To understand the properties of complex nuclei from first principles

Two significant issues:

Interaction

Not well understood Not obtainable from QCD Too "hard" to be useful Multiple energy scales

 $\begin{array}{l} \mbox{Many-body Problem}\\ \mbox{Not `exactly' solvable above}\\ \mbox{$A \sim 20$}\\ \mbox{Here we focus on shell model} \end{array}$

To understand the properties of complex nuclei from first principles

Two significant issues:

Interaction

Not well understood Not obtainable from QCD Too "hard" to be useful Multiple energy scales

 $\begin{array}{l} \textbf{Many-body Problem}\\ \text{Not `exactly' solvable above}\\ A\sim 20\\ \text{Here we focus on shell model} \end{array}$

To understand the properties of complex nuclei from first principles

Two significant issues:

Interaction

Not well understood Not obtainable from QCD Too "hard" to be useful Multiple energy scales

 $\begin{array}{l} \textbf{Many-body Problem}\\ \text{Not `exactly' solvable above}\\ A\sim 20\\ \text{Here we focus on shell model} \end{array}$

How will we approach this problem:

To understand the properties of complex nuclei from first principles

Nucleon-nucleon interaction Some history Anatomy of an NN interaction Construction from QCD? Ideas of Effective Field Theory Chiral EFT for nuclear forces

How will we approach this problem:

The **challen of** Ab Initio Nuclear Theory To understant in the male male male in the male in the second second

Renormalizing NN Interactions Basic ideas of RG Low-momentum interactions Similarity RG interactions Benefits of low cutoffs G-matrix renormalization

How will we approach this problem:

How will we approach this problem:

Three-Nucleon Forces Basic ideas – why needed? 3N from chiral EFT Implementing in shell model Relation to monopoles Predictions/new discoveries Connections beyond structure

How will we approach this problem:

Part I: The Nucleon-Nucleon Interaction

To understand the properties of complex nuclei from first principles

Nucleon-nucleon interaction Some history Anatomy of an NN interaction Construction from QCD? Ideas of Effective Field Theory Chiral EFT for nuclear forces

How will we approach this problem:

Interaction Between Two Nucleons

"In the past quarter century physicists have devoted a huge amount of experimentation and mental labor to this problem – probably more manhours than have been given to any other scientific question in the history of mankind."

–H. Bethe

So let's burn a few more man-hours of mental labor on this!

To start, think to yourself what this should look like, and write it down...

- First field-theoretical model of nucleon interaction proposed by Yukawa 1935
- Postulated nuclear force mediated by (NEW!) particle exchange
- Short range (~1fm) of nuclear force \implies

- First field-theoretical model of nucleon interaction proposed by Yukawa 1935
- Postulated nuclear force mediated by (NEW!) particle exchange
- Short range (~1fm) of nuclear force \implies

New particle must be massive: $r \sim 1/m$; m =? Hint: $\hbar c \approx 197 \,\text{MeV} \cdot \text{fm}$

- First field-theoretical model of nucleon interaction proposed by Yukawa 1935
- Postulated nuclear force mediated by (NEW!) particle exchange
- Short range (~1fm) of nuclear force \implies New particle must be massive: $r \sim 1/m; m = ?$

p

n

$$V(\vec{r}) = -\frac{f_{\pi}^2}{m_{\pi}^2} \left\{ \vec{\sigma}_1 \cdot \vec{\sigma}_2 + C_T \left(1 + \frac{3}{m_{\alpha}r} + \frac{3}{(m_{\alpha}r)^2} \right) S_{12}(r) \right\} \frac{e^{-m_{\pi}r}}{m_{\pi}r}$$

 π^0

n

- First field-theoretical model of nucleon interaction proposed by Yukawa 1935
- Postulated nuclear force mediated by (NEW!) particle exchange
- Short range (~1fm) of nuclear force \implies New particle must be massive: $r \sim 1/m$; m = ?Pion discovered 1947! n $V(\vec{x}) = O \int_{\pi}^{2} \int_{\pi} \vec{x} = \vec{x} + C_{\pi} \left(1 + \frac{3}{4} + \frac{3}{4}\right) S_{\pi} (m) \left(e^{-m_{\pi}}\right)$
 - $V(\vec{r}) = \bigoplus_{m_{\pi}^2} \frac{f_{\pi}^2}{m_{\pi}^2} \left\{ \vec{\sigma}_1 \cdot \vec{\sigma}_2 + C_T \left(1 + \frac{3}{m_{\alpha}r} + \frac{3}{(m_{\alpha}r)^2} \right) S_{12}(r) \right\} \underbrace{\left\{ \frac{e^{-m_{\pi}r}}{m_{\pi}r} \right\}}_{m_{\pi}r}$
- Attractive, "long" range

- First field-theoretical model of nucleon interaction proposed by Yukawa 1935
- Postulated nuclear force mediated by (NEW!) particle exchange
- Short range (~1fm) of nuclear force \implies New particle must be massive: $r \sim 1/m$; m =? • Pion discovered 1947! n $V(\vec{r}) = -\frac{f_{\pi}^2}{m_{\pi}^2} \left\{ \vec{\sigma}_1 \cdot \vec{\sigma}_2 + C_T \left(1 + \frac{3}{m_{\alpha}r} + \frac{3}{(m_{\alpha}r)^2} \right) S_{12}(r) \right\} \frac{e^{-m_{\pi}r}}{m_{\pi}r}$
- Attractive, "long" range, spin dependent

- First field-theoretical model of nucleon interaction proposed by Yukawa 1935
- Postulated nuclear force mediated by (NEW!) particle exchange
- Short range (~1fm) of nuclear force \implies New particle must be massive: $r \sim 1/m$; m = ?י $\pi^{^0}$ • Pion discovered 1947! n n $V(\vec{r}) = -\frac{f_{\pi}^2}{m^2} \left\{ \vec{\sigma}_1 \cdot \vec{\sigma}_2 + C_T \left(1 + \frac{3}{m_{\alpha}r} + \frac{3}{(m_{\alpha}r)^2} \right) S_{12}(r) \right\} \frac{e^{-m_{\pi}r}}{m_{\pi}r}$
- Attractive, "long" range, spin dependent, non-central (tensor) part Depends on spin, isospin, orientation of nucleons
 Does not conserve L², S², but does conserve parity
 Mixes different L states (but only differing by 2 units)

- First field-theoretical model of nucleon interaction proposed by Yukawa 1935
- Postulated nuclear force mediated by (NEW!) particle exchange
- Short range (~1fm) of nuclear force \implies

New particle must be massive: $r \sim 1/m$; m = ?

p

n

$$V(\vec{r}) = -\frac{f_{\pi}^2}{m_{\pi}^2} \left\{ \vec{\sigma}_1 \cdot \vec{\sigma}_2 + C_T \left(1 + \frac{3}{m_{\alpha}r} + \frac{3}{(m_{\alpha}r)^2} \right) S_{12}(r) \right\} \frac{e^{-m_{\pi}r}}{m_{\pi}r}$$

۱ $\pi^{^0}$

n

- Attractive, "long" range, spin dependent, non-central (tensor) part
- Successful in explaining scattering data, deuteron
- One pion is good, therefore more pions are better...
- Advanced to multi-pion theories in 1950's FAILED! Now what??

