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Abstract

Inclusive Monte-Carlo samples are indispensable for signal selection and background suppres-1

sion in many high energy physics experiments. A clear knowledge of the physics processes2

involved in the samples, including the types of processes and the number of processes in each3

type, is a great help to investigating signals and backgrounds. To help analysts obtain the physics4

process information from the truth information of the samples, we develop a physics process5

analysis program, TopoAna, with C++, ROOT, and LaTeX. The program implements the func-6

tionalities of component analysis and signal identification with many kinds of fine, customizable7

classification and matching algorithms. It tags physics processes in individual events accurately8

in the output root files, and exports the physics process information at the sample level clearly9

to the output plain text, tex source, and pdf files. Independent of specific software frameworks,10

the program is applicable to many experiments. At present, it has come into use in three e+e−11

colliding experiments: the BESIII, Belle, and Belle II experiments. The use of the program in12

other similar experiments is also prospective.13

Keywords: event type; component analysis; signal identification; inclusive Monte-Carlo14

samples; high energy physics experiments15

1. Introduction16

One of the most important tasks in the data analysis of high energy physics experiments is17

to select signals, or in other words, to suppress backgrounds. As for the task, inclusive/generic18

Monte-Carlo (MC) samples are extremely useful, in that they provide basic, though not per-19

fect, descriptions of the signals and/or backgrounds involved. However, due to the similarities20

between signals and some backgrounds, it usually takes efforts to establish a set of selection21

criteria that retain a high signal efficiency and meanwhile keep a low background level. Further22
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optimization of preliminary criteria is often needed in the process. Under the circumstances, a23

comprehensive understanding of the samples is required. In particular, a clear knowledge of the24

physics processes, namely the event types, involved in the samples is quite helpful. To be spe-25

cific, the physics process information includes the types of processes and the number of processes26

in each type, involved both in the entire samples and in the individual events. Here, the physics27

process could be a complete production and decay process involved in an event, or merely a part28

of it, such as the decay of an intermediate resonance. With the information, one can figure out29

the main backgrounds (especially the peaking ones), and optimize the selection criteria further30

by analyzing the differences between the main backgrounds and the signals. Even if it is difficult31

to further suppress these backgrounds, the knowledge of their types is beneficial to estimate the32

systematic uncertainties associated with them.33

The analysis of the physics process information described above is a sort of component anal-34

ysis. It is complex since it has to classify physics processes actively and finely. Another sort35

of physics process analysis often required in practice is signal identification, which only aims36

to search for certain processes of interests. It is relatively simple because its core technique is37

merely pattern matching. Mostly, signal and background events coexist in inclusive MC samples.38

It is useful to differentiate them in such cases. The identified signal events can be used to make39

up a signal sample in the absence of specialized signal samples, or they can be removed to avoid40

repetition in the presence of specialized signal samples. Occasionally, we have to pick out some41

decay branches in order to re-weight them according to new theoretical predictions or updated42

experimental measurements. Signal identification also plays a part in this occasion.43
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Figure 1: Topology diagrams of (a) e+e− → J/ψ, J/ψ → ρ+π−, ρ+ → π+π0, π0 → γγ and (b) e+e− → Υ(4S ),
Υ(4S )→ B0 B̄0, B0 → K0

S J/ψ, B̄0 → µ−D∗+νµ, K0
S → π+π−, J/ψ→ e+e−, D∗+ → D0π+, D0 → π0π+K−, π0 → γγ. As

if trees grow, the diagrams are plotted from bottom to top.

Processes in high energy physics can be visualized with topology diagrams. As an example,44

Fig. 1 shows the topology diagrams of two typical physics processes occurring at e+e− colliders.45

From the figure, the hierarchies of the processes and the relationships among the particles are46

clearly illustrated with the diagrams. Though the complexities of topology diagrams vary with47

physics processes, there is only one diagram corresponding to each process. For this reason, we48

refer to the physics process information/analysis mentioned thereinbefore as topology informa-49
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tion/analysis hereinafter. The component analysis and signal identification introduced above are50

exactly the two categories of topology analysis that will be discussed in this paper.51

Since the raw topology truth information of inclusive MC samples is counter-intuitive, di-52

verse, and overwhelming, it is difficult for analysts to check the topology information of the53

samples directly. To help them do the checks quickly and easily, a topology analysis program54

called TopoAna is developed with C++, ROOT [1], and LaTeX. Here, C++ is the programming55

language, ROOT is the C++ based data analysis software universally used in modern high energy56

physics experiments, and LaTeX is used for generating pdf documents containing the obtained57

topology information. The program implements the functionalities of component analysis and58

signal identification based on accurate pattern matching. To meet a variety of practical require-59

ments, many kinds of fine, customizable classification and matching algorithms are implemented60

in the program. Generally, the program recognizes, categorizes, and counts physics processes in61

each event in the samples, and tags them in the corresponding entry of the output root (TFile [2])62

files. After processing the events, the program exports the obtained topology information at the63

sample level to the output plain text, tex source, and pdf files.64

The program is applicable to inclusive MC samples at any data analysis stage of associated65

high energy physics experiments. In the overwhelming majority of situations, it is run over the66

samples which have undergone some selections, in order to examine the signals and backgrounds67

in the selected samples as well as the effect of the imposed selections. In such situations, the68

results of topology analysis are usually used together with other quantities for physics analysis.69

In spite of this, applying the program to the samples without undergoing any selection facilitates70

us to validate the generators and decay cards that produce the samples and helps novices get71

familiar with the topology information of the samples.72

The program has a history of more than ten years. It has already gone through a series of73

major upgrades. Prior to its development, analysts usually wrote some private codes to match74

few signals and/or backgrounds for their own studies. The limited functions of these codes75

do not satisfy the increasing demand for topology analysis. This motivates us to develop a76

generic, powerful, and easy-to-use program. At first, the program was developed for the BESIII77

experiment, an experiment in the τ-Charm energy region with abundant research topics under78

study [3, 4]. Later, it was extended substantially for the Belle II experiment, which is primarily79

dedicated to search for physics beyond the Standard Model in the flavor sector and has already80

started data taking in the recent three years [5]. Besides, the program has also been tried and81

used in the Belle experiment, the predecessor of the Belle II experiment, where some physics82

studies are still ongoing [6]. Not relying on any specific software frameworks, the program now83

applies to many high energy physics experiments.84

This user guide gives a detailed description of TopoAna. It proceeds as follows: Section 285

introduces the basics of the program; Sections 3 and 4 expatiate the two categories of function-86

alities of the program — component analysis and signal identification, respectively; Sections 587

and 6 present some common settings and auxiliary facilities for the executing of the program,88

respectively; Section 7 summarizes the user guide. It is worth mentioning here that, aside from89

the detailed description in the user guide, an essential description of the program has been writ-90

ten into a paper, which has already been published by Computer Physics Communications. One91

can find this paper and the preprint corresponding to it in the links Comput. Phys. Commun.92

258 (2021) 107540 and arXiv:2001.04016, respectively. For your convenience, we provide the93

latest version of the paper draft “paper draft v3.1.pdf”, as well as a quick-start tutorial “quick-94

start tutorial v*.pdf”, under the directory “share” of the package. If the tool really helps your95

researches, we would appreciate it very much if you could cite the paper in your publications.96
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2. Basics of the program97

This section introduces the basics of the program, including the package, input, algorithm,98

execution, performance, output, and validation of the program. The package implements the99

program via a C++ class called “topoana” and a main function invoking the class. Compiling100

the package creates the executable file of the program, that is, “topoana.exe”. To execute the101

program, we have to first obtain the input data of the program, namely the raw topology truth102

information of the inclusive MC samples, with some interfaces to the program in the software103

systems of the corresponding experiments. Normally, the input data contain all the topology104

information of the samples. With the data, all kinds of the topology analysis presented in the105

user guide can be performed.106

To carry out the topology analysis desired in our work, we have to provide some neces-107

sary input, functionality, and output information to the program. The information is required to108

be filled in the setting items designed and implemented in the program, and the items have to109

be put in a plain text file named with a suffix “.card”. With the card file, one can execute the110

program with the command line: “topoana.exe cardFileName”, where the argument “cardFile-111

Name” is optional and its default value is “topoana.card”. After the execution of the program,112

we can examine the results of topology analysis in the output files and use them to analyze other113

experimental quantities. The results help us gain a better understanding of the signals and back-114

grounds and are conducive to carrying our work forward. Besides the package, input, execution,115

and output of the program mentioned above, the algorithm, performance, and validation of the116

program will also be discussed in this section, because they are also essential aspects of the pro-117

gram. In the next seven subsections, we will present the package, input, algorithm, execution,118

performance, output, and validation of the program in detail, with each part in one subsection.119

2.1. Package of the program120

The package consists of six directories — “include”, “src”, “bin”, “share”, “examples”,121

and “utilities” — and five files — “LICENSE”, “README.md”, “Configure”, “Makefile”, and122

“Setup”. While the directory “include” only includes one header file “topoana.h”, the directory123

“src” contains 68 source files “*.cpp” as well as a script file “topoana.C”. At present, only one124

class, namely “topoana”, is defined in the program for all of its functionalities. The class is125

declared in “topoana.h”, implemented in “*.cpp” files, and invoked in “topoana.C”.126

The file “template topoana.card” under the directory “share” saves all the items which are de-127

veloped for users to specify information for the execution of the program. One can refer to the file128

when filling in the cards for their own needs. Some plain text files “pid 3pchrg txtpnm texpnm129

iccp.dat *” are also included in the directory “share”. They store the basic information of the130

particles used in the program. The suffixes of their names indicate the experiments they apply131

to. One of them will be copied to “pid 3pchrg txtpnm texpnm iccp.dat” when we set up the132

program. Besides, the directory “share” also contains three LaTeX style files “ geometry.sty”,133

“ifxetex.sty”, and “makecell.sty”, which are invoked by the program for generating pdf files. The134

directory “examples” includes plenty of detailed examples. Particularly, all the examples135

involved in this user guide are under its sub-directory “in the user guide”. The directory136

“utilities” contains some useful bash scripts.137

The program is released under MIT license [7]. The file “README.md” briefly introduces138

how to install and use the program. To set up the program, one should first set the package path139

with the command “./Configure”. Standard outputs of the command are the guidelines for man-140

ually adding the absolute path of “topoana.exe” to the environment variable “PATH”, in order141
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to execute it without any path. The second step is executing the command “make”. This com-142

mand compiles the header, source, and script files into the executable file “topoana.exe” under143

the directory “bin”, according to the rules specified in the “Makefile”. The last step is specifying144

the experiment name with the command line “./Setup experimentName”. Currently, the sup-145

ported experiment names are “BESIII”, “Belle”, and “Belle II”. Besides, “./Setup Example” is146

required for the execution of the examples in the user guide.147

2.2. Input of the program148

The input of the program is one or more root files including a TTree [8] object which con-
tains raw topology truth information of the inclusive MC samples under study. To be specific,
the information in each entry of the TTree object consists of the following three ingredients as-
sociated with the particles produced in an event of the samples: the number of particles, PDG [9]
codes of particles, and mother indices of particles. Notably, the particles do not include the initial
state particles (e+ and e− in e+e− colliding experiments), which are default and thus omitted. Be-
sides, the indices of particles are integers starting from zero (included) to the number of particles
(excluded); they are obvious and hence not taken as an input ingredient for topology analysis.
Equation (1) shows an example of the input data.

Number of particles : 63
PDG codes of particles : 300553,

−511, 511, −433, 421, 211, 22, −413, 111, 111, 113,
211, −431, 22, −323, 213, −421, −211, 22, 22, 22,
22, 211, −211, 333, 11, −12, 22, −311, −211, 211,
111, 221, 331, 321, −321, 310, 22, 22, 111, 111,
111, 111, 111, 221, 111, 111, 22, 22, 22, 22,
22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
22, 22

Mother indices of particles : −1,
0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
2, 3, 3, 4, 4, 7, 7, 8, 8, 9,
9, 10, 10, 12, 12, 12, 12, 14, 14, 15,
15, 16, 16, 24, 24, 28, 31, 31, 32, 32,
32, 33, 33, 33, 36, 36, 39, 39, 40, 40,
41, 41, 42, 42, 43, 43, 44, 44, 45, 45,
46, 46

(1)

The complete physics process contained in the data is displayed as follows.149

0 e+e− → Υ(4S ) -1 9 ρ+ → π0π+ 6
1 Υ(4S )→ B0 B̄0 0 10 K∗− → π−K̄0 6
2 B0 → π0π0ρ0π+D∗− 1 11 D−s → e−ν̄eφγ 7
3 B̄0 → π+D0D∗−s γ 1 12 η→ π0π0π0 8
4 ρ0 → π+π− 2 13 η′ → π0π0η 8
5 D∗− → π−D̄0 2 14 K̄0 → K0

S 10
6 D0 → ρ+K∗− 3 15 φ→ K+K− 11
7 D∗−s → D−s γ 3 16 η→ γγ 13
8 D̄0 → ηη′ 5 17 K0

S → π0π0 14

(2)

Here, the decay branches in the process are placed into two blocks in order to make full use of150

the page space. In both blocks, the first, second, and third columns are the indices, symbolic151

expressions, and mother indices of the decay branches. Notably, all the decay branches of π0 →152
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γγ are omitted in Eq. (2) in order to make the process look more concise. Since the topology153

diagram of such a process looks like a tree, we refer to the complete processes as decay trees.154

Obviously, the input data do not show the structure automatically. Thus, we need the program to155

do the topology analysis work.156

From the first branch in Eq. (2), only one particle Υ(4S ) is produced after the e+e− annihila-
tion. Thus, Υ(4S ) can be referred to as the root particle of the decay tree. Similarly, many other
resonances with the quantum numbers JPC = 1−−, such as J/ψ, can be solely produced at other
proper energy points. Besides the cases with only one root particle, the program can deal with
the cases with multiple root particles. For example, the program can recognize the following raw
topology truth information

Number of particles : 25
PDG codes of particles : 433,

−321, 223, 211, −413, 431, 111, 211, −211, 111, −411,
111, 321, 113, 22, 22, 22, 22, 321, −211, −211,
22, 22, 211, −211

Mother indices of particles : −1,
−1, −1, −1, −1, 0, 0, 2, 2, 2, 4,
4, 5, 5, 6, 6, 9, 9, 10, 10, 10,
11, 11, 13, 13

(3)

as the following process

0 e+e− → π+ωK−D∗−D∗+s −1 4 D− → π−π−K+ 2
1 ω→ π0π+π− 0 5 D+

s → ρ0K+ 3
2 D∗− → π0D− 0 6 ρ0 → π+π− 5
3 D∗+s → π0D+

s 0

(4)

