Neutron Star Structure, Evolution and Measurements

J. M. Lattimer

Department of Physics & Astronomy

Office of Science

Special Nuclear Physics Lecture Series Yonsei University, Seoul, Korea, 26-30 June 2023

Outline

- Neutron Star Structure
- Dense Matter
 Equation of State
- Nuclear Experimental Constraints

Formation and Evolution of Neutron Stars
 Observational Constraints

Neutron Star Structure, Evolution and Measurements

Dany Page, UNAM

J. M. Lattimer

Neutron Star Structure, Evolution and Measurements

Amazing Facts About Neutron Stars

- Densest objects this side of an event horizon: 10¹⁵ g cm⁻³
 Four teaspoons on Earth would weigh as much as the Moon.
- Largest surface gravity: 10¹⁴ cm s⁻² This is 100 billion times the Earth's gravity.
- Fastest spinning objects known: ν = 716 Hz Spin rate measured for PSR J1748-2446ad, in the globular cluster Terzan 5, 9 kpc distant. 33 pulsars have been found in this cluster. If R_{eq} ~ 15 km, v_{eq} ~ c/4.
- Largest known magnetic field: $B = 10^{15} \text{ G}$

- Highest temperature superconductor: T_c = 10 billion K The highest known superconductor on the Earth is mercury thallium barium calcium copper oxide (Hg₁₂T_{/3}Ba₃₀Ca₃₀Cu₄₅O₁₂₅), at 138 K.
- Highest temperature, at birth, anywhere in the Universe since the Big Bang: T = 700 billion K
- PSR B1508+55 has fastest measured stellar velocity in the Galaxy: 1083 km/s = c/300
- The only place in the universe except for the Big Bang where neutrinos become *trapped*.

Neutron Stars: History

1920 Rutherford predicts the neutron

Landau anticipates single-nucleus stars but not neutron stars

Chadwick discovers the neutron.

W. Baade and F. Zwicky predict existence of neutron stars as end products of supernovae.

1939 Oppenheimer and Volkoff predict upper mass limit of neutron star.1964 Hoyle, Narlikar and Wheeler predict neutron stars rapidly rotate.1965 Hewish and Okoye discover an intense radio source in the Crab nebula.

Colgate and White perform simulations of supernovae leading to neutron stars.

C. Schisler discovers a dozen pulsing radio sources, including the Crab pulsar, using secret military radar in Alaska. X-1.

Hewish, Bell, Pilkington, Scott and Collins discover "first" PSR 1919+21, Aug 6.

The Crab Nebula pulsar is discovered, found to be slowing down (ruling out binary and vibrational models), and clinched the connection to supernovae.

The term "pulsar" first appears in print, in the *Daily Telegraph*.

1969 "Glitches" observed; evidence for superfluidity in neutron star crust. **1971** Accretion powered X-ray pulsar discovered by Uhuru (*not* the Lt.). **1974** Hewish awarded Nobel Prize (but Bell and Okoye were not). **1974** Binary pulsar PSR 1913+16 discovered by Hulse and Taylor., orbital decay due to GR gravitational radiation **1979** Chart recording of PSR 1919+21 used as album cover for *Unknown Pleasures* by Joy Division (#19/100 greatest British album). **1982** First millisecond pulsar, PSR B1937+21, discovered by Backer et al. at Arecibo. **1992** Discovery of first extra-solar planets orbiting PSR B1257+12 by Wolszczan and Frail. **1993** Hulse and Taylor receive Nobel Prize **1998** Kouveletiou et al. discover first magnetar 2004 SGR 1806-20 flares: largest burst of energy seen in Galaxy since SN 1604, brighter than full moon in γ rays, more energy emitted than Sun sleevage.com/joy-division-unknown-pleasures/ in 100,000 years. **2004** Hessels et al. discover PSR J1748-2446ad; fastest rotation rate. 716 Hz. **2005** Hessels et al. discover PSR J0737-3039, first two-pulsar binary 2013 Antoniadis et al. find most-massive PSR J0348+0432, 2.01 M_{\odot} **2013** Stairs et al. find first pulsar in triple system () () () ж

Important Questions

- How Does the Structure of Neutron Stars Depend On the Nucleon-Nucleon Interaction?
 - The Neutron Star Maximum Mass and Causality
 - The Neutron Star Radius and the Nuclear Symmetry Energy
 - Does Exotic Matter (Hyperons, Kaons/Pions, Deconfined Quarks) Exist in Neutron Star Interiors?
- How Do Nuclear Experiments Constrain the Nuclear Symmetry Energy and Neutron Star Radii?
 - Binding Energies
 - Heavy ion Collisions
 - Neutron Skin Thicknesses
 - Dipole Polarizabilities
 - Giant (and Pygmy) Dipole Resonances
 - Pure Neutron Matter
- What Astrophysical Constraints Exist?
 - Nuclear Mass Measurements
 - Photospheric Radius Expansion Bursts
 - Thermal Emission from Isolated and Quiescent Binary Sources
 - Pulse Modeling of X-ray Bursts, QPOs, etc.

Neutron Star Structure

Tolman-Oppenheimer-Volkov equations

Mass-Radius Diagram and Theoretical Constraints

The Radius – Pressure Correlation

Neutron Star Structure

Newtonian Gravity:

$$\frac{dP}{dr} = -\frac{Gm\rho}{r^2}; \qquad \frac{dm}{dr} = 4\pi\rho r^2; \qquad \rho c^2 = \varepsilon$$

Newtonian Polytrope:

J. M. Lattimer Neutron Star Structure, Evolution and Measurements

Extremal Properties of Neutron Stars

The most compact and massive configurations occur when the low-density equation of state is "soft" and the high-density equation of state is "stiff" (Koranda, Stergioulas & Friedman 1997).

J. M. Lattimer

Neutron Star Structure, Evolution and Measurements

Extremal Properties of Neutron Stars

The maximum mass configuration is achieved when $x_R = 0.2404$, $w_c = 3.034$, $y_c = 2.034$, $z_R = 0.08513$.

