Apr. 11th, 2023 – YHEP Meeting

Signal MC Study

MC matching / isSignal / TopoAna

Cheolhun Kim Hanyang University Korea

Belle II

Contents

- About this talk
- The motivation for the Signal MC study
 - What we reconstruct from the data
 - Possible cases of mis-reconstruction
 - Mathematical Expression of the reconstructed cases
 - Ratios and Distributions of the reconstructed cases
 - Reconstruction Efficiency and its Uncertainty
- Design flags for True / WC / SCF
 - Is it possible to design flags for True/Wrong-Comb./Self-Crossfeed with basf2 variable related to "isSignal"?
- Design "isSignalEvent"
 - with MC-matching info. / PDG-code
 - Machine learning label
- Further: Consider γ

Contents

- Others
 - Advertising Code version control / Documentation Tools
- Backup
 - Tools for the MC study
 - MC matching
 - MC matching Alogorithm
 - isSignal related variables (Chanho Kim)
 - TopoAna (Jaeyoung Kim)
 - References

About this talk

About this talk

- Due to my incomplete understanding
 - Classifying my own questions
 - My own conclusions
 - this can be wrong
- Conceptual
- If you don't understand, that might be due to my misunderstanding...
 - So, let's discuss

The motivation for the Signal MC study

- Think about the final stage of the analysis first
 - Imagine there is no MC-matching study
 - Then,
 - we are not sure ...
 - we cannot distinguish ...
- Example
 - $\Upsilon(4S) \rightarrow \overline{B}{}^0B^0$
 - $\bar{B}^0 \rightarrow generic$

$$B^0 \to \tau^+ \tau^- \\ \tau^+ \to \mu^+ \nu_\mu \bar{\nu}_\tau, \tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$$

- Let us choose one of the final states, for example, $\mu\mu$
- $R \equiv R_{\mu\mu}$: Reconstruction of $B \rightarrow \tau \tau$ from $\mu\mu$ final state
- P(R): Reconstruction Probability of the $B \rightarrow \tau \tau$ from $\mu \mu$ final state
- For simplicity, let us assume
 - $P(R^{C}) = 0$, no reconstruction failure
 - (NaN case of isSignal)

- P(S|R) = P(T|R) + P(WC|R) + P(SCF|R)
- $P(S|R) + P(B|R) = P(S \cup B|R) = P(R|R) = 1$
- where,
 - S: Signal
 - *T*: True
 - *WC*: Wrong-Combination
 - SCF: Self-Crossfeed
 - B: Background
 - $R \equiv R_{\mu\mu}$: Reconstruction of $B \rightarrow \tau \tau$ from $\mu\mu$ final state
- Assumption: No reconstruction failure (This also should be considered, but for simplicity)
 - $P(R^C) = 0$

Ratios and Distributions of the reconstructed cases

- P(S|R) = P(T|R) + P(WC|R) + P(SCF|R)
- Some Analysis P(S|R) can be approximated as,
 - $P(S|R) \approx P(T|R)$ with negligible *WC* and *SC*
 - $P(S|R) \approx P(T|R) + P(SCF|R)$ with negligible *WC*
- How can we know the ratios? ($r_T: r_{WC}: r_{SC}$)
 - $r_X = \frac{P(X|R)}{P(S|R)}$
- How can we know the distributions?

Ratios and Distributions of the reconstructed cases

- P(S|R) = P(T|R) + P(WC|R) + P(SCF|R)
- Some Analysis P(S|R) can be approximated as,
 - $P(S|R) \approx P(T|R)$ with negligible *WC* and *SC*
 - $P(S|R) \approx P(T|R) + P(SCF|R)$ with negligible *WC*
- How can we know the ratios? (r_T : r_{WC} : r_{SC})
 - $r_X = \frac{P(X|R)}{P(S|R)}$
- How can we know the distributions?

There is a way to estimate theses ratios and distributions!

Signal MC study

- For example,
 - all numbers here are arbitrary
- Case 1) WC / SCF negligible
 - $\varepsilon(S = T) = 1 \pm 0.01 \%$
- Case 2) WC negligible, SCF significant
 - $\varepsilon(S = T + SCF) = 1 \pm 0.5 \%$
 - SCF worsen the systematic uncertainty (Fit)
 - Fraction is the important factor which affect the uncertainty

•
$$f(SCF) = \frac{N_{SCF}}{N_{sig}} = \frac{N_{SCF}}{N_{True} + N_{SCF}} = 23\%$$

• Thus, it is important to know the fraction and distribution.

Design Flags for True / WC / SCF

Design flags for True / WC / SCF

It might be possible as follows?

- WC and SCF with combinations of below flags?
 - misID
 - Particle Identification is not correct.
 - AddedWrongParticle
 - Check if the MC-matching is correct for each daughter. If not, the AddedWrongParticle flag is added.

X [Monte Carlo matching in the Belle II software] <u>https://doi.org/10.1051/epjconf/202125103021</u>

Design flags: isSignal Test

isSignalAccpetMissingNeutrino

isSignalAccpetMissingNeutrinoAndWrongFSPs

5

5

(a) Signal and background $E_{\rm ECL}$ distributions. Events with $E_{\rm Ecl} < 1.2~{\rm GeV}$ are selected.