Here, the particles π+ωK−D∗−D∗+s in the first branch arise from hadronization processes, in which157

quark pairs produced from initial state particles turn into hadrons. The processes with hadroniza-158

tion ignored have a tree structure and thus are easy to resolve. On the other hand, some hadroniza-159

tion processes, particularly those in high energy regions, contain complicated loop structures that160

are difficult to resolve without sophisticated algorithms. Resolving these intricate hadronization161

processes is not involved in the program at present.162

It is recommended to save the input data in the TTree object together with other quantities for163

physics analyses, in order to facilitate the examination of the distributions of these quantities with164

the topology information. The input data can be stored in several types. Normally, the number of165

particles can be simply stored in a TBranch [10] object as a scalar integer, while the PDG codes166

of particles, as well as the mother indices of particles, can be stored in a TBranch object as an167

array of integers, in a TBranch object as a vector of integers, or in a group of TBranch objects as168

multiple scalar integers. In the analysis software of the Belle/Belle II experiment, float/double-169

precision variables are used uniformly to store all the quantities involved in the experiment, and170

TBranch objects are not recommended to store arrays and vectors in order to use other tools171

such as NumPy [11] and pandas [12]. In the Belle/Belle II context, we have to store the number172

of particles in a TBranch object as a scalar float/double-precision number, and store the PDG173

codes of particles, as well as the mother indices of particles, in a group of TBranch objects as174

multiple scalar float/double-precision numbers. Summing up the above, we have mentioned five175

storage types of the input information. For the sake of simplification, we refer to them with the176

following acronyms: AOI, VOI, MSI, MSF, and MSD, which are short for array of integers,177

vector of integers, multiple scalar integers, multiple scalar float numbers, and multiple scalar178
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double-precision numbers, respectively. All of the storage types are supported by the program,179

and their acronyms will be used in the related item of the card file (see Section 2.4 for details).180

It is easy to get the input of the program within the software framework of high energy181

physics experiments. To facilitate its use, we have developed the interfaces of the program to182

the software systems of the BESIII, Belle, and Belle II experiments. Similar interfaces for other183

experiments can also be implemented with ease. Beyond the scope of the user guide, we will not184

discuss the details of the interfaces here.185

2.3. Algorithm of the program186

The program resolves physics processes from the input data introduced above. Consider-
ing the diversity of the data, the program first sorts them before translating them into physics
processes. Here, the diversity means that the data representing a process may have multiple per-
mutations. For example, the data for the decay ρ0 → π+π− have the following two permutations.

Number of particles : 3
PDG codes of particles : 113, 211, −211 or 113, −211, 211
Mother indices of particles : −1, 0, 0

A decay tree can consist of many decay branches. As a consequence, the diversity issue is187

complex. To avoid the different permutations of one group of data are identified as different pro-188

cesses, the program first sorts the input data to adjust all the possible permutations to a unique189

order, according to the PDG codes and electronic charges of the involved particles, and the num-190

bers of their daughter particles in the case of identical particles present in the same decay branch.191

For example, the two permutations above will be finally sorted into the first permutation (113,192

211, −211) in the program. The sorting algorithm is implemented in the source file “sortPs.cpp”,193

where some other settings are also involved. One can see the reference file “sortPs.cpp core” for194

the core of the sorting algorithm. After the sorting, the program can get the decay tree from the195

sorted data into a vector of the type “vector< list<int> >” with the function implemented in the196

source file “getDcyTr.cpp”.197

As mentioned in the previous section, the program has two categories of functionalities: sig-198

nal identification and component analysis. In this subsection, we introduce the basic algorithms199

for signal identification and component analysis by taking the cases of decay trees as examples.200

Figures 2 and 3 show the flow charts of these algorithms in detail. Dozens of lines of code, in-201

cluding some using the ROOT classes TChain [13], TFile [2], and TTree [8], are involved in the202

charts in order to express the algorithms explicitly. The flow chart of the signal identification for203

decay trees is depicted in Fig. 2. Firstly, the program reads in the signal decay trees specified in204

the user card file. Then, for each entry of the input root file, the program obtains the decay tree205

from the sorted input data, matches the decay tree to the signal decay trees, records the index of206

the matched signal decay tree, and increases the number of the matched signal decay tree. At207

last, the program outputs the statistics of the signal decay trees.208

The flow chart of the component analysis over decay trees is illustrated in Fig. 3. Despite209

the similarity in their frameworks, the flow chart has significant differences from that of the210

signal identification for decay trees in Fig. 2. In the signal identification algorithm, the signal211

decay trees to be identified are specified beforehand in the user card file. On the contrary, in212

the component analysis algorithm, the program has to classify decay trees by itself from scratch.213

In the signal identification algorithm, the decay trees are matched by directly comparing the214

vectors storing them. Since the number of specified signal decay trees is fixed and usually small,215

the processing rate of the program is high and usually in constant. However, in the component216
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analysis algorithm, the number of decay tree types found in a sample can be quite large and tends217

to grow with the number of processed entries. On this occasion, if we still match the decay trees218

by comparing the vectors storing them, the processing rate of the program will decrease with219

the increase of the number of processed entries. To improve the processing rate, the unordered220

map [14], a kind of container template introduced since the C++ 11 standard, is employed for the221

fast matching of decay trees. Internally, the elements in the unordered maps are organized into222

buckets depending on their hash values, to allow for fast access to individual elements directly by223

their key values with a constant average time complexity [14]. This constant feature in average224

time complexity will be examined in Section 2.5.225

2.4. Execution of the program226

To execute the program, we have to first configure some necessary setting items in a card file,227

and then run the program with the command line: “topoana.exe cardFileName”. This subsection228

introduces the essential items for the input, basic functionality, and output of the program. More229

items that can be set in the card file will be described in the following three sections. Sections 3230

and 4 expatiate the available items for the functionalities of the program, and Section 5 presents231

the optional items for the common settings to control the execution of the program.232

233

An example of the card file containing the essential items is shown as follows.234

235

# The following six items set the input of the program.236

237

% Names of input root files238

{239

../input/jpsi1.root240

../input/jpsi2.root241

}242

243

% TTree name244

{245

evt246

}247

248

% Storage type of input raw topology truth information (Five options: AOI, VOI, MSI, MSF, and MSD. Default:249

AOI)250

{251

AOI252

}253

254

% TBranch name of the number of particles (Default: nMCGen)255

{256

Nmcps257

}258

259

% TBranch name of the PDG codes of particles (Default: MCGenPDG)260

{261

Pid262

}263

264

% TBranch name of the mother indices of particles (Default: MCGenMothIndex)265

{266

Midx267

}268

269

8



Figure 2: Basic flow chart of the signal identification for decay trees. The vectors “vSigDcyTr” and “vNSigDcyTr” are
used to store the signal decay trees specified in the user card file and the numbers of these decay trees found in the input
root file, respectively. The TBranch “iSigDcyTr” in the output root file is used to record the index of the signal decay
tree involved in each entry of the input root file.
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Figure 3: Basic flow chart of the component analysis over decay trees. The TBranch “iDcyTr” in the output root file is
used to record the index of the decay tree involved in each entry of the input root file. The vectors “vDcyTr”, “vIDcyTr”,
and “vNDcyTr” are used to store the decay trees found in the input root file, their individual indices, and their individual
numbers, respectively. In addition, the unordered map “uomDcyTr” is used for the fast matching of decay trees. Its key
and value are the string “strDcyTr” and the index “iDcyTr”, respectively. Here, the string “strDcyTr” is constructed from
the vector “dcyTr”; there is a one-to-one correspondence between them.
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# The following item sets the basic functionality of the program.270

271

% Component analysis — decay trees272

{273

Y274

}275

276

# The following item sets the output of the program.277

278

% Common name of output files (Default: Name of the card file)279

{280

jpsi ta281

}282

283

In the card file, “#”, “%”, and the pair of “{” and “}”, are used for commenting, prompting,284

and grouping, respectively. The first six, seventh, and last items are set for the input, basic285

functionality, and output of the program, respectively.286

The first item sets the names of the input root files. The names ought to be input one per287

line without tailing characters, such as comma, semicolon, and period. In the names, both the288

absolute and relative paths are allowed and wildcards “[]?*” are supported, just like those in the289

root file names input to the method Add() of the class TChain [13]. The second item specifies290

the TTree name. The third item tells the program the storage type of the input raw topology truth291

information, and the input should be one of the following five acronyms: AOI, VOI, MSI, MSF,292

and MSD, as we introduce in the previous subsection. The following three items set the TBranch293

names of the three ingredients of the input raw topology truth information. Of the first six items,294

the former two are indispensable, whereas the latter four can be removed or left empty if the295

input values are identical to the default values indicated in their prompts. Besides, the latter four296

items can be moved to the underlying card file, which is developed for frequently used items and297

will be introduced in Section 6.1, because the input values are usually fixed for a user or a group298

of users, though they might be different from the default values.299

The seventh item sets the basic functionality of the program, namely the component analysis300

over decay trees. The item can be replaced or co-exist with other functionality items expatiated in301

Sections 3 and 4. Here, we note that at least one functionality item has to be specified explicitly302

in the card file, otherwise the program will terminate soon after its start because no topology303

analysis to be performed is set up.304

The last item specifies the common name of the output files. Though in different formats, the305

files are denominated with the same name for the sake of uniformity. They will be introduced306

in detail in the next subsection. This item is also optional, with the name of the card file as its307

default input value. It is a good practice to first denominate the card file with the desired common308

name of the output files and then remove this item or leave it empty.309

To provide a complete description, we list and explain all the essential items in the paragraphs310

above. However, in practical uses, we suggest removing the optional items if the input values311

are identical to the default ones, or moving them to the underlying card file if the input values312

are fixed for most of your use cases. In this way, the contents of the card file will become much313

more concise, making the use of the program easier and quicker. For example, unless otherwise314

stated, only the following two items are used to set the essential information in Sections 3, 4, and315

5.316

317

% Names of input root files318

{319

../input/mixed1.root320

../input/mixed2.root321

11



}322

323

% TTree name324

{325

evt326

}327

328

Besides, all the items in the program, also including those to be introduced in the following sec-329

tions, are not required to be filled in the card files in a certain order. Nonetheless, we recommend330

filling them in a logical order for clearness.331

During the execution of the program, some standard output and error messages are printed to332

the screen to provide some information on the input, progress, and output of the program, as well333

as the possible problems and proposed solutions to them. The standard output messages include334

the following four parts: (1) the values of the items with active inputs; (2) the total number of335

entries contained in the input root files and the progress of the program to process these entries;336

(3) the information output by the pdflatex command when it compiles the tex source file to337

get the pdf file; (4) and the hints on the output of the program. The standard error messages338

are prompted with “Error:” and “Infor:” in order to differentiate themselves from the standard339

output massages. The messages started with “Error:” point out the problems encountered by the340

program directly, while those started with “Infor:” give more information on the problems as341

well as some guidelines on the solutions.342

2.5. Performance of the program343

Besides the performance of the used computing systems, the processing rate of the program is344

largely related to the characteristics of the samples, particularly the average number of generated345

particles in each event. Figure 4 shows the performance study of the program with the J/ψ sample346

used in the example of this section as well as the τ+τ−, dd̄, uū, ss̄, cc̄, B+B−, and B0B̄0 samples347

generated at the peak energy of the Υ(4S ) resonance. Each of the used samples consists of one348

hundred thousand events. From the left plot in the figure, for all the samples, the number of349

elapsed seconds grows linearly with the number of processed entries. This linear pattern is a nice350

feature. It guarantees the program has a high rate even in the case of processing huge samples.351

For example, the program can process one hundred thousand J/ψ events within five seconds.352

Here, we note that the linear pattern is the result of fast searches with unordered maps [14], as353

we discuss in Section 2.3. On the other hand, the processing rate of the program varies with354

the processed samples. The right plot in Fig. 4 shows the relationship between the total number355

of elapsed seconds over the whole sample and the average number of generated particles in an356

event. Clearly, a linear pattern is also observed in the plot. To be specific, with the average357

number of generated particles in an event increasing by one, the total number of elapsed seconds358

over the whole sample increases by about 0.56.359

2.6. Output of the program360

The program gains the topology information from input data and saves it to output files. As361

mentioned in Section 1, the information includes the types of physics processes and the number362

of processes in each type, involved both in entire samples and in individual events. We refer to363

the information at the sample level as topology maps. In the topology maps, we assign an integer364

to each type of physics processes as its index. We term the indices of processes as well as the365

numbers of processes involved in each type in the individual events as topology tags.366
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Figure 4: Performance study of the program with the J/ψ sample as well as the τ+τ−, dd̄, uū, ss̄, cc̄, B+B−, and B0 B̄0

samples generated at the peak energy of the Υ(4S ) resonance. The left plot demonstrates the changing trends of the
number of elapsed seconds with respect to the number of processed entries. The right plot illustrates the relationship
between the total number of elapsed seconds over the whole sample and the average number of generated particles in
an event. In both plots, the dots show the timing data from the standard output of the program, and the lines display the
results of fitting linear functions to the data.