A useful reference density is the nuclear saturation density (interior density of normal nuclei): $\rho_{\rm s} = 2.7 \times 10^{14} \text{ g cm}^{-3}, n_{\rm s} = 0.16 \text{ baryons fm}^{-3}, \varepsilon_{\rm s} = 150 \text{ MeV fm}^{-3}$ • $M_{\text{max}} = 4.1 \ (\varepsilon_s / \varepsilon_o)^{1/2} M_{\odot}$ (Rhoades & Ruffini 1974) $\blacktriangleright M_{B,\max} = 5.41 \ (m_B c^2/\mu_o) (\varepsilon_s/\varepsilon_o)^{1/2} M_{\odot}$ • $R_{\rm min} = 2.82 \ GM/c^2 = 4.3 \ (M/M_{\odot}) \ {\rm km}$ $harphi \mu_{h \max} = 2.09 \text{ GeV}$ $\triangleright \varepsilon_{c \max} = 3.034 \varepsilon_o \simeq 51 (M_{\odot}/M_{\text{largest}})^2 \varepsilon_s$ \triangleright $P_{c,\max} = 2.034 \varepsilon_o \simeq 34 (M_{\odot}/M_{\text{largest}})^2 \varepsilon_s$ \blacktriangleright $n_{B,\text{max}} \simeq 38 \ (M_{\odot}/M_{\text{largest}})^2 \ n_s$ **b** $BE_{max} = 0.34 M$ • $P_{\rm spin,min} = 0.74 \ (M_{\odot}/M_{\rm sph})^{1/2} (R_{\rm sph}/10 \ {\rm km})^{3/2} \ {\rm ms} =$ $0.20 (M_{\rm sph,max}/M_{\odot}) \, {\rm ms}$

Maximum Energy Density in Neutron Stars

Causality + GR Limits and the Maximum Mass

A lower limit to the maximum mass sets a lower limit to the radius for a given mass.

Similarly, a precise (M, R) measurement sets an upper limit to the maximum mass.

 $1.4 M_{\odot}$ stars must have $R > 8.15 M_{\odot}.$

 $1.4M_{\odot}$ strange quark matter stars (and likely hybrid quark/hadron stars) must have R > 11 km.

J. M. Lattimer Neutron Star Structure, Evolution and Measurements

Spherically Symmetric General Relativity

Static metric: $ds^{2} = e^{\lambda(r)}dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right) - e^{\nu(r)}dt^{2}$ Einstein's equations: $8\pi\varepsilon(r)Gr^{2}/c^{4} = 1 - e^{-\lambda(r)} + re^{-\lambda(r)}\lambda'(r),$ $8\pi P(r)Gr^{2}/c^{4} = e^{-\lambda(r)} - 1 + re^{-\lambda(r)}\nu'(r),$ $P'(r) = -\frac{P(r) + \varepsilon(r)}{2}\nu'(r).$ Mass: $(\lambda)^{2} = e^{-\lambda(r)} + e^{-\lambda(r)}$

$$m(r)c^2 = 4\pi \int_0^{\infty} \varepsilon(r')r'^2 dr', \qquad e^{-\lambda(r)} = 1 - 2Gm(r)/(rc^2)$$

Boundaries:

$$\begin{array}{ll} r = 0 & m(0) = P'(0) = \varepsilon'(0) = 0, \\ r = R & m(R) = M, \quad P(R) = 0, \quad e^{\nu(R)} = e^{-\lambda(R)} = 1 - 2GM/(Rc^2) \end{array}$$

Thermodynamics:

$$\frac{dn}{n} = \frac{d\varepsilon}{\epsilon + P} = -\frac{d\varepsilon}{dP} \frac{d\nu}{2}, \quad \mu = \frac{d\varepsilon}{dn}, \quad \frac{\varepsilon}{n} = m_b c^2 + e, \quad \frac{P}{n^2} = \frac{de}{dn}$$
$$m_b c^2 n(r) = (\varepsilon(r) + P(r))e^{(\nu(r) - \nu(R))/2} - n(R)e(R)$$
$$N = \int_0^R 4\pi r^2 e^{\lambda(r)/2} n(r)dr; \quad \text{BE} = (Nm_b - M)c^2$$

Tolman-Oppenheimer-Volkov equations of relativistic hydrostatic equilibrium:

$$\frac{dP}{dr} = -\frac{G}{c^2} \frac{(m+4\pi r^3 P/c^2)(\varepsilon+P)}{r(r-2Gm/c^2)}$$
$$\frac{dm}{dr} = 4\pi \frac{\varepsilon}{c^2} r^2$$

P is pressure, ε is mass-energy density Useful analytic solutions exist:

- Uniform density $\varepsilon = \text{constant}$
- Tolman VII $\varepsilon = \varepsilon_c [1 (r/R)^2]$
- Buchdahl $\varepsilon = \sqrt{PP_*} 5P$

э

Uniform Density Fluid

$$\begin{split} m(r) &= \frac{4\pi}{3} \frac{\varepsilon}{c^2} r^3 = M x^{3/2}, \qquad x \equiv \left(\frac{r}{R}\right)^2, \qquad \beta \equiv \frac{GM}{Rc^2} \\ e^{-\lambda(r)} &= 1 - 2\beta x, \\ e^{\nu(r)} &= \left[\frac{3}{2}\sqrt{1 - 2\beta} - \frac{1}{2}\sqrt{1 - 2\beta x}\right]^2, \\ P(r) &= \varepsilon \left[\frac{\sqrt{1 - 2\beta x} - \sqrt{1 - 2\beta}}{3\sqrt{1 - 2\beta} - \sqrt{1 - 2\beta x}}\right], \\ \varepsilon(r) &= \text{ constant}; \qquad n(r) = \text{ constant} \\ \frac{BE}{Mc^2} &= \frac{3}{4\beta} \left(\frac{\sin^{-1}\sqrt{2\beta}}{\sqrt{2\beta}} - \sqrt{1 - 2\beta}\right) \simeq \frac{3\beta}{5} + \frac{9}{14}\beta^2 + \cdots, \\ c_s^2 &= \infty \end{split}$$

$$P_c < \infty \Longrightarrow \beta < 4/9$$
$$P_c < \varepsilon \Longrightarrow \beta < 3/8$$