One-Boson Exchange Potentials

- Heavy mesons discovered in late 1950s formed basis for new theories
- Intermediate range attractive central, spin-orbit

$$\vec{\boldsymbol{\pi}, \boldsymbol{\eta}, \boldsymbol{\rho}, \boldsymbol{\omega}, \boldsymbol{\delta} \boldsymbol{\sigma} } V^{\sigma} = g_{\sigma NN}^{2} \frac{1}{\mathbf{k}^{2} + m_{\sigma}^{2}} \left(-1 + \frac{\mathbf{q}^{2}}{2M_{N}^{2}} - \frac{\mathbf{k}^{2}}{8M_{N}^{2}} - \frac{\vec{L} \cdot \vec{S}}{2M_{N}^{2}} \right)$$
$$\vec{q}_{i} \equiv \vec{p}_{i}' - \vec{p}_{i} \qquad \vec{k}_{i} \equiv \frac{1}{2} \left(\vec{p}_{i}' + \vec{p}_{i} \right)$$

Baryons	Mass (MeV)	Mesons	Mass (MeV)
p, n	938.926	π	138.03
Λ	1116.0	n	548.8
Σ	1197.3	σ	≈ 550.0
Δ	1232.0	ρ	770
Σ*	1385.0	ω	782.6
		δ	983.0
		К	495.8
		K*	895.0

One-Boson Exchange Potentials

- Heavy mesons discovered in late 1950s formed basis for new theories
- Short range; repulsive central force, attractive spin-orbit

ι

t

$$\pi, \eta, \rho \otimes \delta, \sigma$$

$$V^{\omega} = g_{\omega NN}^{2} \frac{1}{\mathbf{k}^{2} + m_{\omega}^{2}} \left(1 - 3 \frac{\vec{L} \cdot \vec{S}}{2M_{N}^{2}}\right)$$

Baryons	Mass (MeV)	Mesons	Mass (MeV)
p, n	938.926	π	138.03
Λ	1116.0	η	548.8
Σ	1197.3	σ	≈ 550.0
Δ	1232.0	ρ	770
Σ*	1385.0	ω	782.6
		δ	983.0
		K	495.8
		K*	895.0

One-Boson Exchange Potentials

- Heavy mesons discovered in late 1950s formed basis for new theories
- Short range; tensor force opposite sign of one-pion exchange

Baryons	Mass (MeV)	Mesons	Mass (MeV)
p, n	938.926	π	138.03
Λ	1116.0	η	548.8
Σ	1197.3	σ	≈ 550.0
Δ	1232.0	ρ	770
Σ*	1385.0	ω	782.6
		δ	983.0
		К	495.8
		К*	895.0

Parameterizing the NN Interaction

Starting from any NN-interaction, first solve:

Lipmann-Schwinger scattering T-matrix equation:

$$T^{\alpha}_{ll'}(k,k';K) = V^{\alpha}_{ll'}(k,k') + \frac{2}{\pi} \sum_{l''} \int_0^\infty q^2 \mathrm{d}q \, V^{\alpha}_{ll''}(k,q) \frac{q}{k^2 - q^2 + i\varepsilon} T^{\alpha}_{l''l'}(q,k';K)$$

where
$$T_{ll'}^{\alpha}(k,k';K) = \langle kK, lL; JST \mid T \mid k'K, l'L; JST \rangle$$

Parameterized in partial waves a - in relative/center of mass frame (K,L) $\tan \delta(k) = -kT(k,k)$

Fully-on-shell *T***-matrix** directly related to experimental data

Constraining NN Scattering Phase Shifts

Phase shift is a function of relative momentum *k*; Figure shows *s*-wave Scattering from an attractive well potential

Scattering from repulsive core: phase shift opposite sign

Parameterizing the NN Interaction

Starting from any NN-interaction, first solve:

Lipmann-Schwinger scattering T-matrix equation:

$$T^{\alpha}_{ll'}(k,k';K) = V^{\alpha}_{ll'}(k,k') + \frac{2}{\pi} \sum_{l''} \int_0^{\infty} q^2 \mathrm{d}q \, V^{\alpha}_{ll''}(k,q) \frac{q}{k^2 - q^2 + i\varepsilon} T^{\alpha}_{l''l'}(q,k';K)$$

where $T_{ll'}^{\alpha}(k,k';K) = \langle kK, lL; JST \mid T \mid k'K, l'L; JST \rangle$

Parameterized in partial waves α – in relative/center of mass frame (K,L)

$$\tan \delta(k) = -kT(k,k)$$

Fully-on-shell *T*-matrix directly related to experimental data

Note intermediate momentum allowed to infinity (but cutoff by regulators) **Coupling of low-to-high momentum in** *V*

Textbook nuclear potentials in coordinate (**r**) space (distance between nucleons) Hard core, intermediate-range 2π , long-range 1π exchange Transform to momentum space via **Fourier Transformation**

Strong high-momentum repulsion, low-momentum attraction

$$V_{l}(k,k') = \frac{2}{\pi} \int_{0}^{\infty} r^{2} \mathrm{d}r \, j_{l}(kr) V(r) j_{l}(k'r)_{\mathbf{k}^{\prime}(\mathrm{fm}^{-1})}$$

0

0

1

2

3

4

5

k (fm⁻¹)

2

3

4

Wait a minute... these potentials can't really go to zero range/infinitely high energies; that would be QCD?

NN Interaction

Meson exchange in principle described in Q1 Low-energy region non-perturbative – treat Directly from QCD Lagrangian, solve numerically n

NN Interaction from QCD?

Meson exchange described in QCD

Low-energy region non-perturbative – treat in the context of Lattice QCD Directly from QCD Lagrangian, solve numerically on discretized space-time

Lattice results give long-range OPE tail, hard core

NN Interaction from

Meson exchange described in QCD

Low-energy region non-perturbative – treat in the context \mathbb{E}_{M} $\mathbb{E}_{$

50

0

-50

Lattice results give long-range OPE tail, hard core Not yet to physical pion mass – work in progress – so we're done, right?

Unique NN Potential?

What does this tell us in our quest for an NN-potential?

OBE Potentials: Summary/Problems

First generation (1960-1990): Paris, Reid, Bonn-A,B,C $\chi^2/dof \approx 2$

High-precision potentials (1990s): Focus on precision ~40 parameters fit NN data

ArgonneV18, Reid93, Nijmegen, CD-Bonn $\chi^2/{
m dof}pprox 1$

NN problem "solved" !!

OBE Potentials: Summary/Problems

First generation (1960-1990): Paris, Reid, Bonn-A,B,C $\chi^2/dof \approx 2$

High-precision potentials (1990s): Focus on precision ~40 parameters fit NN data ArgonneV18, Reid93, Nijmegen, CD-Bonn $\chi^2/dof \approx 1$

NN problem "solved" !!

OBE Potentials: Summary/Problems

First generation (1960-1990): Paris, Reid, Bonn-A,B,C $\chi^2/dof \approx 2$

High-precision potentials (1990s): Focus on precision ~40 parameters fit NN data ArgonneV18, Reid93, Nijmegen, CD-Bonn $\chi^2/dof \approx 1$

NN problem "solved" !!

- 1) Difficult (impossible) to assign theoretical error
- 2) 3N forces (what are those??) not consistent with NN forces
- 3) No clear connection to QCD
- 4) Clear **model dependence**...

Meson-Exchange Potentials and Phase Shifts

Further model dependence: scattering phase shifts of NN potentials

Meson-Exchange Potentials and Phase Shifts

Further model dependence: scattering phase shifts of NN potentials

Meson-Exchange Potentials and Phase Shifts

Further model dependence: scattering phase shifts of NN potentials

Day 2: Effective Field Theories

From QCD to Nuclear Interactions

How do we determine interactions between nucleons?

Physics of Hadrons

Resolution scale and relevant degrees of freedom

High energy probe resolves fine details Need high-energy degrees of freedom

Resolution scale and relevant degrees of freedom

Low-energy probe can't resolve such details

Don't need high-energy degrees of freedom – replace with something simpler

Resolution scale and relevant degrees of freedom

Low-energy probe can't resolve such details

Don't need high-energy degrees of freedom – replace with something simpler **Use more convenient dofs**, but **preserve low-energy observables!**

Assume underlying theory with cutoff Λ_{∞}

$$V = V_{\rm L} + V_{\rm S}$$

Known **long-distance physics** (like 1π exchange) with some scale M_I

M_s

Assume underlying theory with cutoff Λ_∞

$$V = V_{\rm L} + V_{\rm S}$$

Known long-distanceShort-distance physicsphysics (like 1π exchange)(ρ, ω exchange) withwith some scale M_L some scale M_S

And we want a low-energy effective theory for physics up to some

 $M_{\rm L} < \Lambda < M_{\rm S}$

Assume underlying theory with cutoff Λ_∞

 $V = V_{\rm L} + V_{\rm S}$

Known long-distanceShort-distance physicsphysics (like 1π exchange)(ρ, ω exchange) withwith some scale M_L some scale M_S

And we want a low-energy effective theory for physics up to some

 $M_{\rm L} < \Lambda < M_{\rm S}$

Integrate out states above Λ using **Renormalization Group (RG)**

Assume underlying theory with cutoff Λ_∞

$$V = V_{\rm L} + V_{\rm S}$$

Known long-distanceShort-distance physicsphysics (like 1π exchange)(ρ, ω exchange) withwith some scale M_L some scale M_S