- Pre-defined isSignal
 - isSignalAccpetMissingNeutrino
 - "mcErrors == 0" or "mcErrors == 8"
- User-defined isSignal
 - isSignalAccpetMissingNeutrinoAndWrongFSPs
 - "mcErrors == 0" or "mcErrors == 8" or "mcErrors == 128" or "mcErrors == 256"

vu.create_isSignal_alias("isSignalAcceptMissingNeutrinoAndWrongFSPs", [8, 128, 256])

```
evt_variables = [
```

```
"isSignalAcceptMissingNeutrino",
"isSignalAcceptWrongFSPs",
"isSignalAcceptMissingNeutrinoAndWrongFSPs",
"isContinuumEvent",
"isNotContinuumEvent"
```


MC matching error codes

- calling matchMCTruth(B+, path) in one's steering file sets relations between Particles and MCParticles
 - recursively matches all daughter particles
 - bit-wise error flags indicate what went wrong in MC matching (variable mcErrors)

c Correct = 0	This Particle and all its daughters are perfectly reconstructed.
c MissFSR = 1	A Final State Radiation (FSR) photon is not reconstructed (based on MCParticle::c IsFSRPhoton).
c MissingResonance = 2	The associated MCParticle decay contained additional non-final-state particles (e.g. a rho)
—	that weren't reconstructed. This is probably O.K. in most cases.
$c_DecayInFlight = 4$	A Particle was reconstructed from the secondary decay product of the actual particle.
	This means that a wrong hypothesis was used to reconstruct it, which e.g. for tracks might mean
	a pion hypothesis was used for a secondary electron.
c MissNeutrino = 8	A neutrino is missing (not reconstructed).
c MissGamma = 16	A photon (not FSR) is missing (not reconstructed).
c MissMassiveParticle = 32	A generated massive FSP is missing (not reconstructed).
$c_MissKlong = 64$	A Klong is missing (not reconstructed).
c MisID = 128	One of the charged final state particles is mis-identified (wrong signed PDG code).
c_AddedWrongParticle = 256	A non-FSP Particle has wrong PDG code, meaning one of the daughters (or their daughters)
	belongs to another Particle.
c InternalError = 512	No valid match was found. For tracks, it indicates that there is not a true track related to the reconstructed one.
	Might indicate fake or background track or cluster.
c MissPHOTOS = 1024	A photon created by PHOTOS was not reconstructed (based on MCParticle::c IsPHOTOSPhoton).
c _AddedRecoBremsPhoton = 2048	A photon added with the bremsstrahlung recovery tools (correctBrems or correctBremsBelle) has
—	no MC particle assigned, or it doesn't belong to the decay chain of the corrected lepton mother.

Frank Meier (Duke University)

Bremsstrahlung and MC matching

30.01.2023 11 / 17

X [All you wanted to know about brems correction and MC matching and never dared asking, Belle II Physics Meeting] https://indico.belle2.org/event/8674/#42-all-you-wanted-to-know-abou

Duriversity

isSignal variables

- convenience aliases for mcErrors variable
- isSignal: mcErrors == 0
- isSignalAcceptMissingNeutrino: mcErrors == 0 or mcErrors == 8
- isSignalAcceptMissingGamma: mcErrors == 0 or mcErrors == 16
- isSignalAcceptBremsPhotons: mcErrors == 0 or mcErrors == 2048
- ▶ isSignalAcceptMissingMassive: mcErrors ∈ [0, 32, 64, 96]
- ▶ isSignalAcceptWrongFSPs: mcErrors ∈ [0, 128, 256, 384]
- ▶ isSignalAcceptMissing: mcErrors ∈ [0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120]
- create_isSignal_alias(aliasName, flags)
 - create_isSignal_alias("isSignalAcceptMissingNeutrinoAndMissingGamma", [8, 16]): mcErrors ∈ [0, 8, 16, 24]
- three possible return values: 0, 1, and NaN
 - isSignal variables can not be used as booleans
 - ► NaN if no MC partner found (running on data or **matchMCTruth** not run or fake tracks / cluster)

Frank Meier (Duke University)

Bremsstrahlung and MC matching

30.01.2023 12 / 17

※ [All you wanted to know about brems correction and MC matching and never dared asking, Belle II Physics Meeting] <u>https://indico.belle2.org/event/8674/#42-all-you-wanted-to-know-abou</u>

Design "isSignalEvent"

P(S|R)

Make a flag as 1 (True), if this green box matches

- Condition 0. Check whether the right PDG code
- Condition 1. Only sister τ (with the right PDG code)
- Condition 2. Mother *B* (with the right PDG code)

- p15, line 210: "The signal is truth-matched [24]."
 - [24]: "The truth-matching of the B+ candidate is as follows: the candidate should have a kaon daughter and 2 neutrinos. Potential radiative photons are also accepted."

6. INPUT VARIABLES

In this section, variables that are used in the training of the main classifier are defined and shown. A sample of 8×10^5 events of each simulated category (signal, B^+B^- , $B^0\overline{B}^0$, $u\overline{u}$, $d\overline{d}$, $s\overline{s}$, $c\overline{c}$, $\tau^+\tau^-$) is reconstructed with the event selection described in the previous section apart from the requirement on the KaonPID (unless specified differently).

The signal is truth-matched [24]. Furthermore, additional weights are applied on the signal events to correct the phase space of the decay products as the MC was generated assuming on a three-body decay of the signal B. This procedure is described in detail in Appendix F The background samples are stacked with weights taking into account the cross-section of the process and the reconstruction efficiency. Both the signal and the stacked background histograms are normalized to unity and the signal-background separation power is estimated with the Jensen-Shannon distance [7], that gives 0 (1) for perfectly matching (diverging) histograms. Moreover, data taken during the Run 3123 from Experiment 8 is overlayed (randomly chosen from the list of 'good' runs).

All histograms are framed by colored boxes as some of the considered input variables are excluded from the training of the BDT:

% ["Studies of $B^{\pm} \rightarrow K^{\pm} \nu \bar{\nu}$ decay using inclusive tagging method" by Filippo Dattola] <u>https://docs.belle2.org/record/2003</u>

47	<pre>class IsSignalEvent(b2.Module):</pre>
48	нин
49	define extraInfo isSignalEvent, that is set to true if, checking MC info:
50	one of the B mesons has a son with the right PDG-ID, its mother is a B+ or B0 (depending of its charge)
51	and its only sisters are a nu and an anti-nu)
52	ппп
45	<pre>class IsSignalEvent(b2.Module):</pre>
46	
47	define extraInfo isSignalEvent, that is set to true if, checking MC info:
48	one of the B mesons has a son with the right PDG-ID, its mother is a B+ or B0 (depending of its charge)
49	and its only sisters are a tau+ and a tau-)
50	нин

 $\begin{array}{l} & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$

"isSignalEvent" Example ($B^+ o K^+ u \overline{ u}$)