€ 990

≣⇒

Tolman VII

$$\begin{split} \varepsilon(r) &= \varepsilon_{c} \left[1 - (r/R)^{2} \right] \equiv \varepsilon_{c} [1 - x] \\ e^{-\lambda(r)} &= 1 - \beta x (5 - 3x) \\ e^{\nu(r)} &= (1 - 5\beta/3) \cos^{2} \phi, \\ P(r) &= \frac{c^{2}}{4\pi G R^{2}} \left[\sqrt{3\beta e^{-\lambda(r)}} \tan \phi(r) - \frac{\beta}{2} (5 - 3x) \right], \\ n(r) &= \frac{\varepsilon(r) + p(r)}{m_{b}c^{2}} \frac{\cos \phi(r)}{\cos \phi_{1}} \\ \phi(r) &= \frac{w_{1} - w(r)}{2} + \phi_{1}, \qquad \phi_{1} = \phi(x = 1) = \tan^{-1} \sqrt{\frac{\beta}{3(1 - 2\beta)}}, \\ w(r) &= \ln \left[x - \frac{5}{6} + \sqrt{\frac{e^{-\lambda(r)}}{3\beta}} \right], \qquad w_{1} = w(x = 1) = \ln \left[\frac{1}{6} + \sqrt{\frac{1 - 2\beta}{3\beta}} \right]. \\ (P/\varepsilon)_{c} &= \frac{2 \tan \phi_{c}}{15} \sqrt{\frac{3}{\beta}} - \frac{1}{3}, \qquad c_{s,c}^{2} = \tan \phi_{c} \left(\frac{1}{5} \tan \phi_{c} + \sqrt{\frac{\beta}{3}} \right) \\ &= \frac{BE}{Mc^{2}} \simeq \frac{11}{21}\beta + \frac{7187}{18018}\beta^{2} + \cdots \\ P, c_{s}^{2} < \infty \Longrightarrow \phi_{c} < \pi/2 \Longrightarrow \beta < 0.3862, \qquad c_{s}^{2} < 1 \Longrightarrow \beta < 0.2698. \end{split}$$

Buchdahl's Solution: Relativistic n=1 Polytrope

$$\begin{split} \varepsilon = \sqrt{P_*P} - 5P \\ e^{\nu(r)} &= (1 - 2\beta)(1 - \beta - u(r))(1 - \beta + u(r))^{-1}, \\ e^{\lambda(r)} &= (1 - 2\beta)(1 - \beta + u(r))(1 - \beta - u(r))^{-1}(1 - \beta + \beta \cos Ar')^{-2}, \\ 8\pi P(r) &= A^2 u(r)^2(1 - 2\beta)(1 - \beta + u(r))^{-2}, \\ 8\pi \varepsilon(r) &= 2A^2 u(r)(1 - 2\beta)(1 - \beta - 3u(r)/2)(1 - \beta + u(r))^{-2}, \\ n(r)m_bc^2 &= \sqrt{p_*p(r)} \left(1 - 4\sqrt{\frac{p(r)}{p_*}}\right)^{3/2}, \quad c_s^2(r) = \left(\frac{1}{2}\sqrt{\frac{p_*}{p(r)}} - 5\right)^{-1} \\ u(r) &= \frac{\beta}{Ar'}\sin Ar' = (1 - \beta)\left(\frac{1}{2}\sqrt{\frac{P_*}{P(r)}} - 1\right)^{-1}, \\ r' &= r(1 - 2\beta)(1 - \beta + u(r))^{-1}, \\ A^2 &= 2\pi P_*(1 - 2\beta)^{-1}, \quad R = (1 - \beta)\sqrt{\frac{\pi c^2}{2GP_*(1 - 2\beta)}}. \\ P_c &= \frac{P_*}{4}\beta^2, \quad \varepsilon_c = \frac{P_*}{2}\beta(1 - \frac{5}{2}\beta), \quad n_c m_b c^2 = \frac{P_*}{2}\beta(1 - 2\beta)^{3/2} \\ BE/(Mc^2) &= (1 - 3/2\beta)(1 - 2\beta)^{-1/2}(1 - \beta)^{-1} \simeq \beta/2 + \beta^2/2 + \cdots \\ c_s^2 < \infty \Longrightarrow \beta < 1/5, \quad c_s^2 < 1 \Longrightarrow \beta < 1/6. \end{split}$$

Tolman IV Variation: A Self-Bound Star (Quark Star)

$$\begin{split} e^{\nu(r)} &= \frac{\left[1 - \beta\left(\frac{5}{2} - \frac{1}{2}x\right)\right]^2}{(1 - 2\beta)}, \\ e^{\lambda(r)} &= \frac{\left[1 - \beta\left(\frac{5}{2} - \frac{3}{5}x\right)\right]^{2/3} - 2(1 - \beta)^{2/3}\beta x}{\left[1 - \beta\left(\frac{5}{2} - \frac{3}{2}x\right)\right]^{2/3} - 2(1 - \beta)^{2/3}\beta x}, \\ 4\pi \frac{G}{c^2} \rho R^2 &= \frac{\beta}{1 - \beta\left(\frac{5}{2} - \frac{1}{2}x\right)} \left[1 - (1 - \beta)^{2/3} \frac{1 - \frac{5}{2}\beta(1 - x)}{\left[1 - \beta\left(\frac{5}{2} - \frac{3}{2}x\right)\right]^{2/3}}\right], \\ 4\pi \frac{G}{c^2} \varepsilon R^2 &= \frac{3(1 - \beta)^{2/3}\beta\left[1 - \beta\left(\frac{5}{2} - \frac{5}{6}x\right)\right]}{\left[1 - \beta\left(\frac{5}{2} - \frac{3}{2}x\right)\right]^{5/3}}, \quad m = \frac{(1 - \beta)^{2/3}Mx^{3/2}}{\left[1 - \beta\left(\frac{5}{2} - \frac{3}{2}x\right)\right]^{2/3}} \\ c_s^2 &= \frac{(2 - 5\beta + 3\beta x)}{5(2 - 5\beta + \beta x)^3} \left[\frac{(2 - 5\beta + 3\beta x)^{5/3}}{2^{2/3}(1 - \beta)^{2/3}} + (2 - 5\beta)^2 - 5\beta^2 x\right], \\ \frac{\varepsilon_{surf}}{\varepsilon_c} &= \left(1 - \frac{5}{3}\beta\right)\left(1 - \frac{5}{2}\beta\right)^{2/3}(1 - \beta)^{-5/3}. \\ 0.30 < c_{s,c}^2 < 0.44, \qquad 0.265 < \frac{\varepsilon_{surf}}{\varepsilon_c} < 1 \end{split}$$