And we want a **low-energy** *effective* theory for physics up to some

 $M_{\rm L} < \Lambda < M_{\rm S}$

Integrate out states above Λ using Renormalization Group (RG) General form of effective theory: $V_{\text{eff}} = V_{\text{L}} + \delta V_{\text{c.t.}}(\Lambda)$ where $\delta V_{\text{c.t.}}(\Lambda) = C_0(\Lambda)\delta^3(\mathbf{r}) + C_2(\Lambda)\nabla^2\delta^3(\mathbf{r}) + \cdots$ Also use RG to change resolution scales within particular EFT

General form of effective theory: $V_{\text{eff}} = V_{\text{L}} + \delta V_{\text{c.t.}}(\Lambda)$

$$\delta V_{\rm c.t.}(\Lambda) = C_0(\Lambda)\delta^3(\mathbf{r}) + C_2(\Lambda)\nabla^2\delta^3(\mathbf{r}) + \cdots$$

Encodes effects of high-E dof on low-energy observables Universal; depends only on symmetries

TWO choices:

Short distance structure of "true theory" captured in several numbers

- Calculate from underlying theory

When short-range physics is unknown or too complicated

- Extract from low-energy data

How do we apply these ideas to nuclear forces?

Chiral Effective Field Theory: Philosophy

"At each scale we have different degrees of freedom and different dynamics. Physics at a larger scale (largely) decouples from physics at a smaller scale... thus a theory at a larger scale remembers only finitely many parameters from the theories at smaller scales, and throws the rest of the details away.

More precisely, when we pass from a smaller scale to a larger scale, we average out irrelevant degrees of freedom... The general aim of the RG method is to explain how this decoupling takes place and why exactly information is transmitted from one scale to another through finitely many parameters." - *David Gross*

"The method in its most general form can.. be understood as a way to arrange in various theories that the degrees of freedom that you're talking about are the relevant degrees of freedom for the problem at hand." - *Steven Weinberg*

5 Steps to constructing such a theory for nuclear forces

Separation of Scales in Nuclear Physics

Step I: Identify appropriate separation of scales, degrees of freedom

Chiral EFT Symmetries

Step II: Identify relevant symmetries of underlying theory (QCD)

- SU(3) color symmetry from QCD (Nucleons and pions are color singlets)
- 2. Chiral symmetry: u and d quarks are almost massless
 - Left and right-handed (massless) quarks do not mix: SU(2)_L x SU(2)_R symmetry
 - Explicit symmetry breaking: u and d quarks have a small mass
 - Spontaneous breaking of chiral symmetry (no parity doublets observed in Nature)
 - SU(2)_L x SU(2)_R symmetry spontaneously broken to SU(2)_V
 - Pions are the Nambu-Goldstone bosons of spontaneously broken symmetry
 - Low-energy pion Lagrangian completely determined

Missing ingredient in multi-pion-exchange theories of 50's!

Construct Lagrangian based on these symmetries

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{\pi\mathrm{N}} + \mathcal{L}_{\mathrm{NN}}$$

Chiral EFT Lagrangian

Step III: Construct Lagrangian based on identified symmetries

Pion-pion Lagrangian: U is SU(2) matrix parameterized by three pion fields

 $\mathcal{L}_{\pi}^{(0)} = \frac{F^2}{\Lambda} \langle \nabla^{\mu} U \nabla_{\mu} U^{\dagger} + \chi_{+} \rangle,$

Leading-order pion-nucleon

 $\mathcal{L}_{\pi N}^{(0)} = \bar{N}(iv \cdot D + \mathring{g}_A u \cdot S)N,$

Leading-order nucleon-nucleon (encodes unknown short-range physics)

 $\mathcal{L}_{NN}^{(0)} = -\frac{1}{2}C_S(\bar{N}N)(\bar{N}N) + 2C_T(\bar{N}SN) \cdot (\bar{N}SN)$

EFT Power Counting

Step IV: Design an organized scheme to distinguish more from less important processes: Power Counting

Organize theory in powers of $\left(\frac{Q}{\Lambda_{\chi}}\right)$ where $Q \sim m_{\pi}$ typical nuclear momenta

Only valid for small expansion parameters, *i.e.*, low momentum

Irreducible time-ordered diagram has order: $\left(\frac{Q}{\Lambda_{\gamma}}\right)^{\nu}$

$$\nu = -4 + 2N + 2L + \sum_{i} V_i \Delta_i$$
 $\Delta_i = d_i + \frac{1}{2}n_i - 2$ "Chiral dimension"

N =Number of nucleons

L =Number of pion loops

 $V_i =$ Number of vertices of type i

- d =Number of derivatives or insertions of m_{π}
- n =Number of nucleon field operators

Chiral EFT: Lowest Order (LO)

Step V: Calculate Feynmann diagrams to the desired accuracy Leading order (LO) $\nu = 0$

Chiral EFT: Lowest Order (LO)

Step V: Calculate Feynmann diagrams to the desired accuracy Leading order (LO) $\nu = 0$

One-pion exchange NN contact interaction

$$V_{NN}^{(0)} = -\frac{g_A^2}{4F_\pi^2} \frac{\vec{\sigma}_1 \cdot \vec{q} \,\vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^2 + M_\pi^2} \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 + \underbrace{C_S}_{S} + \underbrace{C_T}_{T} \vec{\sigma}_1 \cdot \vec{\sigma}_2$$

 $g_{A} = 1.26 \qquad \text{Two low-energy constants (LECs): } C_{S}, C_{T}$ $F_{\pi} = 92.4 \text{ MeV}$ $\vec{q_{i}} \equiv \vec{p_{i}'} - \vec{p_{i}} \qquad \vec{k_{i}} \equiv \frac{1}{2} \left(\vec{p_{i}'} + \vec{p_{i}} \right)$

Chiral EFT

Step V: Calculate Feynmann diagrams to the desired accuracy

Question: What will v = 1 look like?

Answer: No contribution at this order

Chiral EFT: NLO

Step V: Calculate Feynmann diagrams to the desired accuracy

Next-to-leading order (NLO) $\nu=2$

Higher order contact interaction: 7 new LECs, spin-orbit + $(C_1)\vec{j}^2 + (C_2)\vec{k}^2 + (C_3)\vec{j}^2 + (C_4)\vec{k}^2)\vec{\sigma}_1 \cdot \vec{\sigma}_2$

$$+iC_{5}\frac{1}{2}(\vec{\sigma}_{1}+\vec{\sigma}_{2})\cdot\vec{q}\times\vec{k}+C_{6}\vec{q}\cdot\vec{\sigma}_{1}\vec{q}\cdot\vec{\sigma}_{2}$$

 $\cdot \vec{\sigma}_1 \vec{k} \cdot \vec{\sigma}_2$

Chiral EFT: N²LO

Step V: Calculate Feynmann diagrams to the desired accuracy

Next-to-next-to-leading order (N²LO) $\nu = 3$

3 new couplings from $\pi\pi$ NN vertex – not LECs!

$$\begin{split} V_{NN}^{(3)} &= -\frac{3g_A^2}{16\pi F_\pi^4} [2M_\pi^2 2c_1 \cdot c_3 - c_3 \vec{q}^2] \\ &\times (2M_\pi^2 + \vec{q}^2) A^{\tilde{\Lambda}}(q) - \frac{g_A^2 c_4}{32\pi F_\pi^4} \tau_1 \cdot \tau_2 (4M_\pi^2 + q^2) A^{\tilde{\Lambda}}(q) (\vec{\sigma}_1 \cdot \vec{q} \vec{\sigma}_2 \cdot \vec{q} - \vec{q}^2 \vec{\sigma}_1 \cdot \vec{\sigma}_2), \end{split}$$

Chiral EFT: N³LO

Step V: Calculate Feynmann diagrams to the desired accuracy

Next-to-next-to-leading order $\nu = 4$

Higher order contact interaction: 15 new LECs

Regularization of Chiral potentials

Remember: constructing potential involves solving L-S equation All NN potentials cutoff loop momenta at some value > 1GeV Impose exponential regulator, Λ , in Chiral EFT potentials – not in integral

$$T^{\alpha}(k,k') = V^{\alpha}(k,k') + \frac{2}{\pi} \sum_{l''} \int_0^{\infty} q^2 \mathrm{d}q \, V^{\alpha}(k,q) \frac{q}{k^2 - q^2 + i\varepsilon} T^{\alpha}(q,k')$$
$$V(k,k') \to e^{(-k'/\Lambda)^{2n}} V(k,k') e^{(-k/\Lambda)^{2n}}$$

LECs will depend on regularization approach and Λ Infinitely many ways to do this

⇒ Infinitely many chiral potentials!

