABLE IV. Ground-state energies (inMeV)andpoint proton radii
(in fm) for 3H, 3He, and 4He using the NNLOopt with and without

the NNLO 3NF interaction for cD ¼ "0:20 and cE ¼ "0:36.

Eð3HÞ Eð3HeÞ Eð4HeÞ rpð4HeÞ
NNLO "8:249 "7:501 "27:759 1.43(8)
NNLO+NNN "8:469 "7:722 "28:417 1.43(8)
Experiment "8:482 "7:717 "28:296 1.467(13)
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FIG. 2 (color online). The ground-state energies of oxygen
isotopes obtained in CC with the NNLOopt and N3LOEM inter-

actions compared with experiment. The inset shows SM results.
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Impact on Spectra: 23O 
Neutron-rich oxygen spectra with NN+3N  
 

5/2+, 3/2+ energies reflect 22,24O shell closures 
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Oxygen spectra: Effective interactions from Coupled-Cluster theory 
 
 
 
 
 
 
 
 
 
 
 
MBPT in extended valence space 

 

IM-SRG/CCEI spectra agree within ~300 keV 

Comparison with MBPT/CCEI Oxygen Spectra 
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Physics beyond dripline highly sensitive to 3N and continuum effects 
 

 
 
 
 
 
 
 
 
 
 
 
 
Prediction of low-lying 2+ in 26O (recently measured at RIKEN) 
 

Beyond the Oxygen Dripline 
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24F spectrum: IM-SRG (sd shell), full CC, USDB 
 
 
 
 
 
 
 
 
 
 
 
 
 

New measurements from GANIL 
 

IM-SRG: comparable with phenomenology, good agreement with new data 

Experimental Connection: 24F Spectrum 

Ekström et al., PRL (2014) 
Cáceres et al., arXiv:1501.01166  
Hebeler, JDH, Menéndez, Schwenk, ARNPS (2015) 
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Fluorine spectroscopy: MBPT and IM-SRG (sd shell) from NN+3N forces 
 
 
 
 
 
 
 
 
 
 
 
IM-SRG: competitive with phenomenology, good agreement with data 
 

Preliminary results already for scalar operators: charge radii, E0 transitions 
 

Upcoming: general operators M1, E2, GT, double-beta decay 

Fully Open Shell: Neutron-Rich Fluorine Spectra 

Bogner, Hergert, JDH, Schwenk, in prep. 
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Calcium Isotopes: Magic Numbers 

Phenomenological Forces 
   Large gap at 48Ca 
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N=28: first standard magic 
number not reproduced  
in microscopic NN theories 
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Phenomenological vs. Microscopic 
Compare monopoles from:  
 

Microscopic low-momentum 
   interactions 
 

Phenomenological KB3G, GXPF1    
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Shifts in low-lying orbitals: 
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Dominant effect from   
   one-Δ – as expected 
   from cutoff variation  

Two-body 3N: Monopoles in pf-shell 

3N forces produce clear 
   repulsive shift in monopoles 

First calculations to show missing monopole strength due to neglected 3N 
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No clear dripline; flat behavior past 54Ca – Halos beyond 60Ca? 
 

Calcium Ground State Energies and Dripline 
Signatures of shell evolution from ground-state energies? 

Holt, Otsuka, Schwenk, Suzuki, JPG (2012) 
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Experimental Connection: Mass of 54Ca 
New precision mass measurement of 53,54Ca at ISOLTRAP: multi-reflection ToF 