The program outputs topology maps to three different files: one plain text file, one tex source367

file, and one pdf file, with the same name specified in the card file. For instance, the three files368

are “jpsi ta.txt”, “jpsi ta.tex”, and “jpsi ta.pdf” in the example. Although in different formats,369

the three files have the same information. The pdf file is the easiest to read. It is converted from370

the tex source file with the command pdflatex. The tex source file is convenient to us if we want371

to change the style of the pdf file to our taste and when we need to copy and paste (parts of) the372

topology maps to our slides, papers, and so on. For example, all of the tables displaying topology373

maps in this user guide are taken from associated tex source files. The plain text file has its own374

advantage, because the topology maps in it can be checked with text processing commands as375

well as text editors, and can be used on some occasions as input to the functionality items (see376

Sections 3 and 4 for details) of another card file.377

In addition to the three files for topology maps, one or more root files are output to save378

topology tags. The root files only include one TTree object, which is entirely the same as that in379

the input root files, except for the topology tags inserted in all of its entries. The number of root380

files depends on the size of output data. The program switches to one new root file whenever the381

size of the TTree object in memory exceeds 3 GB. In the case of the size less than 3 GB, only382

one root file is output. While the sole or first root file has the same name as the three files above,383

more possible root files are denominated with the suffix “ n” (n=1, 2, 3, and so on) appended to384

the name. In the example, the first root file is “jpsi ta.root”, and more possible root files would385

be “jpsi ta 1.root”, “jpsi ta 2.root”, “jpsi ta 3.root”, and so on.386

In the example of the previous subsection, the program conducts its basic functionality,387

namely the component analysis over decay trees. From the 100000 events of the input sample,388

the program recognizes 17424 decay trees and outputs all of them to the plain text, tex source,389

and pdf files. Table 1 only shows the top ten decay trees and their respective final states listed in390

the output pdf file. With the help of the symbolic expressions, the components of the sample are391

clearly displayed in the table, which brings great convenience to us in examining the signals and392

backgrounds involved in the sample. In the table, “rowNo”, “iDcyTr”, “nEtr”, and “nCEtr” are393

abbreviations for the row number, index of decay tree, number of entries of decay tree, and num-394
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ber of the cumulative entries from the first to the current decay trees, respectively. The values of395

“iDcyTr” are assigned from small to large in the program but listed according to the values of396

“nEtr” from large to small in the table. This is the reason why they are not in natural order like397

the values of “rowNo”. Since J/ψ is the only root particle for the J/ψ sample, the production398

branch e+e− → J/ψ is omitted to save page space. Similar rules also apply to other samples with399

only one root particle. Considering π0 has a very large production rate and approximatively 99%400

of it decays to γγ, the program is designed to discard the decay π0 → γγ by default at the early401

phase of processing the input data (see Section 5.1.2 for the setting item to alter the behavior).402

As a result, π0 → γγ does not show itself in the table. Besides, the superscripts “ f ” and “F” in403

γ f and γF indicate the final state radiation effect (see Section 5.1.3 for their difference).404

Table 1: Top ten decay trees and their respective final states.

rowNo decay tree decay final state iDcyTr nEtr nCEtr

1 J/ψ→ µ+µ− µ+µ− 6 5269 5269
2 J/ψ→ e+e− e+e− 4 4513 9782
3 J/ψ→ π0π+π+π−π− π0π+π+π−π− 0 2850 12632
4 J/ψ→ π0π+π+π+π−π−π− π0π+π+π+π−π−π− 2 1895 14527
5 J/ψ→ π0π+π−K+K− π0π+π−K+K− 20 1698 16225

6
J/ψ→ ρ+ρ−ω, ρ+ → π0π+,

ρ− → π0π−, ω→ π0π+π−
π0π0π0π+π+π−π− 19 1453 17678

7 J/ψ→ e+e−γ f e+e−γ f 70 1222 18900
8 J/ψ→ π0π0π+π+π−π− π0π0π+π+π−π− 127 1161 20061
9 J/ψ→ π0π+π+π+π+π−π−π−π− π0π+π+π+π+π−π−π−π− 234 836 20897

10 J/ψ→ π0π0π+π−γF π0π0π+π−γF 43 792 21689

In the table, “iDcyTr” is the topology tag for decay trees. Thus, it is also saved in the TTree405

objects of the output root file, together with other quantities for physics analysis. Therefore, it406

can be used to pick out the entries of specific decay trees and then examine the distributions of407

the other quantities over the decay trees. In the example, besides the raw topology truth informa-408

tion, only a random variable following the standardized normal distribution, namely X, is stored409

in the input root files and thus copied by default to the output root file. Though not a genuine410

variable for physics analysis, X is quite good to illustrate the usage of the topology tag. Figure 5411

shows the distribution of X accumulated over the top ten decay trees. The figure is drawn with412

the root script413

414

examples/in the user guide/ex for tb 01/draw X/v2/draw X.C,415

416

where, for example, a statement equivalent to417

418

chain–>Draw(“X >>h0”, “iDcyTr==6”)419

420

is used to import X over the decay tree J/ψ → µ+µ− from the output root file to the histogram421

named h0. With such a figure, we can clearly see the contribution of each decay tree. Particu-422

larly, we can get to know whether a decay tree has a peak contribution or a contribution mainly423

distributed in a different region. Based on these distributions, we can get a better understand-424

ing of our signals and backgrounds, and thus optimize event selection criteria by applying new425
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requirements on the displayed quantities.426
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Figure 5: Distribution of X accumulated over the top ten decay trees. In the legend entry “J/ψ → ρ+ρ−ω, ...”, the dots
“...” represent the secondary decay branches: ρ+ → π0π+, ρ− → π0π−, ω→ π0π+π−.

2.7. Validation of the program427

The decay trees displayed in Table 1 are relatively simple, and we can check their correctness428

by examining the input data directly. To validate the program generally, we need to do input and429

output checks, where some arbitrary physics processes are generated as the input of the program.430

The output has to be consistent with the input; otherwise, there must be some bugs in the program431

and we have to fix them. A large number of such checks have been performed in the develop-432

ment and application of the program, and some of them can be found under the sub-directory433

“examples/validation” of the package. These checks are divided into two groups: standalone and434

combined. In the standalone checks, forty exclusive J/ψ and Υ(4S ) decays modeled with the435

EvtGen [15] generator are used to test the functionality of resolving decay trees. In the com-436

bined checks, randomly combined samples of these exclusive decays are used for verifying the437

functionalities of counting and tagging decay trees. The output agrees with the input in all the438

checks, which indicates the correctness of the program.439

3. Component analysis440

Component analysis is the primary functionality of the program. It is developed mainly for441

the background analysis involved in our physics studies. We perform it over decay trees in the442

previous example. Also, it can be carried out as follows: over decay initial-final states; with443

specified particles to check their decay branches, production branches, mothers, cascade decay444

branches, and decay final states; with specified inclusive decay branches to examine their exclu-445

sive components; and with specified intermediate-resonance-allowed (IRA) decay branches to446

investigate their inner structures. This section introduces the nine (five for specified particles)447

kinds of component analysis, with each in a subsection. For each kind of component analysis,448
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one item is designed and implemented in the program to set related parameters. In each subsec-449

tion, we take an example to demonstrate the corresponding setting item and show the resulting450

topology map. For easy exposition, all of the essential topology tags involved in the component451

analysis functionalities are presented in another separate subsection, namely the last subsection.452

Similar to the case over decay trees, to perform the component analysis over decay initial-453

final states, we only need to input a positive option “Y” to the corresponding item. Different454

from the former two kinds, to carry out the latter seven kinds of component analysis, we have to455

explicitly specify one or more desired particles, inclusive decay branches, or IRA decay branches456

in the associated items. In the following examples, two particles or decay branches are set to457

illustrate the use of these items, but only the topology map related to one of them is shown to458

save space in the paper.459

In addition to the indispensable parameters, two sorts of common optional parameters can be460

set in the items. The first sort is designed for all the nine kinds of component analysis to restrict461

the maximum number of components output to the plain text, tex source, and pdf files. Without462

the optional parameters, all components will be output. This is fine if the number of components463

is not massive. In cases of too many (around ten thousand or more) components, it takes a long464

time for the program to output the components to the plain text and tex source files as well as465

to get the pdf file from the tex source file. In such cases, it also takes up a large disk space to466

save these components in the output files. Considering further that the posterior components are467

generally unimportant and our time and energy to examine them are limited, it is better to set a468

maximum to the number of output components. To save space in the paper, we set the maximum469

number to five in the following examples.470

The second sort of optional parameters are developed for the latter seven kinds of component471

analysis to assign meaningful aliases to the specified particles, inclusive decay branches, and IRA472

decay branches. By default, the indices 0, 1, 2, and so on are used to tag the particles and decay473

branches in the names of the TBranch objects appended in the TTree object of the output root474

files. This is fine, but it is significative to replace the indices with meaningful aliases, particularly475

in cases of many specified particles or decay branches.476

3.1. Decay trees477

Component analysis over decay trees is the basic kind of topology analysis. It is quite useful478

to study the backgrounds involved in our research works where the signals are the complete decay479

trees fully reconstructed from final state particles. It has already been widely performed in the480

BESIII experiment, as illustrated in the previous section with the J/ψ example. This subsection481

introduces it further with the available optional settings using the Υ(4S ) sample. The following482

example shows the associated item with the maximum number of output components set to five.483

In the item, a third parameter is also filled and set to “Y”. With the setting, the decay final states484

in the output pdf file are put under their respective decay trees, rather than in a column next to485

that for decay trees. It is recommended to use this optional parameter in cases there are too many486

(about ten or more) particles in some final states. Here, we note that the symbol “−” can be used487

as a placeholder for the maximum number of output components, if only the third parameter is488

desired.489

490

491

% Component analysis — decay trees492

{493

Y 5 Y494

}495

16



496

Component analysis over decay trees is one kind of the most time-consuming topology anal-497

ysis tasks. To check further the efficiency of the program, the progress of running this example,498

in addition to the example in Section 2.4, is illustrated in the plots of Fig. 4 as well. In these plots,499

the timing data from this example are marked with the legend entry “B0B̄0”. Since the decay of500

the Υ(4S ) resonance is more complex than that of the J/ψ resonance, it takes more than twenty501

seconds for the program to process one hundred thousand events in this example. Nonetheless,502

the program still has a high processing rate.503

Table 2 shows the decay trees. In the table, while the first five decay trees are listed exclu-504

sively in the main part, the rest decay trees are only summarized inclusively at the bottom row.505

Here, we note that the events are not densely populated over the first five decay trees because the506

inclusive Υ(4S ) sample used here is not selected beforehand with any requirements. In the sym-507

bolic expressions of decay initial-final states, the dashed right arrow (99K) instead of the plain508

right arrow (→) is used, in order to reflect that the initial states do not necessarily decay to the509

final states in a direct way. Similarly, it is also used in the symbolic expressions of IRA decay510

branches, which will be introduced in Section 3.9.511

Table 2: Decay trees and their respective initial-final states.

rowNo
decay tree

(decay initial-final states) iDcyTr nEtr nCEtr

1
Υ(4S )→ B0 B̄0, B0 → e+νeD∗−γF , B̄0 → µ−ν̄µD∗+,D∗− → π−D̄0,

D∗+ → π+D0, D̄0 → π0π−K+,D0 → π0π+K−

(Υ(4S ) 99K e+νeµ
−ν̄µπ

0π0π+π+π−π−K+K−γF )
20870 3 3

2
Υ(4S )→ B0 B̄0, B0 → µ+νµD∗−, B̄0 → ρ−D∗+,D∗− → π−D̄0,

ρ− → π0π−,D∗+ → π0D+, D̄0 → π0π−K+,D+ → π+π+K−

(Υ(4S ) 99K µ+νµπ
0π0π0π+π+π−π−π−K+K−)

3648 2 5

3
Υ(4S )→ B0 B̄0, B0 → π0π+π+ρ−D−, B̄0 → µ−ν̄µD∗+, ρ− → π0π−,

D− → π−π−K+,D∗+ → π+D0,D0 → K0
Lπ

+π−

(Υ(4S ) 99K µ−ν̄µπ0π0K0
Lπ

+π+π+π+π−π−π−π−K+)
5295 2 7

4
Υ(4S )→ B0 B̄0, B0 → µ+νµD∗−, B̄0 → e−ν̄eD+,D∗− → π−D̄0,

D+ → e+νeK̄∗, D̄0 → π0π+π−K0
S , K̄

∗ → π0K̄0,K0
S → π+π−, K̄0 → K0

L
(Υ(4S ) 99K e+e−νeν̄eµ

+νµπ
0π0K0

Lπ
+π+π−π−π−)

11954 2 9

5
Υ(4S )→ B0 B̄0, B0 → e+νeD∗−, B̄0 → π0π−ωD+,D∗− → π−D̄0,

ω→ π0π+π−,D+ → e+νeπ
+K−, D̄0 → π0π−K+

(Υ(4S ) 99K e+e+νeνeπ
0π0π0π+π+π−π−π−π−K+K−)

14345 2 11

rest
Υ(4S )→ others (99980 in total)
(Υ(4S ) 99K corresponding to others) — 99989 100000

3.2. Decay initial-final states512

On some occasions, we need to investigate the decay initial-final states of backgrounds for513

some sophisticated physics analyses. Particularly, it is necessary to differentiate the following514

two fundamental types of backgrounds: the one with the same initial-final states as the signal,515

and the other with different initial-final states from the signal. While the latter type of back-516

grounds needs to be suppressed as much as possible, the former type usually needs to be kept to517

study more physical effects, for example, the interference effect. Besides, examining the decay518

initial-final states of backgrounds sheds light on the misjudgment of final state particles at the519

level of signal candidates. Below is an example demonstrating the related item with the maxi-520

mum number of output components set to five.521

522

% Component analysis — decay initial-final states523
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{524

Y 5525

}526

527

The decay initial-final states are displayed in Table 3. The layout of the table is similar to that of528

Table 2, which shows the decay trees.529

Table 3: Decay initial-final states.

rowNo decay initial-final states iDcyIFSts nEtr nCEtr

1 Υ(4S ) 99K µ+νµπ
0π0π0π+π+π+π−π−π−π−K+K− 41 18 18

2 Υ(4S ) 99K π0π0π0π0π0π+π+π+π+π+π−π−π−π−π−K+K− 887 18 36
3 Υ(4S ) 99K µ−ν̄µπ0π0π0π0π+π+π+π+π+π−π−π−π−K+K− 3350 18 54
4 Υ(4S ) 99K π0π0π0π0π0π0K0

Lπ
+π+π+π+π+π−π−π−π−K− 1207 17 71

5 Υ(4S ) 99K π0π0π0π0π0π0π+π+π+π+π+π+π−π−π−π−π−π−K+K− 1215 17 88
rest Υ(4S ) 99K others (78208 in total) — 99912 100000

3.3. Decay branches of particles530

The invariant mass constraint is one of the most frequently used event selection requirements531

in high energy physics experiments. With the requirement applied to certain particle, the main532

backgrounds (especially the peaking ones) to its signal decay mode are very likely to be its other533

decay modes. In this case, it is significant to examine the decay branches of the particle. The534

following example shows the associated item with the two particles D∗+ and J/ψ set as research535

objects. In the item, each row holds the information of a specified particle, and the first, sec-536

ond and third columns are the textual expressions, aliases, and maximum numbers of output537

components, respectively. As we introduce at the beginning part of this section, the aliases and538

maximum numbers of output components are both optional. Here, we note that the symbol “−”539

can be used as a placeholder for an unassigned alias, if only the maximum number of output540

components is desired.541

542

% Component analysis — decay branches of particles543

{544

D*+ Dsp 5545

J/psi Jpsi 5546

}547

548

Table 4 shows the decay branches of D∗+. From the table, only four decay branches of D∗+ are549

found in the input inclusive MC sample. Since there is likely one or more cases of D∗+ decays in550

one input entry, “nCase” and “nCCase”, instead of “nEtr” and “nCEtr”, are used in the table in551

order to accurately indicate what we are counting are the numbers of D∗+ decays, rather than the552

numbers of entries involving the D∗+ decays.553

Table 4: Decay branches of D∗+.

rowNo decay branch of D∗+ iDcyBrP nCase nCCase

1 D∗+ → π+D0 0 31180 31180
2 D∗+ → π0D+ 1 13978 45158
3 D∗+ → D+γ 2 700 45858
4 D∗+ → π+D0γF 3 28 45886
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3.4. Production branches of particles554