Indeed, many on the market – some fit well to phase shifts, others not

Chiral EFT: Resulting fits to Phase shifts

Systematic improvement of chiral EFT potentials fit to phase shifts

Cutoff variation – information about missing physics

NLO: dashed band 9 Parameters
N²LO: light band 12 Parameters
N³LO: dark band 27 Parameters

Generally decreasing error and increasing accuracy – not entirely... (exercise)

Chiral Effective Field Theory: Nuclear Forces

Chiral NN Potentials

Two chiral potentials with regulators of 500MeV and 600MeV Still low-to-high momentum coupling: poor convergence, non perturbative, etc.

How do these compare to the potential you drew?

Lesson: Infinitely many phase-shift equivalent potentials

$$E_n = \langle \Psi_n | H | \Psi_n \rangle = \left(\left\langle \Psi_n | U^{\dagger} \right\rangle U H U^{\dagger} \left(U | \Psi_n \right\rangle \right) = \left\langle \tilde{\Psi}_n | \tilde{H} | \tilde{\Psi}_n \right\rangle$$

NN interaction not observableLow-to-high momentum makes life difficult for
low-energy nuclear theorists

How will we approach this problem:

 $QCD \rightarrow NN (3N)$ forces \rightarrow Renormalize \rightarrow "Solve" many-body problem \rightarrow Predictions

Ok, high momentum is a pain. I wonder what would happen to low-energy observables...

Low-to-high momentum makes life difficult for low-energy nuclear theorists, so let's get rid of it

Can we just make a sharp cut and see if it works?

 $V_{\text{filter}}(k',k) \equiv 0; \ k,k' > 2.2 \,\text{MeV}$

Phase shifts involve couplings of low-to-high momenta

$$\langle k|V|k'\rangle + \sum_{q=0}^{\Lambda} \frac{\langle k|V|q\rangle\langle q|V|k'\rangle}{\epsilon_{k'} - \epsilon_q} + \sum_{q=\Lambda}^{\infty} \frac{\langle k|V|q\rangle\langle q|V|k'\rangle}{\epsilon_{k'} - \epsilon_q}$$

Lesson: Must ensure low-energy physics is preserved!

To do properly, from *T*-matrix equation, define **low-momentum** equation:

Lower UV cutoff, but preserve low-energy physics!

To do properly, from *T*-matrix equation, define **low-momentum** equation:

Lower UV cutoff, but preserve low-energy physics!

Leads to **renormalization group equation** for low-momentum interactions

$$\frac{\mathrm{d}}{\mathrm{d}\Lambda} V^{\Lambda}_{\mathrm{low}\,k}(k',k) = \frac{2}{\pi} \frac{V^{\Lambda}_{\mathrm{low}\,k}(k',\Lambda)T^{\Lambda}(\Lambda,k)}{1-(k/\Lambda)^2}$$

Run cutoff to lower values – decouples high-momentum modes

Universal collapse in both diagonal/off-diagonal components, most partial waves

Differences remain in off-diagonal matrix elements. Why?

Differences remain in off-diagonal matrix elements Sensitive to agreement for phase shifts (not all fit perfectly)
Renormalization of NN Potentials

Overall effect of evolving to low momentum Main effect is shift in momentum space

Renormalization of NN Potentials

- Overall effect of evolving to low momentum
- Main effect is shift in momentum space delta function Removes hard core (unconstrained short-range physics)!

Explore improvements in symmetric infinite matter calculations Order by order in **many-body perturbation theory (MBPT)**

a

 ${}^{1}S_{0}$

b

Im ŋ

Explore improvements in symmetric infinite matter calculations Order by order in **many-body perturbation theory (MBPT)**

Significant improvement with low-momentum interactions!

b Im η a ${}^{1}S_{0}$ ${}^{3}S_{1} - {}^{3}D$

Explore improvements in symmetric infinite matter calculations Order by order in **many-body perturbation theory (MBPT)**

Significant improvement with low-momentum interactions!

Explore improvements in symmetric infinite matter calculations Order by order in **many-body perturbation theory (MBPT)**

b

 $^{3}S_{1}-^{3}D$

Im η

Does not saturate – what might be missing? ${}^{1}S_{0}$

Significant improvement with low-momentum interactions!

b

 $^{3}S_{1}-^{3}D$

Im ŋ

Does not saturate – what might be missing? ${}^{1}S_{0}$

2 Types Referror analization Group Complementary method to decouple low from high momenta

Decouples high-momentum

Similarity Renormalization Group Drives Hamiltonian to band-diagonal

Similarity Renormalization Group

Wegner, Glazek/Wilson (1990s)

Apply a continuous unitary transformation, parameterized by s:

$$H = T + V \to H(s) = U(s)HU^{\dagger}(s) \equiv T + V(s)$$

where differentiating (exercise) yields:

$$\frac{\mathrm{d}H(s)}{\mathrm{d}s} = [\eta(s), H(s)] \quad \text{where} \quad \eta(s) \equiv \frac{\mathrm{d}U(s)}{\mathrm{d}s} U^{\dagger}(s)$$

Never explicitly construct unitary transformation Instead **choose generator to obtain desired behavior**:

 $\eta(s) = [G(s), H(s)]$

Many options, e.g.,

 $\eta(s) = [T, H(s)]$ Drives H(s) to band-diagonal form

Drive H to band-diagonal form with kinetic-energy generator:

 $\eta(s) = [T, H(s)]$

With alternate definition of flow parameter:

$$\lambda^2 = \frac{1}{\sqrt{s}}$$

Drive H to band-diagonal form with standard choice:

 $\eta(s) = [T, H(s)]$

With alternate definition of flow parameter: λ

$$\lambda^2 = \frac{1}{\sqrt{s}}$$

Drive H to band-diagonal form with standard choice:

 $\eta(s) = [T, H(s)]$

With alternate definition of flow parameter:

$$\lambda^2 = \frac{1}{\sqrt{s}}$$

Drive H to band-diagonal form with standard choice:

 $\eta(s) = [T, H(s)]$

With alternate definition of flow parameter: λ

$$\lambda^2 = \frac{1}{\sqrt{s}}$$

Drive H to band-diagonal form with standard choice:

 $\eta(s) = [T, H(s)]$

With alternate definition of flow parameter:

$$\lambda^2 = \frac{1}{\sqrt{s}}$$

Other Generator Choices: Block Diagonal

Create block diagonal form like V_{lowk} ?

$$G(s) = H_{\rm BD} = \begin{pmatrix} PH(s)P & 0\\ 0 & QH(s)Q \end{pmatrix}$$

With alternate definition of flow parameter: $\lambda^2 = \frac{1}{\sqrt{s}}$

Argonne
$$V_{18}$$
 ³ S_1

 $\lambda = 10.0 \, \mathrm{fm}^{-1}$

Other Generator Choices: Block Diagonal

Create block diagonal form like V_{lowk} ?

$$G(s) = H_{\rm BD} = \begin{pmatrix} PH(s)P & 0\\ 0 & QH(s)Q \end{pmatrix}$$

With alternate definition of flow parameter: $\lambda^2 = \frac{1}{\sqrt{s}}$

Argonne V_{18} ³S₁

 $\lambda = 5.0 \, \mathrm{fm}^{-1}$

Other Generator Choices: Block Diagonal

Create block diagonal form like V_{lowk} ?

$$G(s) = H_{\rm BD} = \begin{pmatrix} PH(s)P & 0\\ 0 & QH(s)Q \end{pmatrix}$$

With alternate definition of flow parameter: $\lambda^2 = \frac{1}{\sqrt{s}}$

Argonne V_{18} ³S₁

 $\lambda = 2.0 \, \mathrm{fm}^{-1}$

SRG Renormalization of Chiral EFT Potentials

These are all our favorite Chiral EFT NN potentials...