		180
47	elace TesignalEvent/b2 Medule):	181
18	un	182
40	define extraInfo isSignalEvent, that is set to true if checking MC info-	183
50	one of the R mesons has a son with the right PDG-TD, its mother is a $R + \alpha r R0$ (depending of its charge)	184
51	and its only sisters are a nu and an anti-nu)	185
52		186
53		187
54	def init (self, listname, varname="isSignalEvent"):	188
55	super(), init ()	189
56	<pre>self.narticlelist = r.Belle2.PvStoreObi(listname)</pre>	190
57	self.varname = varname	192
58		193
59	def event(self):	194
60	mcParticles = r.Belle2.PvStoreArray("MCParticles")	195
61	KaonsPDGids = [196
62	321.	197
63	310.	198
64	323.	199
65	313.	200
66	130.	201
67	311.	202
68	10311.	203
69	10321	205
70	100311.	206
71	100321.	207
72	10313,	208
73	10323,	209
74	20313,	210
75	20323,	211
76	100313,	212
77	100323,	213
78	30313,	214
79	30323,	215
80	315,	217
81	325,	218
82	10315,	219
83	10325,	220
84	20315,	221
85	20325,	222
86	317,	223
87	327,	224
88	319,	225
89	329,	220
90	1	228
91	Knunu_generic = []	229
92	KJpsi_generic = []	230
93	for a in KaonsPDGids:	231
94	<pre>for b in [12, 14, 16]: # here are the neutrinos!!!</pre>	232
95	Knunu_generic .append(sorted ([a, b, -b]))	233
96	Knunu_generic .append(sorted ([-a, b, -b]))	234
		235

HANYANG UNIVERSITY

SEOUL, KOREA

28/38

$\approx [B \rightarrow K\nu\nu$ Analysis Code by Giulio Dujany]

https://gitlab.desy.de/giulio.dujany/b2knn/-/blob/main/ntupliser/ntuple_variables.py

237

238


```
class IsSignalEvent(b2.Module):
   .....
   define extraInfo isSignalEvent, that is set to true if, checking MC info:
   one of the B mesons has a son with the right PDG-ID, its mother is a B+ or B0 (depending of its charge)
   and its only sisters are a tau+ and a tau-)
   .....
   def __init__(self, listname, varname="isSignalEvent"):
       super().__init__()
       self.particleList = ROOT.Belle2.PyStoreObj(listname)
       self.varname = varname
   def event(self):
       mcParticles = R00T.Belle2.PyStoreArray("MCParticles")
       KaonsPDGids = [323, 313]
       Ktautau_generic = []
       for KaonPDGid in KaonsPDGids:
           Ktautau_generic.append(sorted([KaonPDGid, 15, -15]))
           Ktautau_generic.append(sorted([-KaonPDGid, 15, -15]))
       for particle in self.particleList:
           if particle.hasExtraInfo(self.varname):
               continue
           particle.addExtraInfo(self.varname, 0)
           mcParticle = False
           for Upscand in mcParticles:
               if Upscand.getPDG() == 300553:
                    mcParticle = Upscand
                    break
           if not mcParticle:
               continue
           B_sons_PDGids = []
           for i in mcParticle.getDaughters():
               if abs(i.getPDG()) != 521 and abs(i.getPDG()) != 511 :
                   continue
               B_sons_PDGids.append(sorted(list(filter(lambda x: x!= 22,[j.getPDG() for j in i.getDaughters()]))))
           for B_son_PDGids in B_sons_PDGids :
               if B_son_PDGids in Ktautau_generic :
                    particle.setExtraInfo(self.varname, -1)
               else:
                    continue
           for i in mcParticle.getDaughters(): #loop on Bs
               sons_PDGids = sorted(list(filter(lambda x: x!= 22,[j.getPDG() for j in i.getDaughters()])))
               if sons_PDGids in Ktautau_generic: # then we know its K tau tau
                   for j in i.getDaughters():
                        if abs(j.getPDG()) == 313: # K*0 -> K- pi+
                            if sorted(list(filter(lambda x: x!= 22,[abs(h.getPDG()) for h in j.getDaughters()]))) == [211,321]:
                                particle.setExtraInfo(self.varname, 1)
```

```
HANYANG UNIVERSITY 29/38
```



```
12
    class IsB2Xnunu(b2.Module):
        .....
13
14
        define extraInfo isB2Xnunu, that is set to true if, checking MC info:
15
        X has the right PDG-ID, its mother is a B+ or B0 (depending of its charge)
16
        and its only sisters are a nu_e and an anti-nu_e
        .....
17
18
19
        def __init__(self, listname, varname="isB2Xnunu"):
            super().__init__()
20
21
            self.particleList = r.Belle2.PyStoreObj(listname)
22
            self.varname = varname
23
24
        def event(self):
25
            mcParticles = r.Belle2.PyStoreArray("MCParticles")
26
            for particle in self.particleList:
27
                 if particle.hasExtraInfo(self.varname):
28
                     continue
29
                 particle.addExtraInfo(self.varname, 0)
                mcParticle = particle.getRelatedTo("MCParticles")
30
31
                 if not mcParticle:
32
                     continue
33
                 mcMother = mcParticle.getMother()
34
                 if not mcMother:
35
                     continue
                B_PDG = 511 if particle.getCharge() == 0 else 521
36
37
                 if abs(mcMother.getPDG()) != B_PDG:
38
                     continue
39
                 if mcMother.getCharge() != particle.getCharge():
                     continue
40
                 daughters PDGs = sorted([i.getPDG() for i in mcMother.getDaughters()])
41
42
                 if daughters_PDGs != sorted([particle.getPDGCode(), -12, 12]):
43
                     continue
44
                 particle.setExtraInfo(self.varname, 1)
```

 $[B \rightarrow K\nu\nu \text{ Analysis Code by Giulio Dujany}]$ <u>https://gitlab.desy.de/giulio.dujany/b2knn/-/blob/main/ntupliser/ntuple_variables.py</u>