Roche Model for Rotation (Shapiro & Teukolsky 1983)

$$\rho^{-1}\nabla P = \nabla \mu = -\nabla (\Phi_G + \Phi_c)$$

$$\Phi_G \simeq - rac{GM}{r}, \ \Phi_c = - rac{1}{2} \Omega^2 r^2 \sin^2 heta$$

Bernoulli integral:

$$H = \mu + \Phi_G + \Phi_c = -GM/R$$
$$\mu = \int_0^P \rho^{-1} dP = \mu_n - \mu_{n0}$$

Evaluate at equator: $\frac{\Omega^2 R_{eq}^3}{2GM} = \frac{R_{eq}}{R} - 1$

Also true in GR. Mass-shedding limit: $\Omega^2_{shed} = GM/R^3_{eq}, \quad R_{eq}/R = \frac{3}{2}$ GR: Cook, Shapiro & Teukolsky (1994): 1.43–1.51

$$\Omega_{shed} = \left(\frac{2}{3}\right)^{3/2} \sqrt{\frac{GM}{R^3}}$$

Bulk Matter Energy and Pressure

J. M. Lattimer

Neutron Star Structure, Evolution and Measurements

Schematic Free Energy Density

 $\begin{array}{ll} F(n,x,T); & n: \text{ number density; } x: \text{ proton fraction; } T: \text{ temperature} \\ n_s \simeq 0.16 \pm 0.01 \text{ fm}^{-3}: \text{ nuclear saturation density} \\ B \simeq 16 \pm 1 \text{ MeV: saturation binding energy} \\ K_s \simeq 240 \pm 20 \text{ MeV: incompressibility} \\ J \simeq 30 \pm 6 \text{ MeV: bulk symmetry energy} \\ L \simeq 60 \pm 60 \text{ MeV: symmetry stiffness} \\ a \simeq 0.065 \pm 0.010 \text{ MeV}^{-1}: \text{ bulk level density parameter} \\ \end{array}$

$$F = n \left[-B + \frac{K}{18} \left(1 - \frac{n}{n_s} \right)^2 + J \frac{n}{n_s} (1 - 2x)^2 - a \left(\frac{n_s}{n} \right)^{2/3} T^2 \right]$$

$$P = n^2 \frac{\partial (F/n)}{\partial n} = \frac{n^2}{n_s} \left[\frac{K}{9} \left(\frac{n}{n_s} - 1 \right) + J (1 - 2x)^2 \right] + \frac{2an}{3} \left(\frac{n_s}{n} \right)^{2/3} T^2$$

$$\mu_n = \frac{\partial F}{\partial n} - \frac{x}{n} \frac{\partial F}{\partial x}$$

$$= -B + \frac{K}{18} \left(1 - \frac{n}{n_s} \right) \left(1 - 3\frac{n}{n_s} \right) + 2J \frac{n}{n_s} (1 - 2x) - \frac{a}{3} \left(\frac{n_s}{n} \right)^{2/3} T^2$$

$$\hat{\mu} = -\frac{1}{n} \frac{\partial F}{\partial x} = \mu_n - \mu_p = 4J \frac{n}{n_s} (1 - 2x)$$

$$s = -\frac{1}{n} \frac{\partial F}{\partial T} = 2a \left(\frac{n_s}{n} \right)^{2/3} T; \quad \varepsilon = F + nTs$$

Phase Coexistence

Negative pressure: matter is unstable to separating into two phases of different densities (and possibly proton fractions). Physically, this represents coexistence of nuclei and vapor. Neglecting finite-size effects, bulk coexistence approximates the EOS at subnuclear densities. Free Energy Minimization With Two Phases

 $F = \epsilon - nTs = uF_1 + (1 - u)F_{11}$ $n = un_{I} + (1 - u)n_{II}$ $nY_{e} = ux_{I}n_{I} + (1-u)x_{II}n_{II}.$ $n_{II} = \frac{n - un_I}{1 - u}, \qquad x_{II} = \frac{nY_e - un_Ix_I}{n - un_I}$ $\frac{dF}{dn_{I}} = u\frac{\partial F_{I}}{\partial n_{I}} + (1-u)\frac{\partial F_{II}}{\partial n_{II}}\left(\frac{-u}{1-u}\right) = u(\mu_{n,I} - \mu_{n,II})$ $\frac{dF}{dx_{I}} = u\frac{\partial F_{I}}{\partial x_{I}} + (1-u)\frac{\partial F_{II}}{\partial x_{II}}\left(\frac{-un_{I}}{n-un_{I}}\right) = un_{I}(\hat{\mu}_{I} - \hat{\mu}_{II})$ $\frac{dF}{du} = F_I - F_{II} + (1-u) \left[\frac{\partial F_{II}}{\partial n_{II}} \left(\frac{n_{II} - n_I}{1-u} \right) + \frac{\partial F_{II}}{\partial x_{II}} \left(\frac{-un_I}{n-un_I} \right) \right]$ $\implies \mu_{nl} = \mu_{nll} , \qquad \mu_{pl} = \mu_{pll} , \qquad P_l = P_{ll}$ J. M. Lattimer Neutron Star Structure, Evolution and Measurements

J. M. Lattimer Neutron Star Structure, Evolution and Measurements

J. M. Lattimer Neutron Star Structure, Evolution and Measurements

Nuclear Symmetry Energy

Defined as the difference between energies of pure neutron matter (x = 0) and symmetric (x = 1/2) nuclear matter.