These are all our favorite Chiral EFT NN potentials... **SRG evolved**

Exhibit similar "universal" behavior as low-momentum interactions!

Renormalization of Nuclear Interactions

$$H(\Lambda) = T + V_{\rm NN}(\Lambda) + V_{\rm 3N}(\Lambda) + V_{\rm 4N}(\Lambda) + \cdots$$

Evolve momentum resolution scale of chiral interactions from initial Λ_{χ} Remove coupling to high momenta, low-energy physics unchanged

 $V_{\text{low }k}(\Lambda)$: lower cutoffs advantageous for nuclear structure calculations

Smooth vs. Sharp Cutoffs

$$H\left(\mathbf{\Lambda}\right) = T + V_{\mathrm{NN}}\left(\mathbf{\Lambda}\right) + V_{3\mathrm{N}}\left(\mathbf{\Lambda}\right) + V_{4\mathrm{N}}\left(\mathbf{\Lambda}\right) + \cdots$$

Can have sharp as well as smooth cutoffs

Remove coupling to high momenta, low-energy physics unchanged

Similar but not exact same results – will be differences in calculations

SRG-Evolution of Different Initial Potentials

$$H(\Lambda) = T + V_{\rm NN}(\Lambda) + V_{\rm 3N}(\Lambda) + V_{\rm 4N}(\Lambda) + \cdots$$

SRG evolution of two different chiral EFT potentials

Lots of pretty pictures, but how does it actually help?

Revisit Low-Pass Filter Idea

Ok, high momentum is a pain. I wonder what would happen to low-energy observables...

Low-to-high momentum makes life difficult for low-energy nuclear theorists

What's the difference now?

 $V_{\text{filter}}(k',k) \equiv 0; \ k,k' > 2.2 \,\text{MeV}$

Revisit Low-Pass Filter Idea

Ok, high momentum is a pain. I wonder what would happen to low-energy observables...

Low-to-high momentum makes life difficult for low-energy nuclear theorists

Low-energy observables were preserved – now sharp cut makes sense!

 $V_{\text{filter}}(k',k) \equiv 0; \ k,k' > 2.2 \,\text{MeV}$

Often work in HO basis – does this make a difference there?

Removes coupling from low-to-high harmonic oscillator state TO basis exp Expect to speed convergence in HO basis

Explicitly see why this causes problems later!

Exactly what happens in **no-core shell model calculations** Probably equally helpful in normal shell-model calculations? Come back to this later...

Use cutoff dependence to assess missing physics: return to Tjon line

Varying cutoff moves along line Still never reaches experiment

Lesson:Variation in physical observables with cutoff indicates missing physics

Tool, not a parameter!

Triton binding energy - again clearly improved convergence behavior Clear dependence on cutoff – more than one, look closely... What is the source(s)?

Triton binding energy - again clearly improved convergence behavior Clear dependence on cutoff – more than one, look closely... What is the source(s)?

Triton binding energy - again clearly improved convergence behavior Clear dependence on cutoff – more than one, look closely... What is the source(s)?

Case 1: Price of Low Cutoffs = Induced Forces

Life Lesson: no free lunch – not even at Summer Schools, apparently \otimes Consider Hamiltonian with only two-body forces:

 $H = T + V_{\rm NN}$

And $\eta(s) = [T, H(s)]$

$$\frac{\mathrm{d}H(s)}{\mathrm{d}s} = \left[\eta(s), H(s)\right] = \left[\left[T, T + V(s)\right], T + V(s)\right]$$

Simply expand with creation/annihilation operators:

Case 1: Price of Low Cutoffs = Induced Forces

Life Lesson: no free lunch – not even at Summer Schools, apparently \otimes Consider Hamiltonian with only two-body forces:

 $H = T + V_{\rm NN}$

And $\eta(s) = [T, H(s)]$

$$\frac{\mathrm{d}H(s)}{\mathrm{d}s} = \left[\eta(s), H(s)\right] = \left[\left[T, T + V(s)\right], T + V(s)\right]$$

Simply expand with creation/annihilation operators:

Three-body terms will appear even when initial 3-body forces absent Call these induced 3N forces (3N-ind)

Induced 3N Forces

Effect of including 3N-ind? Exactly initial $V_{\rm NN}$ up to neglected 4N-ind

NN-only clear cutoff dependencs

Induced 3N Forces

Effect of including 3N-ind? Exactly initial $V_{\rm NN}$ up to neglected 4N-ind

NN-only clear cutoff dependencs

3N-induced – dramatic reduction in cutoff dependence! Lesson: SRG cutoff variation a sign of neglected induced forces

Induced 3N Forces

Effect of including 3N-ind? Exactly initial $V_{\rm NN}$ up to neglected 4N-ind

NN-only clear cutoff dependencs

3N-induced – dramatic reduction in cutoff dependence! Lesson: SRG cutoff variation a sign of neglected induced forces Still far from experiment and remaining (minor) cutoff dependence!

Summary

Low-momentum interactions can be constructed from any $\rm V_{NN}$ via RG

Low-to-high momentum coupling not desirable in low-energy nuclear physics Evolve to low-momentum while preserving low-energy physics Universality attained near cutoff of data

Low-momentum cutoffs remove low-to-high harmonic oscillator couplings Cutoff variation assesses missing physics interaction level: tool not a parameter

How will we approach this problem:

 $QCD \rightarrow NN (3N)$ forces \rightarrow Renormalize \rightarrow "Solve" many-body problem \rightarrow Predictions
The Nuclear Many-Body Problem

Nucleus strongly interacting many-body system – how to solve A-body problem? $H\psi_n=E_n\psi_n$

Quasi-exact solutions only in light nuclei (GFMC, NCSM...)

Large scale: controlled approximations to full Schrödinger Equation

 Valence space: diagonalize exactly with reduced number of degrees of freedom

 Medium-mass
 Medium-mass

Large scale

Limited range:

Closed shell ± 1

Even-even

Limited properties: Ground states only Some excited state

Coupled Cluster In-Medium SRG Green's Function

All nuclei near closed-shell cores

All properties: Ground states Excited states EW transitions

Coupled Cluster In-Medium SRG Perturbation Theory

From Momentum Space to HO Basis

To this point interaction matrix elements in momentum space, partial waves $\langle kK, lL|V|k'K, l'L\rangle_{\alpha}$

To go to finite nuclei begin from Hamiltonian

$$H\psi_n = (T+V)\psi_n = E_n\psi_n$$

Assume many particles in the nucleus generate a **mean field** *U*: *U* a one-body potential simple to solve (typically **Harmonic Oscillator**)

$$H = H_0 + H_1; \quad H_0 = T + U; \quad H_1 = V - U$$

So transform from momentum space to Harmonic Oscillator Basis

$$|nl, NL; \alpha\rangle = \int k^2 \mathrm{d}k \, K^2 \mathrm{d}K \, R_{nl} \left(\sqrt{2\alpha k}\right) R_{NL} \left(\sqrt{1/2\alpha K}\right) |kl, KL; \alpha\rangle$$

One more (ugly) transformation from center-of-mass to lab frame: $\rightarrow \langle ab; JT | V | cd; JT \rangle$

Valence-Space Ideas

Begin with degenerate HO levels

2

0S1/2

Physics of V breaks HO degeneracy

Problem: Can't solve Schrodinger equation in full Hilbert space

Valence-Space Ideas

Nuclei understood as many-body system starting from closed shell, add nucleons

Valence-Space Ideas

Nuclei understood as many-body system starting from closed shell, add nucleons Valence-space Hamiltonian derived from nuclear forces:

Single-particle energies Interaction matrix elements

$$H_{\rm v.s.} = \sum_{i} \varepsilon_{i} a_{i}^{\dagger} a_{i} + V_{\rm v.s.}$$

Valence-Space Philosophy

Nuclei understood as many-body system starting from closed shell, add nucleons Valence-space Hamiltonian derived from nuclear forces:

Single-particle energies Interaction matrix elements

0h, 1f, 2p (112) 0g, 1d, 2s (70)

$$H_{\rm eff} = \sum_{i} \varepsilon_{i_{\rm eff}} a_i^{\dagger} a_i + V_{\rm eff}$$

$$H\psi_n = E_n\psi_n \to PH_{\text{eff}}P\psi_i = E_iP\psi_i$$

Effective Hamiltonian: sum excitations outside valence space
 Self-consistent single-particle energies

1) Effective Hamiltonian: sum excitations outside valence space to MBPT(3)

- 1) Effective Hamiltonian: sum excitations outside valence space to MBPT(3)
- 2) Self-consistent single-particle energies
- 3) Harmonic-oscillator basis of 13-15 major shells: converged!