Inclusive Use Case ($B^0 o K^{*0} au^+ au^-$)

```
class IsB2Xtautau(b2.Module):
   .....
   define extraInfo isB2Xtautau, that is set to true if, checking MC info:
   X has the right PDG-ID, its mother is a B+ or BO (depending of its charge)
   and its only sisters are a tau+ and a tau-
    .....
    def __init__(self, listname, varname="isB2Xtautau"):
        super().__init__()
        self.particleList = ROOT.Belle2.PyStoreObj(listname)
        self.varname = varname
    def event(self):
        mcParticles = ROOT.Belle2.PyStoreArray("MCParticles")
        for particle in self.particleList:
            if particle.hasExtraInfo(self.varname):
                continue
            particle.addExtraInfo(self.varname, 0)
            mcParticle = particle.getRelatedTo("MCParticles")
            if not mcParticle:
                continue
            mcMother = mcParticle.getMother()
            if not mcMother:
                continue
            B_PDG = 511 if particle.getCharge() == 0 else 521
            if abs(mcMother.getPDG()) != B_PDG:
                continue
            if mcMother.getCharge() != particle.getCharge():
                continue
            daughters_PDGs = sorted([i.getPDG() for i in mcMother.getDaughters()])
            if daughters_PDGs != sorted([particle.getPDGCode(), -15, 15]):
                continue
            particle.setExtraInfo(self.varname, 1)
```

 $\ensuremath{\overset{\times}{=}} [B \to K\tau\tau \text{ Analysis Code by Stefano Moneta}] \\ \ensuremath{\underline{\mathsf{https://gitlab.desy.de/stefano.moneta/btokst_tau_tau/-/blob/main/ntupliser/ntuple_variables.py} }$

Further: Consider γ

Consider γ

- p15, line 210: "The signal is truth-matched [24]."
 - [24]: "The truth-matching of the B+ candidate is as follows: the candidate should have a kaon daughter and 2 neutrinos. *Potential radiative photons are also accepted*."

6. INPUT VARIABLES

In this section, variables that are used in the training of the main classifier are defined and shown. A sample of 8×10^5 events of each simulated category (signal, B^+B^- , $B^0\overline{B}^0$, $u\overline{u}$, $d\overline{d}$, $s\overline{s}$, $c\overline{c}$, $\tau^+\tau^-$) is reconstructed with the event selection described in the previous section apart from the requirement on the KaonPID (unless specified differently).

<u>The signal is truth-matched</u> [24]. Furthermore, additional weights are applied on the signal events to correct the phase space of the decay products as the MC was generated assuming on a three-body decay of the signal B. This procedure is described in detail in Appendix F The background samples are stacked with weights taking into account the cross-section of the process and the reconstruction efficiency. Both the signal and the stacked background histograms are normalized to unity and the signal-background separation power is estimated with the Jensen-Shannon distance [7], that gives 0 (1) for perfectly matching (diverging) histograms. Moreover, data taken during the Run 3123 from Experiment 8 is overlayed (randomly chosen from the list of 'good' runs).

All histograms are framed by colored boxes as some of the considered input variables are excluded from the training of the BDT:

% ["Studies of $B^{\pm} \rightarrow K^{\pm} \nu \bar{\nu}$ decay using inclusive tagging method" by Filippo Dattola] <u>https://docs.belle2.org/record/2003</u>

Consider γ

Others: Code Version Control and Documentation

Code version control / Documentation

- Gitlab
 - Belle II uses "Gitlab" as git repository
 - My repository
 - <u>https://gitlab.desy.de/chkim-hanyang/bd2tautau</u>
- Jupyter book
 - Python-based documentation package
 - Markdown format
 - Comparability with Sphinx
 - HTML output
 - My documentation online page with "Gitlab Pages"
 - https://chkim-hanyang.pages.desy.de/bd2tautau/intro.html
 - This will be a supplementary of my Belle II note

My Gitlab Repository

HANYANG UNIVERSITY SEOUL, KOREA 37/38

🤟 🗮 🔍 Search GitLab			• · · · · · · · · · · · · · · · · · · ·
B bd2tautau	Cheolhun Kim > bd2tautau		
 Project information Repository Issues Merge requests CI/CD Security and Compliance Deployments Packages and registries Infrastructure Monitor Analytics Wiki 	B bd2tautau A Project ID: 4095 t → 27 Commits % 1 Branch ⊘ 0 Tag Bd to tau tau analysis with Belle II of [GitLab Pages Link (Jupyter Book) Merge branch 'br1' into 'main' Cheolhun Kim authored 1 day a main ~ bd2tautau / + ~ README CI/CD configuration	js 🕞 195.9 MB Project Storage Iata by Cheolhun Kim (Ph.D student, Hanyan] https://chkim-hanyang.pages.desy.de/bd2 go	① ✓ ☆ Star 0 ♀ Fork 0 Ing Univ.) Ztautau/intro.html ② e72d2209 ☆ Find file Web IDE ★ ✓ Clone ✓ Add CONTRIBUTING
X Snippets	🗄 Add Kubernetes cluster 🗄 Add	Wiki 🔞 Configure Integrations	
Ø Settings	Name	Last commit	Last update
	🗅 .ipynb_checkpoints	gitlab pages	1 day ago
	D b2tt_manual	gitlab pages update test	1 day ago
	notebooks	jupyter book ghp-import	1 day ago
	C scripts	jupyter book ghp-import	1 day ago
	È⊐ test_rec	Before E_ECL MVA update	1 month ago
	♦ .gitignore	'notebooks' folder created. 'signalMC'	fol 8 months ago
	🤟 .gitlab-ci.yml	gitlab pages	1 day ago
	M* README.md	Initial commit	8 months ago
	README.md		
	bd2tautau Bd to tau tau analysis with Belle II d	data by Cheolhun Kim (Ph.D student, Hanyang Ur	iv.)