TITAN Measurement 
Flat trend from 50-52Ca 
Mass 52Ca 1.74 MeV from AME 
 

ISOLTRAP Measurement 

Sharp decrease past 52Ca 

Unambiguous closed-shell 52Ca 

Test predictions of various models 
 

MBPT NN+3N 
Excellent agreement with new data 

Reproduces closed-shell 48,52Ca 

Weak closed sell signature past 54Ca 
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Evidence for a new nuclear ‘magic number’ from the
level structure of 54Ca
D. Steppenbeck1, S. Takeuchi2, N. Aoi3, P. Doornenbal2, M. Matsushita1, H. Wang2, H. Baba2, N. Fukuda2, S. Go1, M. Honma4,
J. Lee2, K. Matsui5, S. Michimasa1, T. Motobayashi2, D. Nishimura6, T. Otsuka1,5, H. Sakurai2,5, Y. Shiga7, P.-A. Söderström2,
T. Sumikama8, H. Suzuki2, R. Taniuchi5, Y. Utsuno9, J. J. Valiente-Dobón10 & K. Yoneda2

Atomic nuclei are finite quantum systems composed of two distinct
types of fermion—protons and neutrons. In a manner similar to
that of electrons orbiting in an atom, protons and neutrons in a
nucleus form shell structures. In the case of stable, naturally occur-
ring nuclei, large energy gaps exist between shells that fill completely
when the proton or neutron number is equal to 2, 8, 20, 28, 50, 82 or
126 (ref. 1). Away from stability, however, these so-called ‘magic
numbers’ are known to evolve in systems with a large imbalance of
protons and neutrons. Although some of the standard shell closures
can disappear, new ones are known to appear2,3. Studies aiming to
identify and understand such behaviour are of major importance in
the field of experimental and theoretical nuclear physics. Here we
report a spectroscopic study of the neutron-rich nucleus 54Ca (a
bound system composed of 20 protons and 34 neutrons) using
proton knockout reactions involving fast radioactive projectiles.
The results highlight the doubly magic nature of 54Ca and provide
direct experimental evidence for the onset of a sizable subshell clos-
ure at neutron number 34 in isotopes far from stability.

The shell structure of the atomic nucleus was first successfully
described more than 60 years ago1. However, the question of how
robust the standard magic numbers are in unstable nuclei with a large
excess of neutrons—often referred to as ‘exotic’ nuclei—has been one
of the main driving forces behind recent nuclear structure studies that
focus on changes in the shell structure, called ‘shell evolution’. A note-
worthy example is the disappearance of the N 5 28 (neutron number
28) standard magic number in 42Si (ref. 4), a nucleus that lies far from
the stable isotopes on the Segrè chart. On the contrary, exotic oxygen
isotopes3 provide evidence for the onset of a new shell closure at
N 5 16, one that is not observed in stable nuclei. In both cases, the
tensor force, a non-central component of the nuclear force, has a key
role in describing the experimental spectra5.

The region of the Segrè chart around exotic calcium isotopes has also
contributed valuable input to the understanding of nuclear shell evolu-
tion over recent years owing to experimental advances. Enhanced
excitation energies of first JP 5 21 states (spin, J; parity, P) and reduced
c-ray transition probabilities, which are good indicators of nuclear shell
gaps, for 52Ca (refs 6, 7), 54Ti (refs 8, 9) and 56Cr (refs 10, 11) provide
substantial evidence for the onset of a sizable energy gap at N 5 32. This
result was recently confirmed by high-precision mass measurements on
neutron-rich Ca isotopes12. In the framework of tensor-force-driven
shell evolution5, the N 5 32 subshell closure is a direct consequence of
the weakening of the attractive nucleon–nucleon interaction between
protons (p) and neutrons (n) in the pf7/2 and nf5/2 single-particle orbitals
(SPOs) as the number of protons in the pf7/2 SPO is reduced and the
magnitude of the pf7/2–nf5/2 energy gap increases (Fig. 1a–c).