- 1) Effective Hamiltonian: sum excitations outside valence space to MBPT(3)
- 2) Self-consistent single-particle energies
- 3) Harmonic-oscillator basis of 13-15 major shells: converged!

Aside: G-matrix Renormalization

Standard method for softening interaction in nuclear structure for decades:

Infinite summation of ladder diagrams

Need two model spaces:

1) **M** space in which we will want to calculate (excitations allowed in M)

2) Large space \mathbf{Q} in which particle excitations are allowed

To avoid double counting, can't overlap – matrix elements depend on M

Aside: G-matrix Renormalization

Standard method for softening interaction in nuclear structure for decades:

Iterative procedure Dependence on arbitrary starting energy!

G-matrix Renormalization

Standard method for softening interaction in nuclear structure for decades:

G-matrix Renormalization

Results of **G-matrix** renormalization vs. SRG

Removes some diagonal high-momentum components

- Still large low-to-high coupling in both interactions
- No indication of universality
- Clear difference compared with SRG-evolved interactions!

- 1) Effective Hamiltonian: sum excitations outside valence space to MBPT(3)
- 2) Self-consistent single-particle energies
- 3) Harmonic-oscillator basis of 13-15 major shells: converged!

Compare vs G-matrix (no sign of convergence) Clear benefit of low-momentum interactions!

- 1) Effective Hamiltonian: sum excitations outside valence space to MBPT(3)
- 2) Self-consistent single-particle energies
- 3) Harmonic-oscillator basis of 13-15 major shells
- 4) Nuclear forces from chiral EFT
- 5) Requires extended valence spaces

Treat higher orbits nonperturbatively

Limits of Nuclear Existence: Oxygen Anomaly

Where is the nuclear dripline?

Limits defined as last isotope with positive neutron separation energy

- Nucleons "drip" out of nucleus

Neutron dripline experimentally established to Z=8 (Oxygen)

Limits of Nuclear Existence: Oxygen Anomaly

Where is the nuclear dripline?

Limits defined as last isotope with positive neutron separation energy

- Nucleons "drip" out of nucleus

Neutron dripline experimentally established to Z=8 (Oxygen)

Limits of Nuclear Existence: Oxygen Anomaly

Where is the nuclear dripline?

Limits defined as last isotope with positive neutron separation energy

- Nucleons "drip" out of nucleus

Neutron dripline experimentally established to Z=8 (Oxygen)

Microscopic picture: **NN-forces too attractive** Incorrect prediction of dripline

Monopole Part of Valence-Space Interactions

Microscopic MBPT – effective interaction in chosen model space Works near closed shells: deteriorates beyond this Deficiencies improved adjusting particular two-body matrix elements

Monopoles: Angular average of interaction

$$V_{ab}^{T} = \frac{\sum_{J} (2J+1) V_{abab}^{JT}}{\sum_{J} (2J+1)}$$

Determines interaction of orbit *a* with *b*: evolution of orbital energies

$$\Delta \varepsilon_a = V_{ab} n_b$$

Microscopic low-momentum interactions Phenomenological USD interactions Clear shifts in low-lying orbitals: -T=1 repulsive shift

Physics in Oxygen Isotopes

Calculate evolution of *sd*-orbital energies from interactions

Physics in Oxygen Isotopes

Calculate evolution of *sd*-orbital energies from interactions

- 1) Effective Hamiltonian: sum excitations outside valence space to MBPT(3)
- 2) Self-consistent single-particle energies
- 3) Harmonic-oscillator basis of 13-15 major shells
- 4) Nuclear forces from chiral EFT
- 5) Requires extended valence spaces

Limitations

- Uncertain perturbative convergence
- Core physics inconsistent or absent
- Degenerate valence space requires HO basis (HF requires nontrivial extension)
- Must treat additional orbitals nonperturbatively (extend valence space)

Particle/Hole Excitations

Consider basis states as excitations from some reference state:

Normal-Ordered Hamiltonian

Now rewrite exactly the initial Hamiltonian in normal-ordered form Normal-Ordered Hamiltonian $H_{\text{N.O.}} = E_0 + \sum_{ij} f_{ij} \left\{ a_i^{\dagger} a_j \right\} + \frac{1}{4} \sum_{0j \neq l} \sum_{kl} \frac{\Gamma_{ijkl}}{\Gamma_{ijkl}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijk}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijk}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijk}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijk}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijk}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijk}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijk}} \left\{ a_i^{\dagger} a_j^{\dagger} a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijk}} \left\{ a_i^{\dagger} a_j^{\dagger} a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijk}} \left\{ a_i^{\dagger} a_j^{\dagger} a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijk}} \left\{ a_i^{\dagger} a_j^{\dagger} a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijk}} \left\{ a_i^{\dagger} a_k \right\} + \frac{1}{4} \sum_{i=1}^{kl} \frac{\Gamma_{ijkl}}{\Psi_{mijk}} \left\{ a_i^{\dagger} a_j \right\} + \frac$ iiklmn 3-body 2-body 1-body N.O. 0-body $\rightarrow E_0 = \langle$ N.O. 1-body $\rightarrow f = \frac{i}{i} + \frac{i}{i}$ +Normal-ordered Hamiltonian v.r.t. reference state Loop = sum over occupied states Include dominant 1-,2-,3-body physics in NO

Nonperturbative In-Medium SRG

Tsukiyama, **Bogner**, Schwenk, PRL (2011)

In-Medium SRG continuous unitary trans. drives off-diagonal physics to zero

$$H(s) = U(s)HU^{\dagger}(s) \equiv H^{d}(s) + H^{od}(s) \to H^{d}(\infty)$$

From Decoupling in A-Body Space

Drives a

IM-SRG: Flow Equation Formulation

Define U(s) implicitly from particular choice of generator:

 $\eta(s) \equiv (\mathrm{d}U(s)/\mathrm{d}s) U^{\dagger}(s)$

chosen for desired decoupling behavior – e.g.,

$$\eta_{\scriptscriptstyle I}(s) = \left[H^{\mathrm{d}}(s), H^{\mathrm{od}}(s)
ight]$$
 Wegner (1994)

Solve **flow equation** for Hamiltonian (coupled DEs for 0,1,2-body parts) $\frac{\mathrm{d}H(s)}{\mathrm{d}s} = [\eta(s), H(s)] \qquad H(s) = E_0(s) + f(s) + \Gamma(s) + \cdots$

Hamiltonian and generator truncated at 2-body level: **IM-SRG(2)** 0-body flow drives uncorrelated ref. state to fully correlated ground state $E_0(\infty) \rightarrow \text{Core Energy}$

Ab initio method for energies of **closed-shell systems**

IM-SRG: Valence-Space Hamiltonians

Tsukiyama, **Bogner**, Schwenk, PRC (2012)

Open-shell systems

Separate *p* states into valence states (v) and those above valence space (q)

Redefine H^{od} to **decouple valence space from excitations** outside $v \\ {H^{\text{od}}} = {f_{h'}^h, f_{p'}^\rho, f_h^\rho, f_v^q, \Gamma_{hv}^{\rho\rho'}, \Gamma_{hv}^{\rhoq'}, \Gamma_{vv'}^{\rhoq}} \& \text{H.c.} \\ H^{\text{od}} = \langle p|H|h \rangle + \langle pp|H|hh \rangle + \langle v|H|q \rangle + \langle pq|H|vv \rangle + \langle pp|H|hv \rangle + \text{h.c.} \\ E_0(\infty) \to \text{Core Energy} \quad f(\infty) \to \text{SPEs} \quad \Gamma(\infty) \to V_{\text{eff}}$

IM-SRG: Valence-Space Hamiltonians

Tsukiyama, **Bogner**, Schwenk, PRC (2012)