My jupyter book Online

Bd to tau tau Analysis

Introduction Theory

Sample Information

Sample Information

Reconstruction

FEI Tagging Pre-selection

Usage / Tools

Commands Version Control Jupyter Book

Bd to tau tau Analysis

Title

 \equiv

Search for the rare decay $B^0
ightarrow au^+ au^-$ at Belle II experiment

Author

Cheolhun Kim, Hanyang University hun4341@hanyang.ac.kr

Abstract

A search for the rare decay $B^0 \to \tau^+ \tau^-$ is performed at the Belle II experiment at the superKEKB asymmetric electron-positron collider. The standard model predicts that the branching fraction of the decay mode is suppressed, but several extensions of the standard model expect enhancements. The results will be obtained with data samples corresponding to an integrated luminosity of 427.79 fb⁻¹ collected at the $\Upsilon(4S)$ resonance. We use a hadronic tagging method that reconstructs fully accompanying B meson and try to find signals from the remaining part of the event. The result of this study will be the measurement or upper limit setting of the branching fraction of the decay. We present the results based on Monte Carlo simulation samples.

keywords

Rare Decay, Hadronic Tagging, Leptonic, Belle II Experiment

Next >

By Cheolhun Kim © Copyright 2022.

O ≟ C O Q \approx Contents

Title Author Abstract keywords

Backup

Backup

- Tools for the MC study
- References

Tools for the MC study

MC matching

- MC matching?
 - Particle Candidates: Combinations of *reconstructed* objects
 - Simulated Particles: From the event generators
- Purpose of MC matching?
 - To study Detector effects, analysis backgrounds, and efficiencies
 - To consider the reconstruction effect and backgrounds
- MC matching of tracks / MC matching of clusters
 - Track-based and Cluster-based particles (final-state particles) candidates
- "MC matching algorithm for Composite particles"
 - Goal: To establish the relation between the reconstructed composite particle and the corresponding MC-particle
- Evaluation algorithm for the "MC matching algorithm for Composite particles"
 - Categorizing failure cases: Several Error flags
 - "Each analyst can CHOOSE to accept or not for his or her own analysis use case"
 - Two major parts of the algorithm
 - Processes with existing particles
 - Processes with missing particles

% [Monte Carlo matching in the Belle II software] https://doi.org/10.1051/epjconf/202125103021

MC matching algorithm for Composite particles

Figure 1. The algorithm flowchart of the MC-matching for a composite particle.

X [Monte Carlo matching in the Belle II software] <u>https://doi.org/10.1051/epjconf/202125103021</u>

Figure 2. The algorithm flowchart of the evaluation for existing particles

% [Monte Carlo matching in the Belle II software] https://doi.org/10.1051/epjconf/202125103021

MC matching: The Evaluation Algorithm - Missing Particles

Figure 3. The algorithm flowchart of the evaluation for missing particles

% [Monte Carlo matching in the Belle II software] https://doi.org/10.1051/epjconf/202125103021

MC matching: IsSignal

X Chanho Kim will cover this part in detail.

MC matching

- MC matching useful to
 - optimize selection requirements, e.g. label training data for MVAs
 - calculate signal efficiencies
 - study background sources
- two steps
 - 1. relate mdst dataobjects (Track, ECLCluster, KLMCluster) with MCParticle (with weights)
 - 2. relate reconstructed particles with MC particles
- interpretation of MC matches necessary

Frank Meier (Duke University)

Bremsstrahlung and MC matching

30.01.2023 6 / 17

X [All you wanted to know about brems correction and MC matching and never dared asking, Belle II Physics Meeting] <u>https://indico.belle2.org/event/8674/#42-all-you-wanted-to-know-abou</u>

Apr.11.2023, YHEP Meeting, Cheolhun Kim

Duk

MC matching error codes

- calling matchMCTruth(B+, path) in one's steering file sets relations between Particles and MCParticles
 - recursively matches all daughter particles
 - bit-wise error flags indicate what went wrong in MC matching (variable mcErrors)

$c_Correct = 0$	This Particle and all its daughters are perfectly reconstructed.
$c_MissFSR = 1$	A Final State Radiation (FSR) photon is not reconstructed (based on MCParticle::c_lsFSRPhoton).
c MissingResonance = 2	The associated MCParticle decay contained additional non-final-state particles (e.g. a rho)
	that weren't reconstructed. This is probably O.K. in most cases.
c_DecayInFlight = 4	A Particle was reconstructed from the secondary decay product of the actual particle.
	This means that a wrong hypothesis was used to reconstruct it, which e.g. for tracks might mean
	a pion hypothesis was used for a secondary electron.
c MissNeutrino = 8	A neutrino is missing (not reconstructed).
c_MissGamma = 16	A photon (not FSR) is missing (not reconstructed).
c_MissMassiveParticle = 32	A generated massive FSP is missing (not reconstructed).
c_MissKlong = 64	A Klong is missing (not reconstructed).
$c_MisID = 128$	One of the charged final state particles is mis-identified (wrong signed PDG code).
$c_AddedWrongParticle = 256$	A non-FSP Particle has wrong PDG code, meaning one of the daughters (or their daughters)
	belongs to another Particle.
c InternalError = 512	No valid match was found. For tracks, it indicates that there is not a true track related to the reconstructed one.
	Might indicate fake or background track or cluster.
c MissPHOTOS = 1024	A photon created by PHOTOS was not reconstructed (based on MCParticle::c IsPHOTOSPhoton).
c AddedRecoBremsPhoton = 2048	A photon added with the bremsstrahlung recovery tools (correctBrems or correctBremsBelle) has
_	no MC particle assigned, or it doesn't belong to the decay chain of the corrected lepton mother.