A question that has been asked frequently over recent years is
whether or not the onset of another subshell gap occurs in exotic

N 5 34 isotones, which was suggested qualitatively more than a decade
ago13 on the basis of the general properties of nuclear forces. The onset
of an appreciable subshell closure at N 5 34 is illustrated in Fig. 1d,
indicating an energy gap between the np1/2 and nf5/2 SPOs in 54Ca that
is comparable to the separation of the np3/2 and np1/2 spin–orbit part-
ners, which is also implied by recent theoretical results; see, for
example, ref. 14. We stress, however, that no N 5 34 subshell closure
was reported in the experimental investigations of 56Ti (refs 9, 15) or
58Cr (refs 11, 16), and notable doubt on this magic number for Ca
isotopes has been raised17,18. Indeed, as indicated in Fig. 2a, theoretical
predictions of the energy of the first JP 5 21 state for 54Ca vary con-
siderably, ranging from ,1 MeV in some cases to as high as ,4 MeV
in others14–16,19–24, despite exhibiting close agreement for lighter iso-
topes; for example, the predictions of the same theories lie within only
0.4 MeV of the empirical result for 52Ca. Such stark discrepancies at
N 5 34 reflect the need for direct experimental input on the matter.

To address this issue, we report on an experimental study of 54Ca to
clarify the strength of the N 5 34 subshell gap in nuclei farther from
stability. The energies of nuclear excited states were investigated using
proton knockout reactions involving 55Sc and 56Ti projectiles on a Be
target at the Radioactive Isotope Beam Factory, Japan, operated by the
RIKEN Nishina Center and the Center for Nuclear Study, University
of Tokyo. Experimental details are provided in Methods Summary.
Particle identification plots indicating the radioactive species trans-
ported through the BigRIPS separator and ZeroDegree spectrometer25,
which were used to select and tag radioactive beam projectiles and
reaction products, are presented in Fig. 3a and Fig. 3b, respectively.
We emphasize that the intensity of the radioactive beam reported here,
which was critical to the success of the experiment, is unique to the
Radioactive Isotope Beam Factory. Excited-state energies were deduced
using the technique of in-beam c-ray spectroscopy.

The c-rays measured in coincidence with 54Ca projectiles produced
through the one- and two-proton knockout reaction channels are
presented in Fig. 4a. The c-ray energies measured in the laboratory
frame of reference have been corrected for Doppler shifts, and so the
transitions appear at the energies they would in the rest frame of the
nucleus. The most intense c-ray line in the 54Ca spectrum, the peak at
2,043(19) keV (error, 1 s.d.) in Fig. 4a, is assigned as the transition from
the first 21 state (2z

1 ) to the 01 ground state. In addition, two weaker
transitions are located at 1,656(20) and, respectively, 1,184(24) keV.
Figure 4b shows a c-ray spectrum obtained with the condition of a
prompt coincidence (#10 ns) with the 2,043-keV c-ray, indicating
that the weaker transitions were emitted in decay sequences involving
the 2z

1 R 01 ground-state transition. On the basis of the c-ray relative
intensities, the 1,656-keV transition is proposed to depopulate a level
at 3,699(28) keV, as presented in the 54Ca level scheme in the lower-
right section of Fig. 4a. Placement of the 1,184-keV transition in the

1Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo, Tokyo 113-0033, Japan. 2RIKEN Nishina Center, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan. 3Research Center for Nuclear Physics,
University of Osaka, Ibaraki, Osaka 567-0047, Japan. 4Center for Mathematical Sciences, Aizu University, Aizu-Wakamatsu, Fukushima 965-8580, Japan. 5Department of Physics, University of Tokyo,
Hongo, Bunkyo, Tokyo 113-0033, Japan. 6Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan. 7Department of Physics, Rikkyo University, Toshima, Tokyo 171-8501, Japan.
8Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan. 9Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan. 10Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di
Legnaro, Legnaro 35020, Italy.
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Masses of exotic calcium isotopes pin down
nuclear forces
F. Wienholtz1, D. Beck2, K. Blaum3, Ch. Borgmann3, M. Breitenfeldt4, R. B. Cakirli3,5, S. George1, F. Herfurth2, J. D. Holt6,7,
M. Kowalska8, S. Kreim3,8, D. Lunney9, V. Manea9, J. Menéndez6,7, D. Neidherr2, M. Rosenbusch1, L. Schweikhard1,
A. Schwenk7,6, J. Simonis6,7, J. Stanja10, R. N. Wolf1 & K. Zuber10