Open-shell systems

Separate p states into valence states (v) and those above valence space (q)

Core physics included consistently (absolute energies, radii...) ${H^{oo}} = {f_{h'}^h, f_{p'}^\rho, f_h^\rho, f_V^\rho, \Gamma_{hh'}^{\rho\rho}, \Gamma_{hv'}^{\rho\rho}, \Gamma_{vv'}^{\rhoq}} \& \text{H.c.}$ Inherently nonperturbative – no need for extended valence space Non-degenerate valence-space orbitals

NN-only IM-SRG Monopoles

Testing ab initio IM-SRG shell model monopoles

Monopoles: Angular average of interaction

$$V_{ab}^{T} = \frac{\sum_{J} (2J+1) V_{abab}^{JT}}{\sum_{J} (2J+1)}$$

Determines interaction of orbit a with b: evolution of orbital energies

Improvements over MBPT?

$$\Delta \varepsilon_a = V_{ab} n_b$$

NN-only significantly too attractive NN+3N-ind improved but $d_{3/2}$ monopoles too attractive

Comparison with Large-Space Methods

Results from SRG-evolved NN and NN+3N-ind forces

Dripline still not reproduced

Comparison with Large-Space Methods

Large-space methods with same SRG-evolved NN+3N-ind forces

Agreement between all methods with same input forces No reproduction of dripline in any case

Calcium Isotopes: Magic Numbers

GXPF1: Honma, Otsuka, Brown, Mizusaki (2004) KB3G: Poves, Sanchez-Solano, Caurier, Nowacki (2001)

Phenomenological Forces

Large gap at ⁴⁸Ca
Discrepancy at N=34

Microscopic NN Theory

Small gap at ⁴⁸Ca

N=28: first standard magic

number not reproduced
in microscopic NN theories

Phenomenological vs. Microscopic

Compare monopoles from: *Microscopic* low-momentum interactions *Phenomenological* KB3G, GXPF1 interactions Shifts in low-lying orbitals: -T=1 repulsive shift

Comparison to Coupled Cluster

Many-body method insufficient?

Benchmark against *ab-initio* Coupled Cluster at NN-only level

SPEs: one-particle attached CC energies in ¹⁷O and ⁴¹Ca Small difference in many-body methods

Include **3N forces** to improve agreement with experiment

Three-Nucleon Forces Basic ideas – why needed? 3N from chiral EFT Implementing in shell model Relation to monopoles Predictions/new discoveries Connections beyond structure

How will we approach this problem:

 $QCD \rightarrow NN (3N)$ forces \rightarrow Renormalize \rightarrow "Solve" many-body problem \rightarrow Predictions
Chiral Effective Field Theory: Nuclear Forces

Weinberg, van Kolck, Kaplan, Savage, Wise

Nucleons interact via pion exchanges and contact interactions Consistent treatment of NN, 3N,...

NN couplings fit to scattering data

Chiral EFT: N²LO 3N

First non-vanishing 3N contributions: Next-to-next-to-leading order $\nu = 3$

Chiral EFT: N²LO 3N

First non-vanishing 3N contributions: Next-to-next-to-leading order $\nu=3$

Three undetermined πN couplings from NN fit

derived in (1994/2002)

Chiral EFT: N³LO 3N

Next-to-next-to-leading order $\nu = 4$

Good news: no new constants

Bad news: well, there's all this

Aside: Effects of Adding Explicit Deltas

Reshuffles effects to different chiral orders

1) SRG-evolve both NN and 3N: NN+3N-full

2) NN Vlowk, refit 3N: NN+3N-fit

1) SRG-evolve both NN and 3N: NN+3N-full

2) NN Vlowk, refit 3N: NN+3N-fit

1) SRG-evolve both NN and 3N: NN+3N-full

2) NN Vlowk, refit 3N: NN+3N-fit

Induced 3N Forces

Effect of including 3N-ind? Exactly initial $V_{\rm NN}$ up to neglected 4N-ind

NN-only clear cutoff dependencs

3N-ind: dramatic reduction in cutoff dependence, no agreement with experiment

Induced 3N Forces

Effect of including 3N-ind? Exactly initial $V_{\rm NN}$ up to neglected 4N-ind

NN-only clear cutoff dependencs

3N-ind: dramatic reduction in cutoff dependence, no agreement with experiment NN+3N-full retains cutoff independence, reproduces experiment!

Benefits of Lower Cutoffs

- Use cutoff dependence to assess missing physics: return to Tjon line
- Varying cutoff moves along line Still never reaches experiment
- Tool, not a parameter!

Benefits of Lower Cutoffs

- Use cutoff dependence to assess missing physics: return to Tjon line
- Varying cutoff moves along line Still never reaches experiment
- Tool, not a parameter! Including 3N reaches expt.
- Why not perfect fit?

Cutoff Variation with 3N Forces

Use cutoff variation to assess missing physics in few body systems **Radii of triton and alpha particle** calculated from NN+3N forces

Minimal cutoff variation

Chiral Three-Body Forces in Light Nuclei

Importance of chiral 3N forces established in light nuclei Converged NCSM (Navratil 2007)

They work! What about nuclear matter?

Perturbative in Symmetric Nuclear Matter?

Significant improvement with low-momentum interactions!

a

 $^{1}S_{0}$ $\stackrel{Im \eta}{+}_{1}$ b

 $^{3}S_{1}-^{3}D$

Perturbative in Symmetric Nuclear Matter?

Now NN+3N-fit remain perturbative and reproduce saturation! Minor but non-negligible cutoff variation

UNEDF SciDAC Collaboration

3N Forces for Valence-Shell Theories

Normal-ordered 3N: contribution to valence neutron interactions

Effective two-body

Effective one-body

Combine with microscopic NN: eliminate empirical adjustments

3N Forces for Valence-Shell Theories

Effects of residual 3N between 3 valence nucleons?

Normal-ordered 3N: microscopic contributions to inputs for CI Hamiltonian Effects of residual 3N between 3 valence nucleons?

Coupled-Cluster theory with 3N: benchmark of ⁴He

0- 1- and 2-body of 3NF dominate
Residual 3N can be neglected
Work on ¹⁶O in progress

Approximated residual 3N by summing over valence nucleon - Nucleus-dependent: effect small, not negligible by $^{24}{\rm O}$

Two-body 3N: Monopoles in sd-shell

First calculations to show missing monopole strength due to neglected 3N

Future: Improved treatment of high-lying orbits

Oxygen Anomaly

Otsuka, Suzuki, JDH, Schwenk, Akaishi, PRL (2010)

Oxygen Anomaly

Otsuka, Suzuki, JDH, Schwenk, Akaishi, PRL (2010)

Comparison with Large-Space Methods

Large-space methods with same SRG-evolved NN+3N-ind forces

Agreement between all methods with same input forces No reproduction of dripline in any case

Normal-Ordered Hamiltonian

Now rewrite exactly the initial Hamiltonian in normal-ordered form Normal-Ordered Hamiltonian $H_{\text{N.O.}} = E_0 + \sum_{ij} f_{ij} \left\{ a_i^{\dagger} a_j \right\} + \frac{1}{4} \sum_{0j \not\in t} \sum_{j \not\in t} \frac{\Gamma_{ijkl}}{\Gamma_{ijkl}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijklmn}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijklmn}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijklmn}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijklmn}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijklmn}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijklmn}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijklmn}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijklmn}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijklmn}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijklmn}} \left\{ a_i^{\dagger} a_j^{\dagger} a_l a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_j^{\dagger} a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_j^{\dagger} a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_j^{\dagger} a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_j^{\dagger} a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_k \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_j \right\} + \frac{1}{4} \sum_{ijkl} \frac{\Gamma_{ijkl}}{\Psi_{mijkl}} \left\{ a_i^{\dagger} a_$ iiklmn 3-body 2-body 1-body N.O. 0-body $\rightarrow E_0 =$ N.O. 1-body $\rightarrow f = \left| \begin{array}{c} i \\ i \end{array} \right| +$ +N.O. 2-body $\rightarrow \Gamma =$ $i \qquad j$

Normal-Ordered Hamiltonian

Comparison with Large-Space Methods

Large-space methods with same SRG-evolved NN+3N-ind forces

Agreement between all methods with same input forces No reproduction of dripline in any case

Comparison with Large-Space Methods

Large-space methods with same SRG-evolved NN+3N-full forces

Agreement between all methods with same input forces

Clear improvement with NN+3N-full

Validates valence-space results

Oxygen Dripline Mechanism

Self-consistent Green's Function with same SRG-evolved NN+3N forces

Robust mechanism driving dripline behavior 3N repulsion raises $d_{3/2}$, lessens decrease across shell Similar to first MBPT NN+3N calculations in oxygen

Optimized Chiral Forces N²LO NN-Only

Recent calculations at N²LO without 3N forces found a remarkable result

Oxygen dripline reproduced with NN forces only! What does this mean about 3N?