In some cases, we have interest in the production branches of certain particles. Below is an555

example demonstrating the related item also by taking the two particles D∗+ and J/ψ as objects556

of study. The input to this item is the same as that to the above item.557

558

% Component analysis — production branches of particles559

{560

D*+ Dsp 5561

J/psi Jpsi 5562

}563

564

The production branches of D∗+ are displayed in Table 5. In the production branches, D∗+ is565

marked in blue so as to make it noticeable. From the table, the number of production branches566

of D∗+ found in the input sample is 3277, much bigger than 4, which is the number of its decay567

branches.568

Table 5: Production branches of D∗+.

rowNo production branch of D∗+ iProdBrP nCase nCCase

1 B̄0 → µ−ν̄µD∗+ 9 4154 4154
2 B̄0 → e−ν̄eD∗+ 7 2886 7040
3 B̄0 → D∗+D∗−s 4 1691 8731
4 B̄0 → e−ν̄eD∗+γF 10 1623 10354
5 B̄0 → π0π+π−π−D∗+ 40 1429 11783

rest others (3272 in total) — 34103 45886

3.5. Mothers of particles569

Occasionally, we may want to check the mothers of certain particles. The following example570

shows the associated item also with the two particles D∗+ and J/ψ set as research objects. The571

input to this item is identical to those to the two items above.572

573

% Component analysis — mothers of particles574

{575

D*+ Dsp 5576

J/psi Jpsi 5577

}578

579

Table 6 shows the mothers of D∗+. Notably, the PDG codes of the mother particles, instead of580

additional indices, are listed in the table, since they are sufficient to tag the mother particles.581

From the table, six sources of D∗+ are found in the input sample and the dominant one is the B̄0
582

decay.583

Table 6: Mothers of D∗+.

rowNo mother of D∗+ PDGMoth nCase nCCase

1 B̄0 −511 41751 41751
2 B0 511 2983 44734
3 D′+1 20413 455 45189
4 D+

1 10413 368 45557
5 D∗+2 415 247 45804

rest others (1 in total) — 82 45886
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3.6. Cascade decay branches of particles584

Sometimes, the invariant mass constraint is applied to certain particle and the signal pro-585

cess is its cascade decay branch. In this case, it is necessary to investigate the cascade decay586

branches of the particle, rather than its first decay branches, so as to analyze the backgrounds587

effectively. Below is an example demonstrating the related item by taking the two particles B0
588

and D0 as objects of study. While the first three columns of the input to this item have the same589

meanings as those to the three items above, the additional fourth column sets the maximum hier-590

archy of decay branches to be examined. Here, the hierarchy reflects the rank of a decay branch591

in a cascade decay branch of one specific particle. For instance, in the following cascade de-592

cay branch of B0: B0 → π0π0ρ0π+D∗−, ρ0 → π+π−, D∗− → π−D̄0, D̄0 → ηη′, η → π0π0π0,593

η′ → π0π0η, η → γγ, the hierarchies of the seven individual decay branches are 1, 2, 2, 3, 4, 4,594

and 5, respectively. In the example, the maximum hierarchy of decay branches is set to two for595

both B0 and D0, and hence only the first two hierarchies of branches in their cascade decays will596

be investigated. Without such settings, all the branches in their cascade decays will be examined.597

598

% Component analysis — cascade decay branches of particles599

{600

B0 B0 5 2601

D0 D0 5 2602

}603

604

The cascade decay branches of B0 are displayed in Table 7.605

Table 7: Cascade decay branches of B0 (only the first two hierarchies are involved).

rowNo cascade decay branch of B0 iCascDcyBrsP nCase nCCase

1 B0 → µ+νµD∗−,D∗− → π−D̄0 12 2912 2912
2 B0 → e+νeD∗−,D∗− → π−D̄0 6 1991 4903
3 B0 → µ+νµD∗−,D∗− → π0D− 70 1283 6186
4 B0 → e+νeD∗−γF ,D∗− → π−D̄0 18 1132 7318
5 B0 → D∗−D∗+s ,D∗− → π−D̄0,D∗+s → D+

s γ 20 1119 8437
rest B0 → others (42074 in total) — 91594 100031

3.7. Decay final states of particles606

When the invariant mass constraint is applied to certain particle reconstructed directly from607

a specific final state, it is significant to examine the decay final states of the particle, rather than608

its first or cascade decay branches, in order to study the backgrounds effectively. The following609

example shows the associated item also with the two particles B0 and D0 set as research objects.610

The format of the input to the item is the same as that to the above item, but the fourth parameters611

here are designed to restrict the numbers of final state particles. Without the fourth parameters,612

all the decay final states of the specified particles will be investigated. In the example, the pa-613

rameters are set to three for both B0 and D0, and thus only the three-body decay final states of614

them will be examined.615

616

% Component analysis — decay final states of particles617

{618

B0 B0 5 3619

D0 D0 5 3620

}621

622

Table 8 shows the three-body decay final states of D0. In the table, π0 only decays to γγ; other-623

wise, it will be replaced with its decay products, resulting in different decay final states of D0.624
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Table 8: Decay final states of D0 (only three-body final states are involved).

rowNo decay final state of D0 iDcyFStP nCase nCCase

1 D0 99K π0π+K− 2 6258 6258
2 D0 99K µ+νµK− 5 1487 7745
3 D0 99K π0π+π− 1 1162 8907
4 D0 99K K0

Lπ
+π− 3 1158 10065

5 D0 99K e+νeK− 11 1148 11213
rest D0 99K others (24 in total) — 2407 13620

3.8. Inclusive decay branches625

In a few physics studies, we take inclusive decay branches as signals. In such cases, it is es-626

sential to have a basic knowledge of the exclusive components of these inclusive decay branches.627

Below is an example demonstrating the related item by investigating the exclusive components628

of the two inclusive decay branches B̄0 → D∗+ + anything and B0 → K0
S + anything. In the629

item, each row holds the information of an inclusive decay branch, and the first, second, and630

third columns separated with the symbol “&” are the textual expressions, aliases, and maximum631

numbers of output components, respectively. As we introduce at the beginning part of this sec-632

tion, the aliases and maximum numbers of output components are both optional. Here, we note633

that the symbol “−” can be used as a placeholder for an unassigned alias, if only the maximum634

number of output components is desired.635

636

% Component analysis — inclusive decay branches637

{638

B0 −−> D*+ & B2Dsp & 5639

B0 −−> K S0 & B2Ks & 5640

}641

642

The exclusive components of B0 → K0
S + anything are displayed in Table 9. From the table,643

ten exclusive components of the inclusive decay branch are found in the input sample, and the644

particles denoted with anything are mainly the traditional charmonium states.645

Table 9: Exclusive components of B0 → K0
S + anything.

rowNo exclusive component of B0 → K0
S + anything iDcyBrIncDcyBr nCase nCCase

1 B0 → K0
S J/ψ 0 45 45

2 B0 → K0
S ηc 1 40 85

3 B0 → K0
Sψ
′ 3 33 118

4 B0 → K0
S χc1 2 20 138

5 B0 → K0
S χc0 4 6 144

rest B0 → K0
S + others (5 in total) — 9 153

3.9. Intermediate-resonance-allowed decay branches646

In many research works, we take multi-body decay branches as signals. On such occasions,647

it is fundamental to investigate the intermediate resonances involved in these decay branches.648

In other words, we need to examine the exclusive components of these IRA decay branches.649

The following example shows the associated item with the two IRA decay branches D∗+ 99K650

π0π+π+K− and J/ψ 99K π0π+π− set as objects of study. Since IRA decay branches look like651

inclusive decay branches, the format of the input to the item for IRA decay branches is identical652

to that for inclusive decay branches, which is introduced in the previous subsection.653

654
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% Component analysis — intermediate-resonance-allowed decay branches655

{656

D*+ −−> K− pi+ pi+ pi0 & Dsp2K3Pi & 5657

J/psi −−> pi+ pi− pi0 & Jpsi23Pi & 5658

}659

660

Table 10 shows the exclusive components of D∗+ 99K π0π+π+K−. From the table, two interme-661

diate particles D0 and D+ are found in the IRA decay branch, and they decay to π0π+K− and662

π+π+K−, respectively.663

Table 10: Exclusive components of D∗+ 99K π0π+π+K−.

rowNo exclusive component of D∗+ 99K π0π+π+K− iDcyBrIRADcyBr nCase nCCase

1 D∗+ → π+D0,D0 → π0π+K− 0 3869 3869
2 D∗+ → π0D+,D+ → π+π+K− 1 1102 4971

3.10. Essential topology tags664

Table 11: Essential topology tags involved in each kind of component analysis.

Component type Topology tag Interpretation
Decay trees iDcyTr index of decay tree
Decay initial-final states iDcyIFSts index of decay initial-final states
Decay branches of particles nPDcyBr i number of particleis (or its decay branches)

iDcyBrP i j index of decay branch of the jth particlei
Production branches of particles nPProdBr i number of particleis (or its production branches)

iProdBrP i j index of production branch of the jth particlei
Mothers of particles nPMoth i number of particleis (or its mothers)

PDGMothP i j PDG code of mother of the jth particlei
Cascade decay branches of particles nPCascDcyBr i number of particleis (or its cascade decay branches)

iCascDcyBrP i j index of cascade decay branch of the jth particlei
Decay final states of particles nPDcyFSt i number of particleis (or its decay final states)

iDcyFStP i j index of decay final state of the jth particlei
Inclusive decay branches nIncDcyBr i number of inclusive decay branchies

iDcyBrIncDcyBr i j index of decay branch of the jth inclusive decay branchi

IRA decay branches nIRADcyBr i number of IRA decay branchies
iDcyBrIRADcyBr i j index of decay branch of the jth IRA decay branchi

Table 11 lists and interprets all of the essential topology tags involved in the component665

analysis functionalities. The topology tag for the component analysis over decay initial-final666

states is iDcyIFSts. It has a similar interpretation as iDcyTr and is shown in the third column667

of Table 3. For the latter seven kinds of component analysis, there are two sorts of topology668

tags. The first sort, such as nPDcyBr i, records the number of instances of the ith specified669

particle or decay branch found in each event. The second sort, for example, iDcyBrP i j, keeps670

the associated index of the jth found instance of the ith specified particle or decay branch. The671

indices and the decays they stand for can be found in Tables 4 – 10.672

In the topology tags, “i” in “ i” is the default index of the specified particle or decay branch,673

and it ranges from 0 (included) to the number of specified particles or decay branches (excluded).674

If the alias of the particle or decay branch is also specified, the index “i” will be replaced with675
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the alias. For example, since “Dsp” and “Jpsi” are set as the aliases of D∗+ and J/ψ in the676

component analysis over their decay branches, the specialized topology tags nPDcyBr Dsp and677

nPDcyBr Jpsi, instead of the default ones nPDcyBr 0 and nPDcyBr 1, are used to store the678

numbers of D∗+ and J/ψ found in each event.679

In addition, “j” in “ j” is the default index of the found instance of certain particle or decay680

branch in an event, and it ranges from 0 (included) to the sample-level maximum of the number681

of the particles or decay branches found in each event (excluded). For example, the maximum of682

the number of D∗+ found in each event is two for the whole sample, and thus two topology tags683

iDcyBrP Dsp 0 and iDcyBrP Dsp 1 are employed to store the indices of D∗+ decay branches.684

These indices range from 0 (included) to the number of the types of D∗+ decay branches found685

in the samples (excluded). In the events with only one D∗+, iDcyBrP Dsp 1 is assigned with686

the default value −1; in the events that have no D∗+, the default value −1 is assigned to both687

iDcyBrP Dsp 0 and iDcyBrP Dsp 1. We note that different from all other indices, PDGMoth i j688

has the default value 0, instead of −1.689

4. Signal identification690

Signal identification is the other functionality of the program. Though relatively simple, it691

can help us identify the “signals” we desire directly, quickly, and easily. Here, the “signals”692

are not confined to the authentic signals in our research works but can be any physics processes693

of interests, particularly some important backgrounds we concern. At present, the following694

eight kinds of signals can be identified with the program: (1) decay trees, (2) decay initial-final695

states, (3) particles, (4) (regular) decay branches, (5) cascade decay branches, (6) inclusive decay696

branches, (7) inclusive cascade decay branches, and (8) IRA decay branches. For each kind of697

signals, one item is developed to specify related parameters. This section introduces the eight698

kinds of signal identification, with each in a subsection. In each subsection, we take an example699

to demonstrate the related setting item and show the obtained topology map. For easy exposition,700

all of the essential topology tags involved in the signal identification functionalities are presented701

in another separate subsection, that is, the last subsection.702

Similar to the cases of the latter seven kinds of component analysis, one or more signals can703

be specified in each of the signal identification items, and two signals are set in the following704

examples to illustrate the use of the items. Besides, meaning aliases can also be optionally705

assigned to the specified signals so as to better tag them in the names of the TBranch objects706

appended in the TTree object of the output root files.707

4.1. Decay trees708

Sometimes, we need to identify certain decay trees. The following example shows the asso-709

ciated item with the first two decay trees listed in Table 2 set as signals. In the item, each row710

holds a decay branch in the decay trees, and the first, second, and third columns separated with711

the symbol “&” are the indices, textual expressions, and mother indices of the decay branches,712

respectively. The decay branches with index 0 indicate the beginning of new decay trees, and713

their mother indices are equal to −1, suggesting they have no mother branches because they are714

the first decay branches of the decay trees. Besides, the name of each decay tree can be option-715

ally filled in the fourth column of its first decay branch. Similar to the third parameter in the item716

for the component analysis over decay trees (see Section 3.1), a “Y” can be optionally filled in717

the fifth column of the first decay branch of the first decay tree, to adjust the positions of decay718

final states in the output pdf file.719

720

% Signal identification — decay trees721
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{722

0 & Upsilon(4S) −−> B0 anti-B0 & −1 & 1stDcyTrInTb2 & Y723

1 & B0 −−> e+ nu e D*− gamma & 0724

2 & anti-B0 −−> mu− anti-nu mu D*+ & 0725

3 & D*− −−> pi− anti-D0 & 1726

4 & D*+ −−> pi+ D0 & 2727

5 & anti-D0 −−> pi0 pi− K+ & 3728

6 & D0 −−> pi0 pi+ K− & 4729

730

0 & Upsilon(4S) −−> B0 anti-B0 & −1 & 2ndDcyTrInTb2731

1 & B0 −−> mu+ nu mu D*− & 0732

2 & anti-B0 −−> rho− D*+ & 0733

3 & D*− −−> pi− anti-D0 & 1734

4 & rho− −−> pi0 pi− & 2735

5 & D*+ −−> pi0 D+ & 2736

6 & anti-D0 −−> pi0 pi− K+ & 3737

7 & D+ −−> pi+ pi+ K− & 5738

}739

740

Table 12 shows the resulting topology map. The results are the same as those displayed in the741

first two rows of Table 2.742

Table 12: Signal decay trees and their respective initial-final states.