Frank Meier (Duke University)

Bremsstrahlung and MC matching

30.01.2023 11 / 17

X [All you wanted to know about brems correction and MC matching and never dared asking, Belle II Physics Meeting] https://indico.belle2.org/event/8674/#42-all-you-wanted-to-know-abou

MC matching: IsSignal

Duke

isSignal variables

- convenience aliases for mcErrors variable
- isSignal: mcErrors == 0
- isSignalAcceptMissingNeutrino: mcErrors == 0 or mcErrors == 8
- isSignalAcceptMissingGamma: mcErrors == 0 or mcErrors == 16
- isSignalAcceptBremsPhotons: mcErrors == 0 or mcErrors == 2048
- ▶ isSignalAcceptMissingMassive: mcErrors ∈ [0, 32, 64, 96]
- ▶ isSignalAcceptWrongFSPs: mcErrors \in [0, 128, 256, 384]
- ▶ isSignalAcceptMissing: mcErrors ∈ [0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120]
- create_isSignal_alias(aliasName, flags)
 - create_isSignal_alias("isSignalAcceptMissingNeutrinoAndMissingGamma", [8, 16]): mcErrors ∈ [0, 8, 16, 24]
- three possible return values: 0, 1, and NaN
 - isSignal variables can not be used as booleans
 - ► NaN if no MC partner found (running on data or **matchMCTruth** not run or fake tracks / cluster)

Frank Meier (Duke University)

Bremsstrahlung and MC matching

30.01.2023 12 / 17

※ [All you wanted to know about brems correction and MC matching and never dared asking, Belle II Physics Meeting] <u>https://indico.belle2.org/event/8674/#42-all-you-wanted-to-know-abou</u>

Decay strings

- MC matching interpretation configured via decay arrow, markers, and keywords
- ► four different allowed arrow types
 - decays via intermediate resonances and / or with radiative photons are counted as signal
 - Inorad=> if in actual decay photon was radiated it is not counted as signal; intermediate resonances do not have to be specified
 - =direct=> if actual decay proceeds via intermediate resonance it is not counted as signal; decays with radiative photons are counted as signal
 - =exact=> intermediate resonances and radiative photons have to be specified explicitly, otherwise decay is not counted as signal
- ► different arrows allowed in same decay string D*+ -> [D0 =direct=> K- pi+ pi0] pi+
- example:
 - generated decay: $B^+ \rightarrow J/\psi K^+$ with $J/\psi \rightarrow e^+e^-$ and final state photon
 - B+:default -> K+ e+ e- \Rightarrow isSignal == 1
 - ▶ B+:noFSR =norad=> K+ e+ e- ⇒ isSignal == 0 and mcErrors == 1
 - ▶ B+:nores =direct=> K+ e+ e- \Rightarrow isSignal == 0 and mcErrors == 2
 - B+:exact =exact=> K+ e+ e- \Rightarrow isSignal == 0 and mcErrors == 3

Frank Meier (Duke University)

Bremsstrahlung and MC matching

X [All you wanted to know about brems correction and MC matching and never dared asking, Belle II Physics Meeting] <u>https://indico.belle2.org/event/8674/#42-all-you-wanted-to-know-abou</u>

Decay string marker and keywords

- @ marked (composite) particle can be any particle and decay is still counted as signal
- (misID) marked (final state) particle can be other particle type and decay is still counted as signal
- (decay) decay in flight of marked particle counted as signal, $e.g. \pi \rightarrow \mu \nu_{\mu}$
- (misID), and (decay) have to be placed in front of particle
- even if there are more massive final state particles than specified, decay is counted as signal (isSignal behaves like isSignalAcceptMissingMassive)
 - missing π^0 are not counted as signal
- ?nu neutrinos are ignored in MC matching (isSignal works like isSignalAcceptMissingNeutrino)
- ?addbrems
 Bremsstrahlung correction photons are ignored in MC matching (isSignal works like isSignalAcceptBremsPhotons)
- ?gamma missing photon(s) are ignored in MC matching (isSignal works like isSignalAcceptMissingGamma)
- ..., ?nu, ?addbrems, and ?gamma have to be placed at the end of the decay string

Frank Meier (Duke University)

Bremsstrahlung and MC matching

30.01.2023 14 / 17

※ [All you wanted to know about brems correction and MC matching and never dared asking, Belle II Physics Meeting] <u>https://indico.belle2.org/event/8674/#42-all-you-wanted-to-know-abou</u>

X Special thanks to Jaeyoung Kim. He teaches me how to use the TopoAna package. X He will cover "TopoAna".

- Before TopoAna package (ex: Belle)
 - Analysts usually wrote some private codes to match a few signals and/or backgrounds for their own studies.
 - The limited functions of these codes do not satisfy the increasing demands for topology analysis.
- Motivation
 - A generic, powerful, and easy-to-use program is required for the topology analysis
- History
 - TopoAna is developed for BESIII (*τ*-Charm energy region)
 - Extended to Belle II (already applied to some analysis in Belle)
- Main usage
 - One can figure out the main backgrounds (especially peaking ones)
 - Optimize the selection criteria

※ [TopoAna: A generic tool for the event type analysis of inclusive Monte-Carlo samples in high energy physics experiments] <u>https://www.sciencedirect.com/science/article/pii/S0010465520302575?via%3Dihub</u>

TopoAna: Topological Analysis?

Fig. 1. Topology diagrams of (a) $e^+e^- \rightarrow J/\psi$, $J/\psi \rightarrow \rho^+\pi^-$, $\rho^+ \rightarrow \pi^+\pi^0$, $\pi^0 \rightarrow \gamma\gamma$ and (b) $e^+e^- \rightarrow \Upsilon(4S)$, $\Upsilon(4S) \rightarrow B^0\bar{B}^0$, $B^0 \rightarrow K_S^0 J/\psi$, $\bar{B}^0 \rightarrow \mu^- D^{*+} \nu_{\mu}$, $K_S^0 \rightarrow \pi^+\pi^-$, $J/\psi \rightarrow e^+e^-$, $D^{*+} \rightarrow D^0\pi^+$, $D^0 \rightarrow \pi^0\pi^+K^-$, $\pi^0 \rightarrow \gamma\gamma$. As if trees grow, the diagrams are plotted from bottom to top.