Optimized Chiral Forces N²LO NN-Only

Recent calculations at N²LO without 3N forces found a remarkable result

Oxygen dripline reproduced with NN forces only! Power counting dictates 3N forces be included

Optimized Chiral Forces N²LO NN-Only

Recent calculations at N²LO without 3N forces found a remarkable result

Oxygen dripline reproduced with NN forces only Unnaturally large couplings when 3N fit in ³H(?) – results off the plot! Lesson: 3N forces unavoidable part of theory – must investigate importance

Impact on Spectra: ²³O

Neutron-rich oxygen spectra with NN+3N

 $5/2^+$, $3/2^+$ energies reflect ^{22,24}O shell closures

sd-shell NN only

Wrong ground state $5/2^+$ too low $3/2^+$ bound

NN+3N

Clear improvement in extended valence space

Comparison with MBPT/CCEI Oxygen Spectra

Oxygen spectra: Effective interactions from Coupled-Cluster theory

MBPT in extended valence space

IM-SRG/CCEI spectra agree within ~300 keV

Beyond the Oxygen Dripline

Physics beyond dripline highly sensitive to 3N and continuum effects

Prediction of low-lying 2⁺ in ²⁶O (recently measured at RIKEN)

Experimental Connection: ²⁴F Spectrum

²⁴F spectrum: **IM-SRG** (*sd* shell), **full CC**, **USDB**

New measurements from GANIL

IM-SRG: comparable with phenomenology, good agreement with new data

Fully Open Shell: Neutron-Rich Fluorine Spectra

Fluorine spectroscopy: **MBPT** and **IM-SRG** (*sd* shell) from NN+3N forces

IM-SRG: **competitive with phenomenology**, good agreement with data Preliminary results already for scalar operators: charge radii, E0 transitions Upcoming: general operators M1, E2, GT, double-beta decay Stroberg et al.

Calcium Isotopes: Magic Numbers

GXPF1: Honma, Otsuka, Brown, Mizusaki (2004) KB3G: Poves, Sanchez-Solano, Caurier, Nowacki (2001)

Phenomenological Forces

Large gap at ⁴⁸Ca
Discrepancy at N=34

Microscopic NN Theory

Small gap at ⁴⁸Ca

N=28: first standard magic

number not reproduced
in microscopic NN theories
Phenomenological vs. Microscopic

Compare monopoles from: *Microscopic* low-momentum interactions *Phenomenological* KB3G, GXPF1 interactions Shifts in low-lying orbitals: -T=1 repulsive shift

Two-body 3N: Monopoles in *pf*-shell

First calculations to show missing monopole strength due to neglected 3N

Calcium Ground State Energies and Dripline

Signatures of shell evolution from ground-state energies?

No clear dripline; flat behavior past ⁵⁴Ca – Halos beyond ⁶⁰Ca?

 $S_{2n} = -[BE(N,Z) - BE(N-2,Z)]$ sharp decrease indicates shell closure

Experimental Connection: Mass of 54Ca

New precision mass measurement of ^{53,54}Ca at **ISOLTRAP**: multi-reflection ToF

TITAN Measurement

Flat trend from ⁵⁰⁻⁵²Ca Mass ⁵²Ca 1.74 MeV from AME

ISOLTRAP Measurement

Sharp decrease past ⁵²Ca Unambiguous closed-shell ⁵²Ca Test predictions of various models

MBPT NN+3N

Excellent agreement with new data Reproduces closed-shell ^{48,52}Ca Weak closed sell signature past ⁵⁴Ca

N=34 magic number in calcium?

Calcium Isotopes: Magic Numbers

GXPF1: Honma, Otsuka, Brown, Mizusaki (2004) KB3G: Poves, Sanchez-Solano, Caurier, Nowacki (2001)

Phenomenological Models

Large gap at ⁴⁸Ca, discrepancy at N=34

Ab initio theories

Reproduce all ne Figure 9

Excitation energy of the first 2^+ state in the even calcium isotopes as a function of mass number A. The MBPT (80) and CC results (81) corresponding to the S_{2n} calculations of Figure 8 are compared to experiment from (73, 90).

Calcium Isotopes: Magic Numbers

Evidence for a new nuclear 'magic number' from the level structure of $^{54}\mathrm{Ca}$

D. Steppenbeck¹, S. Takeuchi², N. Aoi³, P. Doornenbal², M. Matsushita¹, H. Wang², H. Baba², N. Fukuda², S. Go¹, M. Honma⁴, J. Lee², K. Matsui⁵, S. Michimasa¹, T. Motobayashi², D. Nishimura⁶, T. Otsuka^{1,5}, H. Sakurai^{2,5}, Y. Shiga⁷, P.-A. Söderström², T. Sumikama⁸, H. Suzuki², R. Taniuchi⁵, Y. Utsuno⁹, J. J. Valiente-Dobón¹⁰ & K. Yoneda²

calcium isotopes as a function of mass orresponding to the S_{2n} calculations of Figure 8

doi:10.1038/nature12226

The Challenge of Microscopic Nuclear Theory

To understand the properties of complex nuclei from elementary interactions

QCD \rightarrow NN (3N) forces \rightarrow Renormalize \rightarrow Solve many-body problem \rightarrow Predictions

New Directions and Outlook

New Directions and Outlook

New Directions and Outlook

Heavier semi-magic chains: MBPT as guide

Ab initio valence-shell Hamiltonians

Towards full sd- and pf-shells Implement extended valence spaces

Moving beyond stability

Fundamental symmetries

Effective electroweak operators ab initio calculation of $0\nu\beta\beta$ decay WIMP-nucleus scattering

Final Thought

"Very soft (NN) potentials must be excluded because they do not give saturation; they give too much binding and too high density." - *H. Bethe*

How might you respond?

Final Thought

"Very soft (NN) potentials must be excluded because they do not give saturation; they give too much binding and too high density." - *H. Bethe*

How might you respond?

Further Reading

Lepage, nucl-th/9706029 (1997)

Epelbaum, Hammer, Meißner, Rev. Mod. Phys. (2009)

Machleidt, Entem, Phys. Rep. (2011)

Bogner, Furnstahl, Schwenk, Prog. Part. Nucl. Phys. (2010)

Hebeler, Holt, Menendez, Schwenk, Ann. Rev. Nucl. Part. Sci. (2015)

Thanks to (ie, results, plots, ideas, entire slides, jokes etc., used without citation from): Scott Bogner, Angelo Calci, Thomas Duguet, Dick Furnstahl, Alex Gezerlis, Gaute Hagen, Kai Hebeler, Heiko Hergert, Herman Krebs, Javier Menendez, Petr Navratil, Achim Schwenk, Johannes Simonis, Ragnar Stroberg

Ground-State Energies of Oxygen Isotopes

Valence-space interaction and SPEs from NN+3N-fit

JDH, Menendez, Schwenk, EPJA (2013)

Repulsive character improves agreement with experiment *sd*-shell results underbound; improved in **extended space** $sdf_{7/2} p_{3/2}$

Evolution of Shell Structure

SPE evolution with 3N forces in *pf* and *pfg*_{9/2} spaces:

NN+3N *pf*-shell:

JDH, Otsuka, Schwenk, Suzuki JPG (2012)

Trend across: improved binding energies Increased gap at ⁴⁸Ca: enhanced closed-shell features

Include $g_{9/2}$ orbit, calculated SPEs

Different behavior of ESPEs (not observable, model dependent)

Small gap can give large 2^+ energy: due to many-body correlations

Duguet, Hagen, PRC (2012)