rowNo
signal decay tree

(signal decay initial-final states) iSigDcyTr nEtr nCEtr

1
Υ(4S )→ B0 B̄0, B0 → e+νeD∗−γF , B̄0 → µ− ν̄µD∗+,D∗− → π−D̄0,
D∗+ → π+D0, D̄0 → π0π−K+,D0 → π0π+K−

(Υ(4S ) 99K e+νeµ
− ν̄µπ

0π0π+π+π−π−K+K−γF )
0 3 3

2
Υ(4S )→ B0 B̄0, B0 → µ+νµD∗−, B̄0 → ρ−D∗+,D∗− → π−D̄0,
ρ− → π0π−,D∗+ → π0D+, D̄0 → π0π−K+,D+ → π+π+K−

(Υ(4S ) 99K µ+νµπ
0π0π0π+π+π−π−π−K+K−)

1 2 5

4.2. Decay initial-final states743

Table 13: Signal decay initial-final states.

rowNo signal decay initial-final states iSigDcyIFSts2 nEtr nCEtr

1 Υ(4S ) 99K µ+νµπ
0π0π0π+π+π+π−π−π−π−K+K− 0 18 18

2 Υ(4S ) 99K π0π0π0π0π0π+π+π+π+π+π−π−π−π−π−K+K− 1 18 36

In a few cases, we have an interest in some decay initial-final states. Below is an example744

demonstrating the related item by taking the first two decay initial-final states listed in Table 3745

as signals. Similar to IRA decay branches, decay initial-final states look like inclusive decay746

branches. Hence, except that only two columns are involved in the item, the format of the input747

to the item for decay initial-final states is identical to that for the component analysis over inclu-748

sive decay branches, which is introduced in Section 3.8. As we can see from the example, the749

numbers of identical particles are supported to be written in front of their textual names in order750

to simplify the textual expressions of the final states. The obtained topology map is displayed in751

Table 13. The results are identical to those shown in the first two rows of Table 3.752

753

% Signal identification — decay initial-final states754

{755

Y(4S) −−> mu+ nu mu 3 pi0 3 pi+ 4 pi− K+ K− & 1stDcyIFStsInTb3756

Y(4S) −−> 5 pi0 5 pi+ 5 pi− K+ K− & 2ndDcyIFStsInTb3757
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}758

4.3. Particles759

Occasionally, we may want to identify some particles. The following example shows the760

associated item with the two particles D∗+ and J/ψ set as signals. Except that only two columns761

are involved in the item, the format of the input to the item is identical to that for the component762

analysis over decay branches of particles, which is introduced in Section 3.3.763

764

% Signal identification — particles765

{766

D*+ Dsp767

J/psi Jpsi768

}769

770

Table 14 shows the resulting topology map. As a cross-check, the number of D∗+s in the table771

equals those in Tables 4, 5, and 6.772

Table 14: Signal particles.

rowNo signal particle iSigP nCase nCCase

1 D∗+ 0 45886 45886
2 J/ψ 1 2654 48540

4.4. Decay branches773

On some occasions, we have to identify certain regular decay branches. Below is an ex-774

ample demonstrating the related item by taking the two decay branches B̄0 → µ−ν̄µD∗+ and775

B0 → K0
S J/ψ as signals. Since regular decay branches also look like inclusive decay branches,776

except that only two columns are involved in the item, the format of the input to the item for reg-777

ular decay branches is identical to that for the component analysis over inclusive decay branches,778

which is introduced in Section 3.8.779

780

% Signal identification — decay branches781

{782

anti-B0 −−> mu− anti-nu mu D*+ & B2munuDsp783

B0 −−> K S0 J/psi & B2KsJpsi784

}785

786

The obtained topology map is displayed Table 15. For cross-checks, we note that the number of787

B̄0 → µ−ν̄µD∗+ (B0 → K0
S J/ψ) in the table is equal to that in the first row of Table 5 (9).788

Table 15: Signal decay branches.

rowNo signal decay branch iSigDcyBr nCase nCCase

1 B̄0 → µ−ν̄µD∗+ 0 4154 4154
2 B0 → K0

S J/ψ 1 45 4199

4.5. Cascade decay branches789

Sometimes, we are interested in certain cascade decay branches. The following example790

shows the associated item with the two cascade decay branches B0 → D∗−D∗+s , D∗− → π−D̄0,791

D∗+s → D+
s γ and B0 → D∗−D∗+s , D∗− → π−D̄0 set as signals. While the first cascade decay792
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branch is identical to the fifth one in Table 7, the second is only part of it, which demonstrates793

that the cascade decay branches supported in the item are not necessarily fully specified at the794

level of certain hierarchy. Similar to decay trees, cascade decay branches are made up of regular795

decay branches. Hence, the format of the input to the item for cascade decay branches is identical796

to that for decay trees, which is introduced in Section 4.1.797

798

% Signal identification — cascade decay branches799

{800

0 & B0 −−> D*− D s*+ & −1801

1 & D*− −−> pi− anti-D0 & 0802

2 & D s*+ −−> D s+ gamma & 0803

804

0 & B0 −−> D*− D s*+ & −1805

1 & D*− −−> pi− anti-D0 & 0806

}807

808

Table 16 shows the resulting topology map. As a cross-check, the number of cases of the first809

cascade decay branch in the table equals that of the fifth cascade decay branch in Table 7.810

Table 16: Signal cascade decay branches.

rowNo signal cascade decay branch iSigCascDcyBrs nCase nCCase

1 B0 → D∗−D∗+s ,D∗− → π−D̄0,D∗+s → D+
s γ 0 1119 1119

2 B0 → D∗−D∗+s ,D∗− → π−D̄0 1 1180 2299

4.6. Inclusive decay branches811

In a few cases, we have to identify some inclusive decay branches. Below is an example812

demonstrating the related item by taking the two inclusive decay branches B̄0 → D∗+ + anything813

and B0 → K0
S + anything as signals. Except that only two columns are involved in the item, the814

format of the input to the item is identical to that for the component analysis over inclusive decay815

branches, which is introduced in Section 3.8.816

817

% Signal identification — inclusive decay branches818

{819

anti−B0 −−> D*+ & B2Dsp820

B0 −−> K S0 & B2Ks821

}822

823

The obtained topology map is displayed in Table 17. As a cross-check, the number of B0 →824

K0
S + anything in the table equals that in Table 9.825

Table 17: Signal inclusive decay branches.

rowNo signal inclusive decay branch iSigIncDcyBr nCase nCCase

1 B̄0 → D∗+ + anything 0 41751 41751
2 B0 → K0

S + anything 1 153 41904

4.7. Inclusive cascade decay branches826

Occasionally, we may have an interest in certain inclusive cascade decay branches. The827

following example shows the associated item with the two inclusive cascade decay branches828

B̄0 → D∗+ + anything, D∗+ → π+D0 and B0 → K0
S J/ψ, K0

S → π+π−, J/ψ → µ+ + anything set829
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as signals. Similar to decay trees and cascade decay branches, inclusive cascade decay branches830

are made up of regular decay branches. Hence, the format of the input to the item for inclusive831

cascade decay branches is also identical to that for decay trees, which is introduced in Section832

4.1. and the independent textual name “*” denotes anything.833

834

% Signal identification — inclusive cascade decay branches835

{836

0 & anti-B0 −−> D*+ * & −1837

1 & D*+ −−> pi+ D0 & 0838

839

0 & B0 −−> K S0 J/psi & −1840

1 & K S0 −−> pi+ pi− & 0841

2 & J/psi −−> mu+ * & 0842

}843

844

Table 18 shows the resulting topology map.845

Table 18: Signal inclusive cascade decay branches.

rowNo signal inclusive cascade decay branch iSigIncCascDcyBrs nCase nCCase

1 B̄0 → D∗+ + anything,D∗+ → π+D0 0 28367 28367
2 B0 → K0

S J/ψ,K0
S → π+π−, J/ψ→ µ+ + anything 1 1 28368

4.8. Intermediate-resonance-allowed decay branches846

On some occasions, we need to identify certain IRA decay branches. Below is an example847

demonstrating the related item by taking the two IRA decay branches D∗+ 99K π0π+π+K− and848

J/ψ 99K π0π+π− as signals. Except that only two columns are involved in the item, the format849

of the input to the item is identical to that for the component analysis over IRA decay branches,850

which is introduced in Section 3.9.851

852

% Signal identification — intermediate-resonance-allowed decay branches853

{854

D*+ −−> K− pi+ pi+ pi0 & Dsp2K3Pi855

J/psi −−> pi+ pi− pi0 & Jpsi23Pi856

}857

858

The obtained topology map is displayed in Table 19. For the purpose of cross-checks, we859

note that the number of D∗+ 99K π0π+π+K− in the table is equal to that in Table 10.860

Table 19: Signal IRA decay branches.

rowNo signal IRA decay branch iSigIRADcyBr nCase nCCase

1 D∗+ 99K π0π+π+K− 0 4971 4971
2 J/ψ 99K π0π+π− 1 59 5030

4.9. Essential topology tags861

Table 20 summarizes and explains all of the essential topology tags involved in the signal862

identification functionalities. For signal decay trees and signal decay initial-final states, there are863

two sorts of topology tags. The first sort of tags, iSigDcyTr and iSigDcyIFSts, record the default864

indices of the specified signal decay trees and signal decay initial-final states. They have similar865

interpretations as iDcyTr and iDcyIFSts, and are shown in the third columns of Tables 12 and866
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13. The second sort of tags, nameSigDcyTr and nameSigDcyIFSts, save the specified aliases of867

the signal decay trees and signal decay initial-final states. In cases the aliases are not specified,868

empty strings will be stored.869

For the latter six kinds of signal identification, there is only one sort of topology tags, which870

records the number of instances of certain specified particle or decay branch found in each event.871

Similar to the cases in the latter seven kinds of component analysis, in the topology tags, “i” in872

“ i” is the default index of the specified particle or decay branch, and it ranges from 0 (included)873

to the number of specified particles or decay branches (excluded). If the alias of the particle or874

decay branch is also specified, the index “i” will be replaced with the alias.875

Table 20: Essential topology tags involved in each kind of signal identification.

Signal type Topology tag Interpretation
Decay trees iSigDcyTr index of signal decay tree

nameSigDcyTr name of signal decay tree
Decay initial-final states iSigDcyIFSts index of signal decay initial-final states

nameSigDcyIFSts name of signal decay initial-final states
Particles nSigP i number of signal particleis
Decay branches nSigDcyBr i number of signal decay branchies
Cascade decay branches nSigCascDcyBr i number of signal cascade decay branchies
Inclusive decay branches nSigIncDcyBr i number of signal inclusive decay branchies
Inclusive cascade decay branches nSigIncCascDcyBr i number of signal inclusive cascade decay branchies
IRA decay branches nSigIRADcyBr i number of signal IRA decay branchies

5. Common settings876

From Sections 3 and 4, the optional parameters of the functionality items give us more877

choices and thus help us do our jobs quicker and better. In addition to these parameters, many878

optional items are designed and implemented to control the execution of the program in order to879

meet practical needs. Unlike the optional parameters, which only affect the individual function-880

alities to which they belong, the optional items have an impact on all of the functionalities, or at881

least most of the functionalities. The current version of the program contains 25 commonly used882

items, which can be divided into the following three groups: items on the input of the program,883

items on the functionalities of the program, and items on the output of the program. This section884

introduces these items in the three groups, with each group in one subsection.885

Here, we note that, in addition to these optional items, two kinds of special optional param-886

eters of some functionality items are also introduced in this section. To be specific, they are887

presented in the last two paragraphs of Section 5.1.3 and the whole text of Section 5.2.3.888

5.1. Settings on the input of the program889

5.1.1. Input entries890

The program normally processes all of the entries in the input samples, but sometimes only891

a part of the entries are needed to be (first) processed. Running the program over a big sample892

usually takes a long time. In such a case, it is a good habit to run the program first over a small893

part of the sample to check possible exceptions, and then over the whole sample if no exceptions894

are found or after the found exceptions are handled. Besides, a small number of entries is usually895

sufficient to do tests in the development of the program. For these reasons, an item is developed896

to set up the maximum number of entries to be processed. Below is an example showing the item897
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with the maximum number set at two thousand.898

899

% Maximum number of entries to be processed900

{901

2000902

}903

904

On some occasions, especially in the course of optimizing selection criteria, we need to run905

the program only over entries satisfying certain requirements. For this purpose, an item is devel-906

oped to select entries. The following example shows the item with X set in the range (−1, 1).907

908

% Cut to select entries909

{910

(X > −1) && (X < 1)911

}912

913

Notably, in the old versions prior to 02-07-03, only a single-line selection requirement is sup-914

ported in the item, like the cases in the methods Draw() [16] and GetEntries() [17] of the class915

TTree. Though such a requirement is able to express any condition with the help of the paren-916

theses “()” as well as the logical symbols “&&”, “||”, and “!”, it looks clumsy when it is used to917

express a complicated condition. Starting from the version 02-07-03, the cuts supported in the918

item are also allowed to be divided into two or more lines in order to make them clearer.919

Occasionally, array variables are involved in the requirement. Under the circumstances, users920

have to tell the program how to determine the total logical value with the individual logical val-921

ues. At present, two criteria are provided: (1) the total result is true as long as the result for922

one instance is true; (2) the total result is false as long as the result for one instance is false. By923

default, the second criterion is used in the program. One can alter it to the first one with the924

following item.925

926

% Method to apply cut to array variables (Two options: T and F. Default: T)927

{928

F929

}930

931

In the item, “T” and “F” stand for the first and second criteria, respectively. Notably, the default932

option for the item is altered from “F” back to “T” since the version 02-08-05, so as to keep933

consistent with the ROOT system.934

5.1.2. Input decay branches935

Table 21: Decay trees and their respective initial-final states.

rowNo
decay tree

(decay initial-final states) iDcyTr nEtr nCEtr

1
Υ(4S )→ B0 B̄0

(Υ(4S ) 99K B0 B̄0)
0 81057 81057

2
Υ(4S )→ B0B0

(Υ(4S ) 99K B0B0)
1 9487 90544

3
Υ(4S )→ B̄0 B̄0

(Υ(4S ) 99K B̄0 B̄0)
2 9456 100000

Normally, the program deals with all of the decay branches in every decay tree. However,936

examining all the branches is not always required in practice. Sometimes, we only concern the937
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first n hierarchies of the branches. Similar to that in cascade decay branches of particles (as we938

introduce in Section 3.6), the hierarchy here reflects the rank of a decay branch in a decay tree.939