The properties of exotic nuclei on the verge of existence play a
fundamental part in our understanding of nuclear interactions1.
Exceedingly neutron-rich nuclei become sensitive to new aspects of
nuclear forces2. Calcium, with its doubly magic isotopes 40Ca and
48Ca, is an ideal test for nuclear shell evolution, from the valley of
stability to the limits of existence. With a closed proton shell, the
calcium isotopes mark the frontier for calculations with three-
nucleon forces from chiral effective field theory3–6. Whereas pre-
dictions for the masses of 51Ca and 52Ca have been validated by
direct measurements4, it is an open question as to how nuclear
masses evolve for heavier calcium isotopes. Here we report the mass
determination of the exotic calcium isotopes 53Ca and 54Ca, using
the multi-reflection time-of-flight mass spectrometer7 of ISOLTRAP
at CERN. The measured masses unambiguously establish a promi-
nent shell closure at neutron number N 5 32, in excellent agree-
ment with our theoretical calculations. These results increase our
understanding of neutron-rich matter and pin down the subtle
components of nuclear forces that are at the forefront of theoretical
developments constrained by quantum chromodynamics8.

Exotic nuclei with extreme neutron-to-proton asymmetries exhibit
shell structures generated by unexpected orderings of shell occupa-
tions. Their description poses enormous challenges, because most
theoretical models have been developed for nuclei at the valley of
stability. It is thus an open question how well they can predict new
magic numbers emerging far from stability9–11. This is closely linked to
our understanding of the different components of the strong force
between neutrons and protons, such as the spin–orbit or tensor inter-
actions, which modify the gaps between single-particle orbits12, and of
three-body forces, which are pivotal in calculations of extreme neut-
ron-rich systems based on nuclear forces2,13,14. The resulting magic
numbers, as well as the strength of the corresponding shell closures,
are critical for global predictions of the nuclear landscape15, and thus
for the successful modelling of matter in astrophysical environments.

Three-body forces arise naturally in chiral effective field theory8,
which provides a systematic basis for nuclear forces connected via
its symmetries to the underlying theory of quarks and gluons, namely
quantum chromodynamics. Owing to the consistent description in

effective field theory, there are only two undetermined low-energy
couplings in chiral three-nucleon forces at leading and sub-leading
orders. These are constrained by the properties of light nuclei 3H
and 4He only, so that all heavier elements are predictions in chiral
effective field theory. The present frontier of three-nucleon forces is
located in the calcium isotopes, where the structural evolution is domi-
nated by valence neutrons due to the closed proton shell at atomic
number Z 5 20 (refs 3, 5). These predictions withstood a recent chal-
lenge from direct Penning-trap mass measurements of 51Ca and 52Ca
at TITAN/TRIUMF4, which have established a substantial change
from the previous mass evaluation and leave completely open how
nuclear masses evolve past 52Ca. This region is also very exciting
because of evidence of a new magic neutron number N 5 32 from
nuclear spectroscopy16–18, with a high 21 excitation energy in 52Ca
(refs 19, 20). These results are accompanied by successful theoretical
studies based on phenomenological shell-model interactions21,22,
which are similar for the excitation spectra at N 5 32 but disagree
markedly in their predictions for 54Ca and further away from stability.

Here we present the first mass measurements of the exotic calcium
isotopes 53Ca and 54Ca. These provide key masses for all theoretical
models, and unambiguously establish a strong shell closure, in excel-
lent agreement with the predictions including three-nucleon forces.