※ [TopoAna: A generic tool for the event type analysis of inclusive Monte-Carlo samples in high energy physics experiments] <u>https://www.sciencedirect.com/science/article/pii/S0010465520302575?via%3Dihub</u>

TopoAna: Input


```
1 % Names of input root files
 2 {
 3
     /gpfs/group/belle/users/chkim/b2ana/output/bd2tautau/signal/local/bd2tautau_local_sig_MC15_BGx1_230321_par_TopoAna_000.root
 4 }
 5
 6 % TTree name
 7 {
 8 tree
9 }
10
11 # Here, AOI, VOI, MSI, and MSD are short for array of integers, vector of integers, multiple scalar integers, and multiple scalar doubles.
12 % Storage type of input raw topology truth information (Six options: AOI, VOI, MSI, MSF, MSD, and MSID. Default: AOI)
13 {
14 MSID
15 }
16
17 % Component analysis --- decay trees
18 {
19
    Y
           100
20
   }
21
22 % Component analysis --- cascade decay branches of particles
23 {
24
     Upsilon(4S) Y_4S 150
25
     BØ
                  BØ
                        150
26
     tau+
                  taup 100
27
                       100
     tau-
                  taum
28 }
29
   % Component analysis --- inclusive decay branches
30
31 {
32
     B0 --> tau+ tau-
                                       & B0Xtt
                                                 & 100
33 }
34
35 % Common name of output files (Default: Name of the card file)
36 {
37 topoana
38 }
```

※ [Topology Analysis: Sphinx Manual]

https://b2-master.belle2.org/software/sphinx/light-2212-foldex/online_book/analysis/topoana.html

TopoAna: Output: $B^0 o au^+ au^-$

List of Tables

1	Decay trees and their respective initial-final states.	3
2	Cascade decay branches of $\Upsilon(4S)$.	12
3	Cascade decay branches of B^0 .	21
4	Cascade decay branches of τ^+ .	26
5	Cascade decay branches of τ^- .	29
6	Exclusive components of $B^0 \to \tau^+ \tau^- + anything$.	32

% [Topology Analysis: Sphinx Manual] <u>https://b2-master.belle2.org/software/sphinx/light-2212-foldex/online_book/analysis/topoana.html</u>

Table 1: Decay	trees and their	r respective initial-final states	s.