For example, in the decay tree Υ(4S )→ B0B̄0, B0 → e+νeD∗−γF , B̄0 → µ−ν̄µD∗+, D∗− → π−D̄0,940

D∗+ → π+D0, D̄0 → π0π−K+, D0 → π0π+K−, the hierarchies of the seven individual branches941

are 1, 2, 2, 3, 3, 4, and 4, respectively. The program provides an item to set the maximum hier-942

archy. Below is an example showing the item with the maximum hierarchy set at one.943

944

% Maximum hierarchy of heading decay branches to be processed in each event945

{946

1947

}948

949

With the setting, the decay branches with hierarchy larger than one will be ignored by the950

program. For the component analysis over the decay trees of the Υ(4S ) sample, only the first951

hierarchy of Υ(4S ) decay branches are analyzed, and the result is shown in Table 21. From the952

table, not only Υ(4S ) → B0B̄0 but also Υ(4S ) → B0B0 and Υ(4S ) → B̄0B̄0 are seen because of953

B0-B̄0 mixing. Similarly, in the case of the maximum hierarchy set at two, we could get the result954

of the component analysis over the first two hierarchies of Υ(4S ) decay branches, as displayed955

in Table 22.956

Table 22: Decay trees and their respective initial-final states.

rowNo
decay tree

(decay initial-final states) iDcyTr nEtr nCEtr

1 Υ(4S )→ B0 B̄0, B0 → µ+νµD∗−, B̄0 → µ−ν̄µD∗+

(Υ(4S ) 99K µ+µ−νµν̄µD∗+D∗−) 936 136 136

2 Υ(4S )→ B0 B̄0, B0 → e+νeD∗−, B̄0 → µ−ν̄µD∗+

(Υ(4S ) 99K e+νeµ
−ν̄µD∗+D∗−) 1188 112 248

3 Υ(4S )→ B0 B̄0, B0 → µ+νµD∗−, B̄0 → e−ν̄eD∗+

(Υ(4S ) 99K e−ν̄eµ
+νµD∗+D∗−) 268 110 358

4 Υ(4S )→ B0 B̄0, B0 → D∗−D∗+s , B̄0 → µ−ν̄µD∗+

(Υ(4S ) 99K µ−ν̄µD∗+D∗−D∗+s ) 2063 72 430

5 Υ(4S )→ B0 B̄0, B0 → e+νeD∗−, B̄0 → e−ν̄eD∗+

(Υ(4S ) 99K e+e−νeν̄eD∗+D∗−) 95 71 501

rest
Υ(4S )→ others (81609 in total)
(Υ(4S ) 99K corresponding to others) — 99499 100000

Sometimes, we do not care about the decay of some particles. One can make the program957

ignore their decay branches with the following item. With the setting in the example, the decay958

of B0 and B̄0 will be ignored by the program.959

960

% Ignore the decay of the following particles961

{962

B0963

anti-B0964

}965

966

At some other times, we have interest in the decay of some particles but not in the decay of their967

daughters. To handle this case, the following item is developed to make the program ignore the968

decay of their daughters. In the following example, the decay of the daughters of B0 and B̄0 will969

be ignored by the program.970

971

% Ignore the decay of the daughters of the following particles972

30



{973

B0974

anti-B0975

}976

977

The two settings above have the same effects as those in the previous paragraph which set the978

maximum hierarchy at one and two, and hence the corresponding results are identical to those979

shown in Tables 21 and 22.980

As mentioned in Section 2.6, the decay π0 → γγ is ignored by default. On the occasions981

when we need to identify the signals involving the decay, we can make the program retain the982

decay with the item below set to “Y”.983

984

% Retain the decay of pi0 to gamma gamma (Two options: Y and N. Default: N)985

{986

Y987

}988

989

Besides, if needed, one can make the program ignore other final decay branches, such as η→ γγ990

and K0
S → π+π−, with the following item.991

992

% Ignore the following final decay branches993

{994

eta −−> gamma gamma995

K S0 −−> pi+ pi−996

}997

5.1.3. Initial and final state radiation photons998

Initial state radiation (ISR) and final state radiation (FSR) are inevitable physical effects in999

e+e− colliding experiments. Therefore, ISR and FSR photons are often involved in inclusive1000

MC samples. The program processes them together with other particles in the default case. To1001

distinguish them from other photons, the program tries to label them in the output plain text, tex1002

source, and pdf files. Sometimes, these photons are marked out beforehand with special PDG1003

codes according to particle status information from generators. One can inform the program of1004

these PDG codes by the following two items.1005

1006

% PDG code of ISR photons (Default: 222222222)1007

{1008

2222222221009

}1010

1011

1012

% PDG code of FSR photons (Default: −22)1013

{1014

−221015

}1016

1017

In this case, the program is able to label the ISR and FSR photons as γi (gammai) and γ f (gam-1018

maf) in the output pdf (plain text) files, respectively.1019

On other occasions, ISR and FSR photons are not marked out in advance due to some reasons.1020

In such cases, the program has to identify them by itself according to the following rules: photons1021

who have no mothers recorded in the arrays of the PDG codes and mother indices are considered1022

as generalized ISR photons, while other photons who have at least one e±, µ±, π±, K±, p, or p̄1023

sister are taken as generalized FSR photons. Here, the modifier “generalized” is used because1024

the rules can not determine the types of the photons in absolute accuracy. For example, photons1025

31



from radiative decays might be mistaken as FSR photons. Despite this, generalized ISR and FSR1026

photons are good concepts, particularly in cases where the sources of the photons are not required1027

to be distinguished clearly. The program will label the generalized ISR and FSR photons as γI
1028

(gammaI) and γF (gammaF) in the output pdf (plain text) files, respectively.1029

Notably, we are not concerned about these ISR and FSR photons in many cases, particularly1030

when we want to identify our signals from some samples. If they have already been marked out1031

beforehand, one can make the program ignore them accurately by setting the following two items1032

to “Ys”.1033

1034

% Ignore ISR photons (Three options: Ys, Yg and N. Default: N)1035

{1036

Ys1037

}1038

1039

1040

% Ignore FSR photons (Three options: Ys, Yg and N. Default: N)1041

{1042

Ys1043

}1044

1045

In cases that these photons are not marked in advance, the option “Yg” can be used to ignore the1046

generalized ISR and FSR photons. In “Ys” and “Yg”, “s” and “g” are the initials of the words1047

“strict” and “generalized”, respectively.1048

Sometimes, it matters to us whether there are or how many ISR or FSR photons in the decay1049

branches we are concerned with. To obtain the exclusive components of these decay branches1050

with respect to ISR or FSR photons, one can employ the functionality of component analysis1051

over inclusive decay branches with the unspecified particles constrained to ISR or FSR photons.1052

To be specific, an additional fourth, optional parameter in the corresponding item can be set at1053

“Is”, “Ig”, “Fs”, or “Fg” in order to restrict the remaining particles to strict ISR, generalized ISR,1054

strict FSR, or generalized FSR photons, respectively. The following example shows the setting1055

item for investigating the generalized FSR photons in the decay branches of J/ψ → e+e− and1056

B̄0 → µ−ν̄µD∗+.1057

1058

% Component analysis — inclusive decay branches1059

{1060

J/psi −−> e+ e− & Jpsi2ee & − & Fg1061

anti-B0 −−> mu− anti-nu mu D*+ & B2munuDsp & − & Fg1062

}1063

Table 23: Exclusive components of B̄0 → µ−ν̄µD∗+ + nγF .

rowNo exclusive component of B̄0 → µ−ν̄µD∗+ + nγF iDcyBrIncDcyBr nCase nCCase

1 B̄0 → µ−ν̄µD∗+ 0 4154 4154
2 B̄0 → µ−ν̄µD∗+γF 1 740 4894
3 B̄0 → µ−ν̄µD∗+γFγF 2 86 4980
4 B̄0 → µ−ν̄µD∗+γFγFγF 3 1 4981

Table 23 shows the obtained exclusive components of B̄0 → µ−ν̄µD∗+ + nγF . As shown in1064

the table, the values of the topology tag “iDcyBrIncDcyBr” are exactly equal to the numbers of1065

generalized FSR photons in the corresponding exclusive decay branches. According to this point,1066

to identify the decay branch B̄0 → µ−ν̄µD∗+ with and without generalizied photons, we simply1067

need to require “iDcyBrIncDcyBr B2munuDsp i >0” and “iDcyBrIncDcyBr B2munuDsp i ==1068

0”. As we mentioned before, “i” in “ i” here is the default index of the found instance of the1069
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decay branch in an event, and it ranges from 0 (included) to the sample-level maximum of the1070

number of instances of the decay branch found in each event (excluded).1071

The decay branches discussed above are regular decay branches where the particles on the1072

left sides decay directly to the particles on the right sides. On some other occasions, we need1073

to consider the IRA decay branches in the context above. One can make the program handle1074

the IRA decay branches by simply appending a suffix “−IRA” to the fourth parameter “Is”, “Ig”,1075

“Fs”, or “Fg”. Here, the suffix “−IRA” is used to notify the program that the specified decay1076

branch is IRA. The example below shows the setting item which examines the generalized FSR1077

photons in the IRA decay branches of D∗+ 99K K−π+π+π0 and J/ψ 99K π+π−π0.1078

1079

% Component analysis — inclusive decay branches1080

{1081

D*+ −−> K− pi+ pi+ pi0 & Dsp2K3Pi & − & Fg−IRA1082

J/psi −−> pi+ pi− pi0 & Jpsi23Pi & − & Fg−IRA1083

}1084

1085

The resulting exclusive components of D∗+ 99K K−π+π+π0 + nγF are displayed in Table 24.1086

Similar to those in Table 23, the values of the topology tag “iDcyBrIncDcyBr” are exactly equal1087

to the numbers of generalized FSR photons in the corresponding exclusive IRA decay branches.1088

Here, we note that, unlike the plain right arrow (→) in Table 23, the dashed right arrow (99K) is1089

used in this table in order to indicate that the decay branches in the table are IRA.1090

Table 24: Exclusive components of D∗+ 99K π0π+π+K− + nγF .

rowNo exclusive component of D∗+ 99K π0π+π+K− + nγF iDcyBrIncDcyBr nCase nCCase

1 D∗+ 99K π0π+π+K− 0 4971 4971
2 D∗+ 99K π0π+π+K−γF 1 625 5596
3 D∗+ 99K π0π+π+K−γFγF 2 51 5647
4 D∗+ 99K π0π+π+K−γFγFγF 3 2 5649

5.2. Settings on the functionalities of the program1091

5.2.1. Candidate based analysis1092

According to the number of signal candidates in an event that are selected and retained to1093

extract physics results, data analysis in high energy experiments can be divided into the following1094

two categories: event based analysis and candidate based analysis. While at most one candidate1095

in an event is kept in event based analysis, one or more candidates in an event can be retained in1096

candidate based analysis. Generally, the quantities related to a candidate are stored in an entry of1097

the TTree objects in the root files. Thus, one or more entries relate to an event in candidate based1098

analysis, while only one entry corresponds to an event in event based analysis. Normally, the1099

indices of candidates within an event are stored in the corresponding entries in candidate based1100

analysis.1101

By default, the program analyzes the input entries one by one. In this case, the events with1102

multiple candidates will be processed repeatedly. Particularly, the number of physics processes at1103

the sample level will be overcounted. One can make the program avoid the problem by inputting1104

“Y” to the following item.1105

1106

% Avoid over counting for candidate based analysis (Two options: Y and N. Default: N)1107

{1108

Y1109

}1110
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1111

Also, the indices of candidates within an event are required. We can tell the program the related1112

TBranch name with the following item.1113

1114

% TBranch name of the indices of candidates in an event (Default: candidate )1115

{1116

iCandidate1117

}1118

1119

With the settings, the program will process the first entry of each event in a normal way, including1120

obtaining and storing the topology tags; it will not analyze the other entries of the same event,1121

but only store the same topology tags to them.1122

5.2.2. Charge conjugation1123

Charge conjugation is an important concept in high energy physics. By default, charge con-1124

jugate objects (particles and decays) are processed separately in the program. However, we need1125

to handle them together in many physics studies because of the sameness between them. One1126

can have the program process them together with the item below set to “Y”.1127

1128

1129

% Process charge conjugate objects together (Two options: Y and N. Default: N)1130

{1131

Y1132

}1133

1134

Performing topology analysis with this setting inserts new topology tags in the output root files1135

and adds new counters to topology maps in the output plain text, tex source, and pdf files. Tables1136

25 and 26 list and interpret all of the topology tags related to charge conjugation involved in the1137

component analysis and signal identification functionalities, respectively.1138

As an example, we perform the component analysis over decay trees with the charge con-1139

jugate item. Table 27 shows the obtained topology map. Besides the columns in Table 2, two1140

additional columns with the headers “nCcEtr” and “nAllEtr” are inserted in the table. Here, “nC-1141

cEtr” represents the number of entries involving the charge conjugate decay trees, and “nAllEtr”1142

is the sum of “nEtr” and “nCcEtr”. In addition to “iDcyTr”, “iCcDcyTr” is also inserted in the1143

output root files as a topology tag. It is short for charge conjugate index of decay tree. For self-1144

charge-conjugate decay trees, it has the value 0; for non-self-charge-conjugate decay trees, it has1145

the value 1 or −1: while 1 tags the decay trees listed in the topology maps, −1 indicates their1146

charge conjugate decay trees. Whereas the equal values of “iDcyTr” for each decay tree and its1147

charge conjugate decay tree indicate their sameness, the opposite values of “iCcDcyTr” for them1148

reflect their difference.1149

As another example, we carry out the component analysis over the decay branches of D∗+1150

and J/ψ. The resulting topology map of D∗+ is displayed in Table 28. Compared with Ta-1151

ble 4, two new columns are added to the table, and their headers “nCcCase” and “nAllCase”1152

have similar meanings as “nCcEtr” and “nAllEtr” in Table 27. For a specified particle, what we1153

want to further record with topology tags are as follows: (1) whether it is self-charge-conjugate;1154

(2) whether its decay branches are self-charge-conjugate, if it is self-charge-conjugate; (3) the1155

number and the indices of the decay branches of its charge-conjugate particle, if it is not self-1156

charge-conjugate. Hence, in addition to “nPDcyBr i” and “iDcyBrP i j”, the following topology1157
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tags are also inserted in the output root files: “iCcPDcyBr i” for all specified particles; “iCcD-1158

cyBrP i j” for self-charge-conjugate particles only; and “nCcPDcyBr i”, “iDcyBrCcP i j”, and1159

“nAllPDcyBr i” for non-self-charge-conjugate particles only. Here, “iCcPDcyBr i” tags whether1160

the ith particle is self-charge-conjugate. For self-charge-conjugate particles, it has the value 0;1161

for non-self-charge-conjugate particles, it has the value 1.1162

Table 25: Topology tags related to charge conjugation involved in each kind of component analysis. For the latter seven
kinds of component analysis, the topology tags in the (1) and (2) groups are only designed for the self-charge-conjugate
and non-self-charge-conjugate particles and decay branches, respectively. The acronyms “cc” and indexcc are short for
“charge conjugate” and “charge conjugate index”, respectively. For self-charge-conjugate objects (particles or decays),
the charge conjugate indices have the value 0; for non-self-charge-conjugate objects, they have the value 1 or −1: while
1 tags the objects presented in the topology maps, −1 indicates their charge conjugate objects.