The Liquid Drop Model of Nuclei

$$E(Z, N) \simeq -BA + JAI^2 + (E_s - S_s I^2)A^{2/3} + E_C \frac{Z^2}{A^{1/3}}$$

 $B\simeq 16$ MeV, $J\simeq 30$ MeV, $E_s\simeq 18$ MeV, $S_s\simeq 45$ MeV, $E_C\simeq 0.75$ MeV. At each density, the preferred nucleus has a mass determined by

$$\left(\frac{\partial(E/A)}{\partial A}\right)_{x} = -\frac{E_{s} - S_{s}I^{2}}{3A^{4/3}} + \frac{2E_{C}x^{2}}{3A^{1/3}} = 0$$

. The Nuclear Virial Theorem is

$$E_s - S_s I^2 = 2E_C x^2 A,$$
 $A_{opt} = 2 \frac{E_s - S_s I^2}{E_C (1 - I)^2} \simeq 48(1 + 2I) \simeq 61.$

At low densities, the optimum nucleus has a charge determined by

$$\left(\frac{\partial(E/A)}{\partial x}\right)_{A} = -4I\left(J - \frac{S_{s}}{A^{1/3}}\right) + (1 - I)E_{C}A^{2/3} = 0,$$
$$I = \frac{E_{C}A}{4(JA^{1/3} - S_{s}) + E_{C}A} \simeq 0.125; \qquad Z \simeq 27$$

The binding energy curve is heavily skewed. Certain closed-shell nuclei (He, C, O, Pb) have much larger binding than the average.

The optimum value of *I* increases with mass number *A*. This trend represents the *Valley* of Beta Stability.

Nuclei at Higher Densities

At the end of stellar evolution, when an iron core forms, the central stellar density is about $\rho \simeq 10^7$ g cm⁻³, implying a filling factor $u = \rho/\rho_s \simeq 3.7 \cdot 10^{-8}$. The intranuclear spacing is about $2u^{-1/3} \simeq 600$ nuclear radii.

Electron screening reduces the nuclear Coulomb energy.

Approximating electrons as uniformly distributed, even within nuclei, the nuclear Coulomb energy is:

$$E_C = \frac{3}{5} \frac{Z^2 e^2}{R} \left(1 - \frac{3}{2} u^{1/3} + \frac{u}{2} \right)$$

The reduction factor is about 0.5% for $\rho \simeq 10^7 {\rm ~g~cm^{-3}}.$

This effect increases the nuclear mass, which is proportional to E_c^{-1} , as the average density increases.

The optimum *I* also increases with density due to *beta equilibrium*:

$$\frac{\partial (E/A + E_e)}{\partial x} = -\mu_n + \mu_p + \mu_e = 0.$$

Chemical potentials are equivalent to the separation energies:

$$\mu_{n} = \left(\frac{\partial(E/A)}{\partial N}\right)_{Z}, \qquad \mu_{p} = \left(\frac{\partial(E/A)}{\partial Z}\right)_{N},$$
$$\mu_{e} = \frac{\partial(E_{e}nY_{e})}{\partial(nY_{e})} = \hbar c (3\pi^{2}n_{s}ux)^{1/3}, \qquad Y_{e} = x,$$
$$\mu_{n} - \mu_{p} = -\left(\frac{\partial(E/A)}{\partial x}\right)_{A},$$

At sufficiently high density, about $\rho = (3.5 - 4) \cdot 10^{11} \text{ g cm}^{-3}$, as x becomes smaller and A becomes larger, μ_n becomes positive. Neutrons thus 'drip' out of nuclei.

J. M. Lattimer

Neutron Star Structure, Evolution and Measurements

Nuclear Droplet Model

Myers & Swiatecki droplet extension: consider the variation of the neutron/proton asymmetry within the nuclear surface.

 $E(A, Z) = (-B + J\delta^2)(A - N_s) + (E_s - S_s \delta^2)A^{2/3} + E_C Z^2 A^{-1/3} + \mu_n N_s.$

 $N_{\rm s}$ is the number of excess neutrons associated with the surface, n_{nL} δ,=0.25 $\delta = 1 - 2x = (A - N_s - 2Z)/(A - N_s)$ is the asymmetry of the nuclear bulk fluid, and $\mu_n = -a_v + J\delta(2-\delta)$ is the n_{n_v} neutron chemical potential. Surface <r_2^2>^{1/2} tension is the surface thermodynamic potential; adding $\mu_n N_s$ gives the total surface energy. Optimizing E(A, Z)with respect to N_s yields $Z \rightarrow$ $N_{\rm s} = \frac{S_{\rm s}}{I} \frac{\delta}{1-\delta} = A \frac{I-\delta}{1-\delta}, \quad \delta = I \left(1 + \frac{S_{\rm s}}{IA^{1/3}}\right)^{-1},$ $E(A,Z) = -BA + E_s A^{2/3} + E_C Z^2 / A^{1/3} + JAI^2 \left(1 + \frac{S_s}{I^{\Delta 1/3}}\right)^{-1}.$

Nuclear Experimental Constraints

Why Symmetry Parameters are Highly Correlated

The slope dL/dJ is an indicator of the most sensitive density u_s for the measurement of the symmetry energy S(u).

If the correlation line goes through (J, L), a change dJ can be compensated by a change dL.

$$\frac{dJ}{dL} = -\left(\frac{\partial S(u_s)}{\partial L}\right)_J \left/ \left(\frac{\partial S(u_s)}{\partial J}\right)_L.$$

Example: $S(u) = S_K u^{2/3} + S_V u^{\gamma}$, $S_K \simeq 12.5 \text{ MeV}$ $J = S_K + S_V$, $L = 2S_K + 3\gamma J = S_K (2 - 3\gamma) + 3\gamma J$

$$\frac{dJ}{dL} = -\frac{\ln u_s}{3}, \quad u_s = \exp\left(-3\frac{dJ}{dL}\right).$$

For binding energies, $dL/dJ \simeq 11$, $u_s \simeq 0.76$.

Saturation Properties of Nuclear Interactions

Empirical Saturation Window

 $B=16.06\pm0.20~{
m MeV}$

 $n_s = 0.1558 \pm 0.0054 \ {\rm fm}^{-3}$

 $K_{1/2} = 236.5 \pm 15.4 \text{ MeV}$

Theoretical Neutron Matter Studies

Recently developed chiral effective field theory allows a systematic expansion of nuclear forces at low energies based on the symmetries of quantum chromodynamics. It exploits the gap between the pion mass (the pseudo-Goldstone boson of chiral symmetry-breaking) and the energy scale of short-range nuclear interactions established from experimental phase shifts. It provides the only known consistent framework for estimating energy uncertainties.

Symmetry Parameters From Chiral EFT

Two approaches to ext 10

1. Take the difference between pure neutron and symmetric matter energies and pressures at the calculated saturation density.