The mass of a nucleus provides direct access to the binding energy,
the net result of all interactions between nucleons. Penning traps have
proven to be the method of choice when it comes to high-precision
mass determination of exotic nuclei23,24. The mass m of an ion of
interest with charge q stored in a magnetic field B is determined by
comparing its cyclotron frequency nC 5 qB/(2pm) to that of a well-
known reference ion, nC,Ref. The frequency ratio rICR 5 nC,Ref/nC (ICR,
ion cyclotron resonance) then yields the mass ratio directly and thus
the atomic mass of the isotope.

We have made a critical step towards determining the pivotal calcium
masses by introducing a new method of precision mass spectrometry for
short-lived isotopes. The developments and measurements were per-
formed with ISOLTRAP25, a high-resolution Penning-trap mass
spectrometer at the ISOLDE/CERN facility. This method was used to
confirm and even improve the accuracy of the recent mass measurements

1Ernst-Moritz-Arndt-Universität Greifswald, Institut für Physik, Felix-Hausdorff-Strasse 6, D-17489 Greifswald, Germany. 2GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1,
D-64291 Darmstadt, Germany. 3Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany. 4Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit, Celestijnenlaan
200d – bus 2418, B-3001 Heverlee, Belgium. 5University of Istanbul, Department of Physics, 34134 Istanbul, Turkey. 6Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt,
Germany. 7ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany. 8CERN, Geneva 23, CH-1211 Geneva, Switzerland. 9CSNSM-IN2P3-
CNRS, Université Paris-Sud, 91405 Orsay, France. 10Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Zellescher Weg 19, D-01069 Dresden, Germany.

Reference ion source

ISOLDE ion beam

RFQ cooler and buncher MR-TOF mass spectrometer TOF detector

Towards
Penning traps

Figure 1 | Experimental set-up.
Main components relevant for the
53,54Ca study: incoming ISOLDE ion
beam, reference ion source, radio-
frequency quadrupole (RFQ)
buncher, multi-reflection time-of-
flight (MR-TOF) mass spectrometer
and (removable) time-of-flight ion
detector.
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The Challenge of Microscopic Nuclear Theory 

How will we approach this problem: 
 

QCD à NN (3N) forces à Renormalize à Solve many-body problem à Predictions 

To understand the properties of complex nuclei from elementary interactions  

Low-momentum interactions 

Three-Nucleon Forces 
 

Clear path from symmetries 
of QCD to shell model 
 

Ideas of: 
Effective field theories 

Renormalization group  
Advances in many-body  
Advances in computing 
 

All essential for this progress 
 
Still much to do!! 
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Ab initio valence-shell Hamiltonians 
  Towards full sd- and pf-shells 
  Implement extended valence spaces 
 

Moving beyond stability 
  Include continuum effects 
  Map sd- and pf-shell driplines? 
 
 

 
 

New Directions and Outlook 
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Fundamental symmetries 
   Effective electroweak operators 

   ab initio calculation of  0νββ decay 
   WIMP-nucleus scattering 

Heavier semi-magic chains: MBPT as guide 
 

Ab initio valence-shell Hamiltonians 
  Towards full sd- and pf-shells 
  Implement extended valence spaces 
 

Moving beyond stability 
  Include continuum effects 
  Map sd- and pf-shell driplines? 
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Final Thought 

“Very soft (NN) potentials must be excluded because they do not give saturation; 
they give too much binding and too high density.” 
 - H. Bethe 
 
How might you respond? 
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sd-shell results underbound; improved in extended space sdf7/2  p3/2 
 
 

JDH, Menendez, Schwenk, EPJA (2013) 



Evolution of Shell Structure 

NN+3N pf-shell:  
Trend across: improved binding energies 
Increased gap at 48Ca: enhanced closed-shell features 
 

Include g9/2 orbit, calculated SPEs 
   Different behavior of ESPEs (not observable, model dependent) 
 

   Small gap can give large 2+ energy: due to many-body correlations 

SPE evolution with 3N forces in pf and pfg9/2 spaces: 

JDH, Otsuka, Schwenk, Suzuki JPG (2012) 

Duguet, Hagen, PRC (2012) 
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