Component type Topology tag Interpretation
Decay trees iCcDcyTr indexcc of decay tree
Decay initial-final states iCcDcyIFSts indexcc of decay initial-final states

Decay branches of particles

iCcPDcyBr i indexcc of particlei

(1) iCcDcyBrP i j indexcc of decay branch of the jth particlei
(2) nCcPDcyBr i number of cc particleis (decay branches)
(2) iDcyBrCcP i j index of decay branch of the jth cc particlei
(2) nAllPDcyBr i number of all particleis (decay branches)

Production branches of particles

iCcPProdBr i indexcc of particlei

(1) iCcProdBrP i j indexcc of production branch of the jth particlei
(2) nCcPProdBr i number of cc particleis (production branches)
(2) iProdBrCcP i j index of production branch of the jth cc particlei
(2) nAllPProdBr i number of all particleis (production branches)

Mothers of particles

iCcPMoth i indexcc of particlei

(1) iCcMothP i j indexcc of mother of the jth particlei
(2) nCcPMoth i number of cc particleis (mothers)
(2) PDGMothCcP i j PDG code of mother of the jth cc particlei
(2) nAllPMoth i number of all particleis (mothers)

Cascade decay branches of particles

iCcPCascDcyBr i indexcc of particlei

(1) iCcCascDcyBrP i j indexcc of cascade decay branch of the jth particlei
(2) nCcPCascDcyBr i number of cc particleis (cascade decay branches)
(2) iCascDcyBrCcP i j index of cascade decay branch of the jth cc particlei
(2) nAllPCascDcyBr i number of all particleis (cascade decay branches)

Decay final states of particles

iCcPDcyFSt i indexcc of particlei

(1) iCcDcyFStP i j indexcc of decay final state of the jth particlei

(2) nCcPDcyFSt i number of cc particleis (decay final states)
(2) iDcyFStCcP i j index of decay final state of the jth cc particlei
(2) nAllPDcyFSt i number of all particleis (decay final states)

Inclusive decay branches

iCcIncDcyBr i indexcc of inclusive decay branchi

(1) iCcDcyBrIncDcyBr i j indexcc of decay branch of the jth inclusive decay branchi
(2) nCcIncDcyBr i number of cc inclusive decay branchies
(2) iDcyBrCcIncDcyBr i j index of decay branch of the jth cc inclusive decay branchi
(2) nAllIncDcyBr i number of all inclusive decay branchies

IRA decay branches

iCcIRADcyBr i indexcc of IRA decay branchi

(1) iCcDcyBrIRADcyBr i j indexcc of decay branch of the jth IRA decay branchi
(2) nCcIRADcyBr i number of cc IRA decay branchies
(2) iDcyBrCcIRADcyBr i j index of decay branch of the jth cc IRA decay branchi
(2) nAllIRADcyBr i number of all IRA decay branchies
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The topology tag “iCcDcyBrP i j” records the charge conjugation property of the decay1163

branch of the jth instance of the ith particle. It is to “iDcyBrP i j” what “iCcDcyTr” is to “iD-1164

cyTr”. The topology tag “iDcyBrCcP i j” is designed for the charge conjugate particle of the ith1165

particle (for D∗− in this example). It has a similar meaning as “iDcyBrP i j”. Particularly, the1166

values of “iDcyBrP i j” and “iDcyBrCcP i j” tagging charge conjugate decay branches are equal1167

to each other. The topology tag “nCcPDcyBr i” stands for the number of the charge conjugate1168

ith particles (or their decay branches) found in each event, and “nAllPDcyBr i” is the sum of1169

“nPDcyBr i” and “nCcPDcyBr i”.1170

Table 26: Topology tags related to charge conjugation involved in each kind of signal identification. For the latter six
kinds of signal identification, the topology tags in the (*) groups are only designed for the non-self-charge-conjugate
particles and decay branches. The acronyms “cc” and indexcc are short for “charge conjugate” and “charge conjugate
index”, respectively. For self-charge-conjugate objects (particles or decays), the charge conjugate indices have the value
0; for non-self-charge-conjugate objects, they have the value 1 or −1: while 1 tags the objects presented in the topology
maps, −1 indicates their charge conjugate objects.

Signal type Topology tag Interpretation
Decay trees iCcSigDcyTr indexcc of signal decay tree
Decay initial-final states iCcSigDcyIFSts indexcc of signal decay initial-final states

Particles
iCcSigP i indexcc of signal particlei
(*) nCcSigP i number of cc signal particleis
(*) nAllSigP i number of all signal particleis

Decay branches
iCcSigDcyBr i indexcc of signal decay branchi
(*) nCcSigDcyBr i number of cc signal decay branchies
(*) nAllSigDcyBr i number of all signal decay branchies

Cascade decay branches
iCcSigCascDcyBr i indexcc of signal cascade decay branchi
(*) nCcSigCascDcyBr i number of cc signal cascade decay branchies
(*) nAllSigCascDcyBr i number of all signal cascade decay branchies

Inclusive decay branches
iCcSigIncDcyBr i indexcc of signal inclusive decay branchi
(*) nCcSigIncDcyBr i number of cc signal inclusive decay branchies
(*) nAllSigIncDcyBr i number of all signal inclusive decay branchies

Inclusive cascade decay branches
iCcSigIncCascDcyBr i indexcc of signal inclusive cascade decay branchi
(*) nCcSigIncCascDcyBr i number of cc signal inclusive cascade decay branchies
(*) nAllSigIncCascDcyBr i number of all signal inclusive cascade decay branchies

IRA decay branches
iCcSigIRADcyBr i indexcc of signal IRA decay branchi
(*) nCcSigIRADcyBr i number of cc signal IRA decay branchies
(*) nAllSigIRADcyBr i number of all signal IRA decay branchies

Table 27: Decay trees and their respective initial-final states (with the charge conjugation setting).

rowNo
decay tree

(decay initial-final states) iDcyTr nEtr nCcEtr nAllEtr nCEtr

1
Υ(4S )→ B0 B̄0, B0 → e+νeD∗−γF , B̄0 → µ− ν̄µD∗+,D∗− → π−D̄0,
D∗+ → π+D0, D̄0 → π0π−K+,D0 → π0π+K−

(Υ(4S ) 99K e+νeµ
− ν̄µπ

0π0π+π+π−π−K+K−γF )
20870 3 0 3 3

2
Υ(4S )→ B0 B̄0, B0 → µ+νµD∗−, B̄0 → ρ−D∗+,D∗− → π−D̄0,
ρ− → π0π−,D∗+ → π0D+, D̄0 → π0π−K+,D+ → π+π+K−

(Υ(4S ) 99K µ+νµπ
0π0π0π+π+π−π−π−K+K−)

3648 2 0 2 5

3
Υ(4S )→ B0 B̄0, B0 → µ+νµD−, B̄0 → e− ν̄eD∗+,D− → e− ν̄eπ

−K+,
D∗+ → π+D0,D0 → π0π+K−

(Υ(4S ) 99K e−e− ν̄e ν̄eµ
+νµπ

0π+π+π−K+K−)
3722 1 1 2 7
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rowNo
decay tree

(decay initial-final states) iDcyTr nEtr nCcEtr nAllEtr nCEtr

4
Υ(4S )→ B0 B̄0, B0 → π0π+π+ρ−D−, B̄0 → µ− ν̄µD∗+, ρ− → π0π−,
D− → π−π−K+,D∗+ → π+D0,D0 → K0

Lπ
+π−

(Υ(4S ) 99K µ− ν̄µπ0π0K0
Lπ

+π+π+π+π−π−π−π−K+)
5295 2 0 2 9

5
Υ(4S )→ B0 B̄0, B0 → e+νeD∗−γF , B̄0 → π0π+π−π−D∗+,
D∗− → π0D−,D∗+ → π+D0,D− → π−π−K+,D0 → π0π+K−

(Υ(4S ) 99K e+νeπ
0π0π0π+π+π+π−π−π−π−K+K−γF )

10206 1 1 2 11

rest Υ(4S )→ others (99969 in total)
(Υ(4S ) 99K corresponding to others) — — — 99989 100000

Table 28: Decay branches of D∗+ (with the charge conjugation setting).

rowNo decay branch of D∗+ iDcyBrP nCase nCcCase nAllCase nCCase

1 D∗+ → π+D0 0 31180 31291 62471 62471
2 D∗+ → π0D+ 1 13978 14166 28144 90615
3 D∗+ → D+γ 2 700 721 1421 92036
4 D∗+ → π+D0γF 3 28 36 64 92100
5 D∗+ → π0D+γ 4 0 1 1 92101

5.2.3. Reconstruction restrictions on truth particles1171

So far, the five kinds of component analysis with user specified particles, which we introduce1172

in Sections 3.3–3.7, are performed indiscriminatingly over all the truth instances of the same1173

specified particles in the same events. Yet, this is not what analysts desire in many cases of data1174

analysis. In these cases, rather than all of the truth instances of the specified particles, they are1175

more concerned about the truth instances that are successfully reconstructed in the step afterward.1176

For example, in the physics studies with e+e− → Υ(4S ) → B+B− samples, due to the limited1177

detection efficiencies, only in a small fraction of events can we reconstruct both B+ and B−1178

mesons; in other events, we can only reconstruct at most one B+/B− meson. On such occasions,1179

analysts usually pay more attention to the reconstructed B+/B− mesons and less attention to the1180

unreconstructed ones.1181

In practice, we often use the following kinds of reconstruction information to restrict the truth1182

instances of user specified particles. The most common kind is the charge of the reconstructed1183

candidate. It is used to differentiate two charged conjugate particles from each other. Similarly,1184

a neutral tag with two possible values 1 and −1 can be used to distinguish two neutral conjugate1185

particles. Obviously, for such purposes, the PDG code of the reconstructed candidate applies1186

to both the charged and neutral conjugate particles. The charge, neutral tag, and PDG code1187

are all appropriate for truth-reconstruction matching on the occasion where only a pair of the1188

charge conjugate particles under study is produced in an event. However, in the cases of three1189

or more charge conjugate particles existing in an event, they are not equally effective because1190

two or more truth instances may match one reconstructed candidate. In such cases, the index1191

of the truth instance matched with the reconstructed candidate, obtained with the algorithms or1192

modules within the software system of the experiment in question, is perfect to be used in this1193

program.1194

The reconstruction information is required to be stored in the input TTree object for analysts1195

to check the topology information of the truth instances of the specified particles matched to1196

their reconstructed candidates. In the candidate based analysis, the information is often stored in1197
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a scalar TBranch object. In the event based analysis, it is usually held in an array TBranch object,1198

and meanwhile the number of reconstructed candidates in an event is kept in a scalar TBranch1199

object as the length of the array.1200

With the reconstruction information, one can obtain the topology information of the desired1201

truth instances of the specified particles. One method to achieve this is using the setting item1202

with the prompt “% Cut to select entries”. For example, to check the decay branches of the1203

reconstructed B+, one can require that the charge of the reconstructed candidate is equal to +1.1204

However, the method is awkward in the following three contexts. (1) It is not handy to process1205

charge conjugate particles together. On the one hand, if the charge conjugation item is turned on1206

in the example above, the unreconstructed B+ in the events containing the reconstructed B− will1207

contaminate the reconstructed B+. On the other hand, processing charge conjugate particles sep-1208

arately requires running the program twice with two input card files, and the obtained results are1209

not merged organically and automatically. (2) Similarly, it is not convenient to process multiple1210

specified particles together. (3) Also, it does not work when the reconstruction quantity is the1211

index of the truth instance matched with the reconstructed candidate.1212

To handily impose reconstruction restrictions on truth particles in the context of charge con-1213

jugation setting, we design and implement an optional parameter in the setting items presented in1214

Sections 3.3–3.7. The parameter for each specified particle can be filled in as the fourth param-1215

eter in the corresponding line. In the items for cascade decay branches and decay final states, if1216

the fourth place is already occupied, the parameter should be typed in the fifth place. An example1217

using the parameter in the candidate based analysis is presented as follows.1218

1219

% Component analysis — decay branches of particles1220

{1221

D*+ Dsp 5 c:Dsp charge s1222

}1223

1224

Here, “c” is the prompt denoting charge, “Dsp charge s” is the name of the scalar TBranch which1225

stores the charge of the reconstructed candidate of D∗+ and D∗−, and the colon “:” is used as the1226

separator between “c” and “Dsp charge s”.1227

Below is an example demonstrating the use of the parameter in the event based analysis. It is1228

quite similar to the example above.1229

1230

% Component analysis — decay branches of particles1231

{1232

D*+ Dsp 5 C:Dsp charge a:Dsp nRec1233

}1234

Table 29: Decay branches of D∗+ (with the settings of charge conjugation and reconstruction restriction).

rowNo decay branch of D∗+ iDcyBrP nCase nCcCase nAllCase nCCase

1 D∗+ → π+D0 0 5175 5078 10253 10253
2 D∗+ → π0D+ 1 2323 2346 4669 14922
3 D∗+ → D+γ 2 146 138 284 15206
4 D∗+ → π+D0γF 3 3 2 5 15211

Notably, instead of the lowercase letter “c” used in the candidate based analysis, the upper-1235

case letter “C” is designed as the prompt denoting charge in the event based analysis. In addition,1236

“Dsp charge a“ is the name of the array TBranch storing the charges of the reconstructed can-1237

didates of D∗+ and D∗−, and “Dsp nRec” is the name of the scalar TBranch storing the number1238

of their reconstructed candidates in an event. The topology map obtained with this item plus the1239
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charge conjugation item is displayed in Table 29.1240

Constrained with the charges of their reconstructed candidates, the number of truth instances of1241

D∗+ and D∗− listed in this table is significantly less than that recorded in Table 28. Here, it is1242

worth noting that the number,15211, is larger than the number of reconstructed candidates of1243

D∗+ and D∗−, 13808. This is because two or more truth instances of D∗+ or D∗− can match the1244

charge of one reconstruction candidate, as we remark at the end of the second paragraph in this1245

subsubsection.1246

Table 30 summarizes the formats of the optional parameter associated with five kinds of re-1247

construction information. In the candidate based analysis, the lowercase substring “c”, “n”, “!n”,1248

“p”, or “i” is used as the prompt of the parameter, and the prompt is followed by the name of the1249

scalar TBranch which stores the related reconstruction quantity. In the event based analysis, the1250

uppercase substring “C”, “N”, “!N” “P”, and “I” is used as the prompt of the parameter, and the1251

prompt is followed by the two names of the array TBranch storing the associated reconstruction1252

quantity and the scalar TBranch holding the number of reconstructed candidates in an event. As1253

mentioned previously, the neutral tag with two possible values 1 and −1 can be used to differ-1254

entiate two neutral conjugate particles from each other. Internally, the program compares the1255

neutral tag of a specified particle with its charge conjugate index listed in the fifth column of1256

the file “pid 3pchrg txtpnm texpnm iccp.dat” under the “share” directory. Obviously, there is1257

a possibility that the assignment convention of the neutral tag is opposite to that of the charge1258

conjugate index. In this case, please add an exclamation mark “!” in front of “n” or “N” to make1259

the program use the opposite values of the neutral tag for comparisons.1260

Table 30: Formats of the optional parameter used for imposing restrictions on the truth instances of the specified particles
with their respective reconstruction information.