2. Use pure neutron matter energy and pressure with the empirical saturation window from nuclear mass fits. $J = E_N(n_s) + B$, $L = 3P_N(n_s)/n_s$.

Symmetry Parameters From Neutron Matter

Pure neutron matter calculations are more reliable than symmetric matter calculations.

Symmetric matter emerges from a delicate cancellation sensitive to short- and intermediate-range three-body interactions at N^2LO that are Pauli-blocked in pure neutron matter.

N³LO symmetric matter calculations don't saturate within empirical ranges for n_s and B, 17

16 and introduce spurious correlations in +Skyrme symmetric matter. +RMF (MeV) 15 We infer symmetry parameters from χEFT SNM $E_N(n_s)$ and $P_N(n_s)$ using m 14 $J = E_N(n_s) + B$ $L = 3P_N(n_s)/n_s$ 1.3 and include uncertainties in E_N, P_N, n_s and $B_{\rm c}$ 0 14 0.16 0.18 0.20 n_{s} (fm⁻³)

Correlations From Chiral EFT

Bounds From The Unitary Gas Conjecture

120 NL3 STOS.TM1 Δ The Conjecture (UGC): Excluded 100 Neutron matter energy always ΤΜΑ Δ ΝΙρδ larger than unitary gas energy. $E_{UG} = \xi_0(3/5)E_F$, or 80 u,=1/2 LS220 ^ KVOR $E_{UG} \simeq 12.6 \left(\frac{n}{n_{\rm s}}\right)^{2/3} {
m MeV}.$ (MeV) FSUgold TKHS 60 DD2. **KVR** The unitary gas consists of DD,D³C,DD-F IUFSU fermions interacting via a SFHo 40 GCR pairwise short-range s-wave (S^{LB}.I interaction with infinite scat-MKVOR 20 terring length and zero range. SFHx Allowed Cold atom experiments show a Tews, Lattimer, Ohnishi & Kolomeitsev (2017) universal behavior with the Bertsch parameter $\xi_0 \simeq 0.37$. 24 26 28 30 32 34 36 38 40 J (MeV)

For $n \ge n_s$, one also observes $P_N > P_{UG}$ (UGPC). $J \ge 28.6 \text{ MeV}; \ L \ge 25.3 \text{ MeV}; \ P_N(n_s) \ge 1.35 \text{ MeV fm}^{-3}; \ R_{1.4} \ge 9.7 \text{ km}$

Applying Unitary Gas Constraints

J. M. Lattimer Neutron Star Structure, Evolution and Measurements

Neutron Skin Thickness

Nuclear Experimental Constraints

J. M. Lattimer Neutron Star Structure, Evolution and Measurements

Calculated $L - r_{np}$ Correlations

Historical experimental weighted average ²⁰⁸Pb $r_{np}^{208} = 0.166 \pm 0.017$ fm, implying $L = 45 \pm 13$ MeV.

Historical experimental weighted average ${}^{48}Ca$ $r_{np}^{48} = 0.137 \pm 0.015$ fm, implying $L = 14 \pm 21$ MeV.

```
Combined L = 36 \pm 11 MeV.
```

Parity-violating electron scattering measurements at JLab:

```
PREX I+II <sup>208</sup>Pb (Adhikari et al. 2021):

r_{np}^{208} = 0.283 \pm 0.071 fm, implying L = 119 \pm 46 MeV.

CREX <sup>48</sup>Ca (Adhikari et al. 2022):

r_{np}^{48} = 0.121 \pm 0.035 fm, implying L = -5 \pm 42 MeV.

Combined L = 51 \pm 31 MeV.
```

$r_{np}^{208} - r_{np}^{48}$ Linear Correlation

Detail

э

Implied J - L

J. M. Lattimer Neutron Star Structure, Evolution and Measurements

Implied $R_{1.4} - L$

J. M. Lattimer Neutron Star Structure, Evolution and Measurements

Nuclear Experimental Constraints

Giant Dipole Resonances

J. M. Lattimer

Neutron Star Structure, Evolution and Measurements

Nuclear Experimental Constraints

Dipole Polarizabilities $\alpha_D = 4m_{-1}$ $\simeq \frac{AR^2}{20J} \left(1 + \frac{5}{3} \frac{S_s A^{-1/3}}{J}\right)$ Uses data of Tamii et al. (2011)

$$\alpha_{D,208} = 20.1 \pm 0.6 \text{ fm}^2$$

Combined Constraints

J. M. Lattimer Neutron Star Structure, Evolution and Measurements

The Discovery of Pulsars

PhD student Jocelyn Bell and Prof. Antony Hewish Initially "Little Green Men" Hewish won Nobel Prize in 1974

First observation of pulses frim GP 1929

Crab Nebula SN1054AD

Pulsar rotates 30 times per second!

Anasazi Indian cave pictogram, Chaco Canyon, NM

J. M. Lattimer

O

Neutron Star Structure, Evolution and Measurements

J. M. Lattimer Neutron Star Structure, Evolution and Measurements

rivative

High

Astronomy

Handbook of

aken

J. M. Lattimer Neutron Star Structure, Evolution and Measurements

ound

Normal PSRs (average B, slow spin)

Eventually they slow down so much that there is not enough spin to generate the electric fields which produce emission.

derivative

eriod

Their lifetimes are 10-100 Myrs.

Millisecond Pulsars: via "Recycling"

Supernova produces a neutron star

Red Giant transfers matter to neutron star

Alpar et al 1982 Radhakrishnan & Srinivasan 1984 Millisecond Pulsar emerges with a white dwarf companion

Picture credits: Bill Saxton, NRAO/AUI/NSF

Pulsar Flavors Young PSRs (high B, fast spin, very energetic)

Normal PSRs (average B, slow spin)

Millisecond PSRs (low B, very fast, very old, very stable spin, best for basic physics tests)

What's a Magnetar? Neutron stars with extremely strong magnetic fields: 1014-15 Gauss (~1000x stronger than normal PSRs) Powered by decay of magnetic field, not rotation!

Giant X-ray Flares: Magnetar SGR 1900+14

J. M. Lattimer

Neutron Star Structure, Evolution and Measurements

Pulsars are Precise Clocks

PSR J0437-4715 At 00:00 UT Jan 18 2011:

P = 5.7574519420243 ms +/- 0.00000000001ms

The last digit changes by 1 every half hour! This digit changes by 1 every 500 years! This extreme precision is what allows us to <u>use pulsars as tools</u> to do unique physics!

Measurement - Model = Timing Residuals

200ns RMS over 2 yrs

J. M. Lattimer

Neutron Star Structure, Evolution and Measurements

PSR J0737-3039

PSR J1614-2230

3.15 ms pulsar in 8.69d orbit with 0.5 M_{\odot} white dwarf companion. Shapiro delay tightly confines the edge-on inclination: sin *i* = 0.99984 Pulsar mass is 1.97 ± 0.04 M_{\odot} Distance > 1 kpc, *B* \simeq 1.8 × 10⁸ G

Black Widow Pulsar PSR B1957+20

A 1.6ms pulsar in circular 9.17h orbit with $\sim 0.03~M_{\odot}$ companion. The pulsar is eclipsed for 50-60 minutes each orbit; the eclipsing object has a volume much larger than the secondary or its Roche lobe. The pulsar is ablating the companion leading to mass loss and the eclipsing plasma cloud. The secondary may nearly fill its Roche lobe. Ablation by the pulsar leads to secondary's eventual disappearance. The optical light curve tracks the motion of the secondary's irradiated hot spot rather than its center of mass motion.

J. M. Lattimer

Neutron Star Structure, Evolution and Measurements

vanKerkwijk 2010 Romani et al. 2012

Although simple average mass of w.d. companions is 0.23 M_☉ larger, weighted average is 0.04 M_☉ smaller

Demorest et al. 2010

Antoniadis et al. 2013 Champion et al. 2008

The Distribution of Neutron Star Masses

J. M. Lattimer

Radiation Radius

The measurement of flux and temperature yields an apparent angular size (pseudo-BB):

$$\frac{R_{\infty}}{d} = \frac{R}{d} \frac{1}{\sqrt{1 - 2GM/Rc^2}}$$

- Observational uncertainties include distance, interstellar H absorption (hard UV and X-rays), atmospheric composition
- Nearby isolated neutron stars (parallax measurable)
- Quiescent X-ray binaries in globular clusters (reliable distances, low B H-atmosperes)
- Bursting sources in which Eddington flux is measured

$$F_{Edd} = \frac{GMc}{\kappa D^2} \sqrt{1 - \frac{2GM}{R_{ph}c^2}}$$

Quiescent Sources in Globulars

Hot neutron stars in globular clusters

- Globular clusters evolve: more massive stars, including binaries, sink to center via long-range stellar encounters.
- Close binaries formed in encounters.
- Episodes of accretion in close binaries heats neutron stars: they are reborn.
- Following accretion, they become quiescent, low-mass X-ray sources.
- Accretion suppresses surface B fields.
- Atmospheric composition is H.

Reiko Kuromizu

J. M. Lattimer

Neutron Star

X-ray

Semi-Universal Relations for Neuton Stars

- The first universal relations discovered for neutron stars connected
 - pressure and neutron star radius,
 - binding energy and compactness,
 - moment of inertia and compactness.
- Simple explanations exist using analytical TOV solutions that bracket realistic equations of state.
- Tolman VII: $\varepsilon = \varepsilon_0 \left[1 (r/R)^2 \right]$
- Buchdahl: $\varepsilon = 12\sqrt{\varepsilon_* p} 5p$.
- Easily extended to tidal Love number and rotational quadrupole moment.

I-Love-Q Correlations

Yagi and Yunes (2013) discovered that the moment of inertia I, the tidal love number (tidal response) λ , and the quadrupole polarizability Q are extremely highly correlated.

Dimensionless love numbers of neutron stars in a merging binary are, furthermore, universally related, allowing for their individual measurements from gravitational waves of a binary inspiral (Yagi and Yunes 2015).

Additional Proposed Radius and Mass Constraints

J. M. Lattimer

Pulse profiles

Hot or cold regions on rotating neutron stars alter pulse shapes: NICER and LOFT will enable timing and spectroscopy of thermal and non-thermal emissions. Light curve modeling $\rightarrow M/R$; phase-resolved spectroscopy $\rightarrow R$.

Supernova neutrinos Millions of neutrinos detected from a Galactic supernova will measure $BE = m_B N - M_1 < E_{\nu} >, \tau_{\nu}.$

- QPOs from accreting sources ISCO and crustal oscillations
- Gravitational radiation
 Mergers of neutron stars with neutron stars or black holes
 'Mountains' on spinning stars
 R-mode instabilities

Science Measurements

Reveal stellar structure through lightcurve modeling, long-term timing, and pulsation searches

Lightcurve modeling constrains the compactness (M/R) and viewing geometry of a non-accreting millisecond pulsar through the depth of modulation and harmonic content of emission from rotating hot-spots, thanks to gravitational light-bending...

Science Overview - 5

Science Measurements (cont.)

Science Overview - 6

GW170817

- LVC detected a signal consistent with a BNS merger, followed 1.7 s later by a weak gamma-ray burst.
- $\blacktriangleright~\simeq$ 10100 orbits observed over 317 s.
- \blacktriangleright $\mathcal{M} = 1.186 \pm 0.001$ M_{\odot}
- $M_{\rm T,min} = 2^{6/5} \mathcal{M} = 2.725 M_{\odot}$
- ► $E_{\rm GW} > 0.025 M_{\odot} c^2$
- $D_L = 40^{+8}_{-14}$ Mpc
- ▶ 75 < Ã < 560 (90%)</p>
- $\blacktriangleright \ M_{\rm ejecta} \sim 0.06 \pm 0.02 \ M_{\odot}$
- \blacktriangleright Blue ejected mass: $\sim 0.01 M_{\odot}$
- \blacktriangleright Red ejected mass: $\sim 0.05 M_{\odot}$
- Probable r-process production
- Ejecta + GRB: $M_{max} \lesssim 2.22 M_{\odot}$

The Effect of Tides

Tides accelerate the inspiral and produce a gravitational

wave phase shift compared to the case of two point masses.