Reconstruction quantity Analysis type Prompt Format of the parameter
Charge Candidate based c c:charge s

Event based C C:charge a:nRec
Neutral tag Candidate based n n:neutralTag s

Event based N N:neutralTag a:nRec
Reversed neutral tag Candidate based !n !n:neutralTag s

Event based !N !N:neutralTag a:nRec
PDG code Candidate based p p:PDGCode s

Event based P P:PDGCode a:nRec
Index Candidate based i i:index s

Event based I I:index a:nRec

5.2.4. Settings only on signal identification1261

Normally, the signals specified in the signal identification functionality items are both tagged1262

and counted by executing the program one time. In the case of a huge sample that will take a long1263

time, it is a good idea to first tag the signals with multiple jobs each running on one machine, and1264

then count the tagged signals together. One can make the program carry out the idea by setting1265

the following item to “T” and “C” in the first and second steps, respectively. Here, “T” and “C”1266

stand for tagging and counting, respectively.1267

1268

% Analysis tasks for signal identifications (Three options: TC, T and C. Default: TC)1269

{1270

T1271

}1272
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1273

By default, the signals set in the signal identification functionality items are listed in the out-1274

put plain text, tex source, and pdf files in the sequence they are specified. In cases of plenty of1275

signals, there is probably a need to sort them according to the number of cases found in the input1276

samples. One can have the program do the sorting by inputting “Y” to the item below.1277

1278

% Sort the signals in the topology maps related to signal identifications (Two options: Y and N. Default: N)1279

{1280

Y1281

}1282

5.3. Settings on the output of the program1283

5.3.1. Output txt/tex/pdf files1284

By default, decay objects (trees, initial-final states, and branches) are left-aligned in the out-1285

put pdf files. If one likes it, he/she can request the program to center them by setting the following1286

item to “Y”.1287

1288

% Center decay objects in output pdf files (Two options: Y and N. Default: N)1289

{1290

Y1291

}1292

1293

In all of the previous examples, the program is applied to the inclusive MC samples in e+e−1294

colliding experiments. Besides, the program can also be used in other types of high energy ex-1295

periments, for example, the PANDA experiment [18], a pp̄ annihilation experiment under con-1296

struction at Darmstadt, Germany. On these occasions, we have to specify the right initial state1297

particles with the following item to obtain the proper topology maps.1298

1299

% Initial state particles (Default: e− e+)1300

{1301

anti-p− p+1302

}1303

1304

With the setting, the default initial state e+e− is replaced by pp̄, as shown in Table 31, which1305

displays the results of a component analysis over decay trees of a small pp̄ annihilation sample.1306

Table 31: Decay trees and their respective final states (pp̄ annihilation).

rowNo decay tree decay final state iDcyTr nEtr nCEtr

1 pp̄→ pp̄ pp̄ 1 232 232
2 pp̄→ π+π−pp̄ π+π−pp̄ 24 53 285
3 pp̄→ π0 pp̄ π0 pp̄ 5 35 320
4 pp̄→ π0π+π−pp̄ π0π+π−pp̄ 0 33 353
5 pp̄→ π0π0π0π+π+π−π− π0π0π0π+π+π−π− 39 31 384

rest pp̄→ others (184 in total) corresponding to others — 616 1000

5.3.2. Output root files1307

As mentioned in Section 2.6, after the execution of the program, one or more root files will1308

be output to save topology tags. By default, the program switches to a new output file whenever1309

the size of the TTree object in memory exceeds 3 GB. In addition to this, the program provides1310

an item to control the switch of output files by setting the maximum number of entries to be1311

saved in a single output file. The following example shows the item with the maximum number1312

set to 1 million.1313
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1314

% Maximum number of entries to be saved in a single output root file1315

{1316

10000001317

}1318

1319

Besides, one can have the program generate one output file by one input file with the following1320

item set to “Y”.1321

1322

% One output root file by one input root file (Two options: Y and N. Default: N)1323

{1324

Y1325

}1326

1327

Notably, with the setting, the output root files will not be denominated according to the default or1328

specially specified common name of the output files. Instead, they will be named after the input1329

root files and with “ ta n.root” (n=1, 2, 3 ...) as suffixex. Here, “ta” is short for topology analysis1330

and “n” is the corresponding file number. For example, with this setting, the names of the output1331

root files in the first example of the user guide will be “jpsi1 ta 1.root” and “jpsi2 ta 2.root”.1332

In default cases, flat TBranch objects are used to store topology tags in the output root files.1333

This is necessary for the Belle II experiment, as array TBranch objects are not recommended1334

to use in physics analyses in order to use other tools such as NumPy [11] and pandas [12].1335

However, since array TBranch objects are elegant and efficient in organizing and storing homo-1336

geneous data, sometimes it is better to use them than flat TBranch objects in other experiments,1337

such as the BESIII experiment. One can make the program use array TBranch objects to store1338

topology tags by inputting “Y” to the item below.1339

1340

% Use array tbranches to store topology tags in output root files when possible (Two options: Y and N. Default: N)1341

{1342

Y1343

}1344

1345

By default, to facilitate the validation of topology analysis results, the input TBranch objects1346

are copied to the output root files along with other TBranch objects for physics analyses. How-1347

ever, they often occupy too much disk space and are useless for following physics analyses. In1348

the case of being flat, a massive amount of these TBranch objects also looks awkward. Thus,1349

after the validation with a small sample, it would be better to remove these TBranch objects from1350

the output root files. One can request the program to perform this removal operation before it1351

terminates by setting the following item to “Y”.1352

1353

% Remove the input tbranches from output root files (Two options: Y and N. Default: N)1354

{1355

Y1356

}1357

1358

If one does not want to remove the MSI/MSF/MSD input TBranch objects entirely but still want1359

to make them easier to be examined with the Show method of the TTree class, he/she can demand1360

the program convert them into AOI TBranch objects with the following setting item.1361

1362

% Convert MSI/MSF/MSD input tbranches into AOI output tbranches (Two options: Y and N. Default: N)1363

{1364

Y1365

}1366

1367

In the type conversion, the undesired values of the TBranch objects are removed. Accordingly, a1368
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scalar TBranch object storing the number of the remaining particles and an array TBranch object1369

holding the raw indices of the remaining particles are inserted into the output root files.1370

On some occasions, besides the TTree object containing the raw topology truth information,1371

we may also want to clone some other TTree objects from the input root files to the output root1372

files. One can set the names of these TTree objects in the following item, with each in one line.1373

1374

% Other TTree names1375

{1376

abc1377

xyz1378

}1379

1380

In the example, the two TTree names “abc” and “xyz” are specified. Notably, with such a setting,1381

the other TTree objects will only be cloned to the first output root file in cases that multiple output1382

root files are produced but they have no explicit one-by-one relationship to the input root files.1383

Sometimes, we may only desire the topology maps. Under these circumstances, it would be1384

better to suppress the output root files, particularly in cases that they are large in file sizes. With1385

the item below, one can make the program do this automatically by first generating empty output1386

root files and then removing them after the corresponding entries are processed.1387

1388

% Suppress output root files (Two options: Y and N. Default: N)1389

{1390

Y1391

}1392

6. Auxiliary facilities1393

This section introduces some auxiliary facilities for the use of the program, including a card1394

file to preset frequently used items; some additional command line arguments to reset the names1395

of input root files, the common name of output files, and the maximum number of entries to be1396

processed; and two commands implemented in tex source files. Different from that presented in1397

the previous four sections, the content presented in this section is not the essential part of the1398

program. However, with these auxiliary facilities, we can make the program do our jobs better1399

and quicker on some occasions.1400

6.1. The underlying card file1401

A card file, namely “underlying topoana.card” under the directory “share”, to preset fre-1402

quently used items is developed to assist the card file specified by the first argument of the1403

command “topoana.exe”. Here, we refer to the former and latter card files as underlying and1404

primary, respectively. In general, the primary card file is sufficient to set items for the execution1405

of the program. However, considering some items are frequently used with constant inputs by a1406

user or a group of users, it is better to move the items from the primary card file to the underlying1407

card file, in order to make the primary card file more concise and make us more focused on the1408

items specially set for the dedicated topology analysis.1409

One can decide whether to set an item in the underlying card file according to his/her own1410

needs. Here, we introduce some frequently used items that are suitable to be put in the underlying1411

card file as follows. As mentioned in Section 2.4, the items related to the storage type and1412

TBranches names of the input data are usually fixed for a user or a group of users. Thus, it is1413

quite appropriate to move them to the underlying card file. We have to process charge conjugation1414
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particles and decays together in many physics studies. In such studies, it is also a good practice1415

to put the item on charge conjugation in the underlying card file.1416

The program first reads the items in the underlying card file and then reads those in the1417

primary card file. The items set in the underlying card file can be reset in the primary card file.1418

In such a case, the inputs in the underlying card file will be replaced by their counterparts in the1419

primary card file.1420

6.2. Additional command line arguments1421

Normally, only the “cardFileName” is required to be passed as an argument of the command1422

“topoana.exe”, and all of the necessary information can be configured via the setting items filled1423

in the card file. On some occasions, we need to run the program over multiple samples separately,1424

with identical settings except for the names of input root files and the common name of output1425

files. A regular approach to do such a job requires multiple card files, each corresponding to1426

one sample. This approach appears a bit tedious in cases of many samples. To avoid this, two1427

additional command line arguments are designed and implemented to reset the names of input1428

root files and the common name of output files. Similarly, two additional arguments are also1429

developed for the input TTree name and the maximum number of entries to be processed.1430

These optional arguments should be typed with prompts, which are listed and explained as1431

follows.1432

• –i: The names of input root files should be provided after the prompt. One or more names1433

are allowed here. They will replace those set in the card file.1434

• –t: The TTree name should be provided after the prompt. It will replace the one set in the1435

card file.1436

• –o: The common name of output files should be provided after the prompt. It will replace1437

the one set in the card file or the default one, that is, the name of the card file.1438

• –n: The maximum number of entries to be processed should be provided after the prompt.1439

It will replace that set in the card file.1440

Besides, one can execute “topoana.exe −−help” for the help documention of “topoana.exe”.1441

6.3. Commands implemented in tex source files1442

The output pdf files can be checked after the execution of the program. If their styles are not1443

to our taste, we can edit the corresponding tex source files to get the desired styles, according1444

to the regular LaTeX rules. Besides the rules, two commands are implemented in the tex source1445

files to help us edit the files quickly and easily for two common desired styles.1446

By default, topology tags are listed along with topology maps in the output plain text, tex1447

source, and pdf files. However, only the topology maps are needed on some occasions, espe-1448

cially in presentations. In such cases, one can suppress the topology tags in the output tex source1449

and pdf files by simply changing the definition of the cmtTopoTags command from the nominal1450

one1451

1452

\newcommand{\topoTags}[1]{#1}1453

1454

to the alternative one1455
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1456

\newcommand{\topoTags}[1]{}1457

1458

in the preamble of the text source files. Here, “#1” is the formal parameter of the string for1459

the topology tags. With the nominal definition, “\topoTags{#1}” returns the string exactly, while1460

with the alternative definition it only returns an empty string. That is why the definition below is1461

able to suppress the topology tags.1462

After the revision of the tex source files, one can re-compile them with the pdflatex command.1463

Usually, the pdflatex command has to be executed two or three times for a fully compiled pdf1464

file, and many undesired files in other formats are generated during the compilation. To execute1465

the pdflatex command and remove the undesired files at one stroke, we develop a bash script,1466

namely “getPdfFromTex.sh” under the directory “utilities”. The script should be executed with1467

the following command line: getPdfFlFromTexFl.sh texFileName. Compiling the tex source1468

files with the script is recommended.1469

7. Summary1470

We develop a program, namely TopoAna, with C++, ROOT, and LaTeX for the event type1471

analysis of inclusive MC samples in high energy physics experiments. This user guide provides1472

a detailed description of the program, including a basic introduction to it, two categories of its1473

functionalities — component analysis and signal identification, and some common settings and1474

auxiliary facilities for its execution. The program has rich functionalities and aims to solve all1475

kinds of event type analysis tasks. Meanwhile, it is easy to use and has a high processing rate.1476

These features make the program a powerful tool to analyze the backgrounds involved in our1477

research works and to identify the physics processes of interests from the inclusive MC samples.1478

Since it does not rely on any specific software frameworks, the program applies to many high1479

energy physics experiments. Up to now, it has been put into use in three experiments at e+e−1480

colliders: the BESIII, Belle, and Belle II experiments. Besides these experiments, it can also be1481

used in other types of experiments, such as the PANDA experiment, a pp̄ annihilation experi-1482

ment. Also, the program is applicable to the future e+e− colliding experiments under research1483

and development, such as the circular electron-positron collider (CEPC) [19, 20] experiment in1484

China, the super Charm-τ factory (SCTF) experiment [21] in Russia, and the super τ-Charm fac-1485

tory (STCF) experiment [22] in China. These experiments offer wide space for the application1486

of the program.1487

On the other hand, we note that the application of the program to some other experiments is1488

limited. For example, thousands of particles can be produced from dozens of pp collisions in1489

an event of the ATLAS [23] and CMS [24] experiments at the LHC [25]; in such cases, there1490

is little point in performing the event type analysis of corresponding MC samples. Nonetheless,1491

the application scope of the program is still broad. In particular, it applies to the e+e− colliding1492

experiments where at most tens of particles are produced from the annihilation of a pair of e+e−1493

in an event. With more user needs coming out in the future, we will further extend and perfect it1494

to make it more powerful and well-rounded.1495
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