The tidal deformability λ is the ratio of the induced dipole moment Q_{ii} to the external tidal field E_{ij} , $Q_{ij} = \frac{\sqrt{r}}{0.12}$ Use $\beta = GM/Rc^2$ and $\Lambda = \frac{\lambda c^{10}}{C^4M^5} \equiv \frac{2}{3}k_2\beta^{-5}.$ 0.10 0.08 $k_2 \propto 1/eta$ is the dimensionless Love number, so $\Lambda \simeq a\beta^{-6}$. 0.00 × For $1 < M/M_{\odot} < 1.6$, $a = 0.0093 \pm 0.0007$. 0.04 For a neutron star binary, the 0.02 mass-weighted Λ is the relevant observable: $\tilde{\Lambda} = \frac{16}{13} \frac{(1+12q)\Lambda_1 + (12+0.00)}{(1+q)^5} \frac{14}{(1+q)^5}$ Postnikov, Prakash & Lattimer (2010 0.1 $q = \frac{M_2}{M_1} \leq \frac{1.3}{6}$ 0.4

Binary Deformability and the Radius

$$\tilde{\Lambda} = \frac{16}{13} \frac{(1+12q)\Lambda_1 + q^4(12+q)\Lambda_2}{(1+q)^5} \simeq \frac{16a}{13} \left(\frac{R_{1.4}c^2}{G\mathcal{M}}\right)^6 \frac{q^{8/5}(12-11q+12q^2)}{(1+q)^{26/5}}.$$

This is very insensitive to q for q > 0.5, so

$$\tilde{\Lambda} \simeq a' \left(rac{R_{1.4}c}{G \mathcal{M}}
ight)^6.$$

For $\mathcal{M} = (1.2 \pm 0.2)~M_{\odot}$, $a' = 0.0035 \pm 0.0006$,

$$R_{1.4} = (11.5 \pm 0.3) rac{\mathcal{M}}{M_{\odot}} \left(rac{ ilde{\Lambda}}{800}
ight)^{1/6} \mathrm{km}.$$

For GW170817, $\mathcal{M} = 1.186 M_{\odot}$, $a' = 0.00375 \pm 0.00025$,

$$R_{1.4} = (13.4 \pm 0.1) \left(rac{ ilde{\Lambda}}{800}
ight)^{1/6} \mathrm{km}.$$

Implied $\Lambda_{1.4} - L$

Summary of Astrophysical Observations

J. M. Lattimer Neutron Star Structure, Evolution and Measurements

- Spin-orbit coupling is of same magnitude as post-post-Newtonian effects (Barker & O'Connell 1975, Damour & Schaeffer 1988).
- Precession alters orbital inclination angle (observable if system is face-on) and periastron advance (observable if system is edge-on).
- More EOS sensitive than $R: I \propto MR^2$.
- Measurement requires system to be extremely relativistic.
- ► Double pulsar PSR J0737-3037 is an edge-on candidate; $M_A = 1.338185^{+12}_{-14} M_{\odot}$.
- Even more relativistic systems are likely to be found, based on faintness and nearness of PSR J0737-3037.

Recent Moment of Inertia Measurement

The Urca Processes

Gamow & Schönberg proposed the direct Urca process: nucleons at the top of the Fermi sea beta decay.

 $egin{aligned} n &
ightarrow p + e^- +
u_e \,, \ p &
ightarrow n + e^+ + ar
u_e \ \end{aligned}$

Energy conservation guaranteed by beta equilibrium

 $\mu_n - \mu_p = \mu_e$

Momentum conservation requires $|k_{Fn}| \le |k_{Fp}| + |k_{Fe}|.$

Charge neutrality requires $k_{Fp} = k_{Fe}$, therefore $|k_{Fp}| \ge 2|k_{Fn}|$.

Degeneracy implies $n_i \propto k_{Fi}^3$, thus $x \ge x_{DU} = 1/9$.

With muons

 $(n > 2n_s), x_{DU} = \frac{2}{2 + (1 + 2^{1/3})^3} \simeq 0.148$

J. M. Lattimer

If $x < x_{DU}$, bystander nucleons needed: modified Urca process. $(n, p) + n \rightarrow (n, p) + p + e^- + \nu_e$, $(n, p) + p \rightarrow (n, p) + n + e^+ + \overline{\nu}_e$

Neutrino emissivities: $\dot{\epsilon}_{MU} \simeq \left(T/\mu_n\right)^2 \dot{\epsilon}_{DU} \sim 10^{-6} \dot{\epsilon}_{DU} \,.$

Beta equilibrium composition: $x_{\beta} \simeq (3\pi^2 n)^{-1} (4E_{sym}/\hbar c)^3$ $\simeq 0.04 (n/n_s)^{0.5-2}$.

Neutron Star Cooling

J. M. Lattimer

Cas A

Remnant of Type IIb (gravitational collapse, no H envelope) SN in 1680 (Flamsteed).

- 3.4 kpc distance
- 3.1 pc diameter

Strongest radio source outside solar system, discovered in 1947.

X-ray source detected (Aerobee flight, 1965)

X-ray point source detected (Chandra, 1999)

1 of 2 known CO-rich SNR (massive progenitor and neutron star?)

Spitzer, Hubble, Chandra

Cas A Superfluidity

X-ray spectrum indicates thin C atmosphere, 2×10⁶ $T_e \sim 1.7 imes 10^8$ K (Ho & Heinke 2009) 10 years of X-ray data show cooling Ξ 106 at the rate $\frac{d \ln T_e}{d \ln t} = -1.23 \pm 0.14$ (Heinke & Ho 2010) Modified Urca: $\left(\frac{d\ln T_e}{d\ln t}\right)_{MU}\simeq -0.08$ 5×10⁵ We infer that $T_C \simeq 5 \pm 1 \times 10^8 \text{ K}$

 $T_C \propto (t_C L/C_V)^{-1/6}$

Conclusions

- Nuclear experiments set reasonably tight constraints on symmetry energy parameters and the symmetry energy behavior near the nuclear saturation density.
- Theoretical calculations of pure neutron matter predict very similar symmetry constraints.
- These constraints predict neutron star radii in the range 12 ± 0.7 km.
- Combined astronomical observations of photospheric radius expansion X-ray bursts and quiescent sources in globular clusters suggest R < 13 km.</p>
- The nearby isolated neutron star RX J1856-3754 appears to have a radius near 12 km, assuming a C best-fit atmosphere.
- \blacktriangleright The observation of a 1.97 M_{\odot} neutron star, together with the radius constraints, implies the EOS above the saturation density is relatively stiff.