rowNo	decay tree (decay initial-final states)	iDcyTr	nEtr	nCEtr
1	$\begin{split} \Upsilon(4S) &\to B^0 \bar{B}^0, B^0 \to \tau^+ \tau^-, \bar{B}^0 \to \rho^- D^+, \tau^+ \to \mu^+ \nu_\mu \bar{\nu}_\tau, \tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau, \rho^- \to \pi^0 \pi^-, \\ D^+ \to \pi^+ \pi^+ K^- \\ (\Upsilon(4S) \dashrightarrow \mu^+ \mu^- \nu_\mu \bar{\nu}_\mu \nu_\tau \bar{\nu}_\tau \pi^0 \pi^+ \pi^+ \pi^- K^-) \end{split}$	491	4	4
2	$\begin{split} \Upsilon(4S) &\to B^0 \bar{B}^0, B^0 \to \rho^+ D^-, \bar{B}^0 \to \tau^+ \tau^-, \rho^+ \to \pi^0 \pi^+, D^- \to \pi^- \pi^- K^+, \tau^+ \to \bar{\nu}_\tau \pi^0 \pi^+, \\ \tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau \\ (\Upsilon(4S) \dashrightarrow \mu^- \bar{\nu}_\mu \nu_\tau \bar{\nu}_\tau \pi^0 \pi^0 \pi^+ \pi^+ \pi^- \pi^- K^+) \end{split}$	493	4	8
3	$\begin{split} \Upsilon(4S) &\to B^0 \bar{B}^0, B^0 \to \pi^+ \pi^+ \pi^- D^-, \bar{B}^0 \to \tau^+ \tau^-, D^- \to \pi^- \pi^- K^+, \tau^+ \to \mu^+ \nu_\mu \bar{\nu}_\tau, \tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau \\ (\Upsilon(4S) \dashrightarrow \mu^+ \mu^- \nu_\mu \bar{\nu}_\mu \nu_\tau \bar{\nu}_\tau \pi^+ \pi^+ \pi^- \pi^- \pi^- K^+) \end{split}$	893	4	12
4	$\begin{split} \Upsilon(4S) &\to B^0 \bar{B}^0, B^0 \to \tau^+ \tau^-, \bar{B}^0 \to \pi^+ \pi^- \pi^- D^+, \tau^+ \to e^+ \nu_e \bar{\nu}_\tau \gamma^F \gamma^F, \tau^- \to e^- \bar{\nu}_e \nu_\tau, D^+ \to \pi^+ \pi^+ K^- \\ (\Upsilon(4S) \dashrightarrow e^+ e^- \nu_e \bar{\nu}_e \nu_\tau \bar{\nu}_\tau \pi^+ \pi^+ \pi^- \pi^- K^- \gamma^F \gamma^F) \end{split}$	16	3	15
5	$\begin{split} \Upsilon(4S) &\to B^0 \bar{B}^0, B^0 \to \tau^+ \tau^-, \bar{B}^0 \to D^{*+} a_1^-, \tau^+ \to \mu^+ \nu_\mu \bar{\nu}_\tau \gamma^F, \tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau, D^{*+} \to \pi^+ D^0, \\ a_1^- \to \pi^- f_0(600), D^0 \to \pi^0 \pi^+ K^-, f_0(600) \to \pi^+ \pi^- \\ (\Upsilon(4S) \dashrightarrow \mu^+ \mu^- \nu_\mu \bar{\nu}_\mu \nu_\tau \bar{\nu}_\tau \pi^0 \pi^+ \pi^+ \pi^- \pi^- K^- \gamma^F) \end{split}$	23	3	18
	:			
rowNo	decay tree (decay initial-final states)	iDcyTr	nEtr	nCEtr
rowNo 97	$\begin{array}{c} \text{decay tree} \\ (\text{decay initial-final states}) \end{array}$ $\Upsilon(4S) \rightarrow B^0 \bar{B}^0, B^0 \rightarrow \tau^+ \tau^-, \bar{B}^0 \rightarrow \pi^+ \pi^- \rho^- D^{*+}, \tau^+ \rightarrow \bar{\nu}_\tau \pi^0 \pi^0 \pi^+, \tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau \gamma^F, \rho^- \rightarrow \pi^0 \pi^-, D^{*+} \rightarrow \pi^+ D^0, D^0 \rightarrow \pi^0 \pi^+ K^- \\ D^{*+} \rightarrow \pi^+ D^0, D^0 \rightarrow \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^- \gamma^F) \end{array}$	iDcyTr 71	nEtr	nCEtr 279
rowNo 97 98	$\begin{array}{c} \operatorname{decay \ tree} \\ (\operatorname{decay \ tree} \\ (\operatorname{decay \ initial-final \ states}) \end{array}$ $\begin{split} &\Upsilon(4S) \to B^0 \bar{B}^0, B^0 \to \tau^+ \tau^-, \bar{B}^0 \to \pi^+ \pi^- \rho^- D^{*+}, \tau^+ \to \bar{\nu}_\tau \pi^0 \pi^0 \pi^+, \tau^- \to e^- \bar{\nu}_e \nu_\tau \gamma^F, \rho^- \to \pi^0 \pi^-, \\ D^{*+} \to \pi^+ D^0, D^0 \to \pi^0 \pi^+ K^- \\ (\Upsilon(4S) \to e^- \bar{\nu}_e \nu_\tau \bar{\nu}_\tau \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^- \gamma^F) \end{split}$ $\begin{split} &\Upsilon(4S) \to B^0 \bar{B}^0, B^0 \to \pi^+ \pi^+ \rho^- D^{*-} \gamma^F, \bar{B}^0 \to \tau^+ \tau^-, \rho^- \to \pi^0 \pi^-, D^{*-} \to \pi^0 D^-, \tau^+ \to \bar{\nu}_\tau \pi^0 \pi^+, \\ \tau^- \to e^- \bar{\nu}_e \nu_\tau \gamma^F, D^- \to \pi^- K^+ K^- \\ (\Upsilon(4S) \to e^- \bar{\nu}_e \nu_\tau \bar{\nu}_\tau \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^+ K^- \gamma^F \gamma^F) \end{split}$	iDcyTr 71 74	nEtr 2 2	nCEtr 279 281
rowNo 97 98 99	$\begin{array}{c} \mbox{decay tree} \\ (\mbox{decay initial-final states}) \end{array} \\ \Upsilon(4S) \rightarrow B^0 \bar{B}^0, B^0 \rightarrow \tau^+ \tau^-, \bar{B}^0 \rightarrow \pi^+ \pi^- \rho^- D^{*+}, \tau^+ \rightarrow \bar{\nu}_\tau \pi^0 \pi^0 \pi^+, \tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau \gamma^F, \rho^- \rightarrow \pi^0 \pi^-, \\ D^{*+} \rightarrow \pi^+ D^0, D^0 \rightarrow \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^- \gamma^F) \\ \Upsilon(4S) \rightarrow e^- \bar{\nu}_e \nu_\tau \bar{\nu}_\tau \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^- \gamma^F) \\ \Upsilon(4S) \rightarrow B^0 \bar{B}^0, B^0 \rightarrow \pi^+ \pi^+ \rho^- D^{*-} \gamma^F, \bar{B}^0 \rightarrow \tau^+ \tau^-, \rho^- \rightarrow \pi^0 \pi^-, D^{*-} \rightarrow \pi^0 D^-, \tau^+ \rightarrow \bar{\nu}_\tau \pi^0 \pi^+, \\ \tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau \gamma^F, D^- \rightarrow \pi^- K^+ K^- \\ (\Upsilon(4S) \rightarrow e^- \bar{\nu}_e \nu_\tau \bar{\nu}_\tau \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^+ K^- \gamma^F \gamma^F) \\ \Upsilon(4S) \rightarrow B^0 \bar{B}^0, B^0 \rightarrow \tau^+ \tau^-, \bar{B}^0 \rightarrow \pi^0 \rho^- D^{*+}, \tau^+ \rightarrow \bar{\nu}_\tau \pi^0 \pi^+, \tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau, \rho^- \rightarrow \pi^0 \pi^-, \\ D^{*+} \rightarrow \pi^+ D^0, D^0 \rightarrow K^- a_1^+, a_1^+ \rightarrow \pi^+ \pi^+ \pi^- \gamma^F \\ (\Upsilon(4S) \rightarrow e^- \bar{\nu}_e \nu_\tau \bar{\nu}_\tau \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^- \gamma^F) \end{array}$	iDcyTr 71 74 76	nEtr 2 2 2	nCEtr 279 281 283
rowNo 97 98 99 100	$\begin{array}{c} \begin{array}{c} \mbox{decay tree} \\ (\mbox{decay initial-final states}) \end{array} \\ \hline \Upsilon(4S) \to B^0 \bar{B}^0, B^0 \to \tau^+ \tau^-, \bar{B}^0 \to \pi^+ \pi^- \rho^- D^{*+}, \tau^+ \to \bar{\nu}_\tau \pi^0 \pi^0 \pi^+, \tau^- \to e^- \bar{\nu}_e \nu_\tau \gamma^F, \rho^- \to \pi^0 \pi^-, \\ D^{*+} \to \pi^+ D^0, D^0 \to \pi^0 \pi^+ K^- \\ (\Upsilon(4S) \to e^- \bar{\nu}_e \nu_\tau \bar{\nu}_\tau \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^- \gamma^F) \end{array} \\ \hline \Upsilon(4S) \to B^0 \bar{B}^0, B^0 \to \pi^+ \pi^+ \rho^- D^{*-} \gamma^F, \bar{B}^0 \to \tau^+ \tau^-, \rho^- \to \pi^0 \pi^-, D^{*-} \to \pi^0 D^-, \tau^+ \to \bar{\nu}_\tau \pi^0 \pi^+, \\ \tau^- \to e^- \bar{\nu}_e \nu_\tau \bar{\nu}_\tau \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^+ K^- \gamma^F \gamma^F) \end{array} \\ \hline \Upsilon(4S) \to B^0 \bar{B}^0, B^0 \to \tau^+ \tau^-, \bar{B}^0 \to \pi^0 \rho^- D^{*+}, \tau^+ \to \bar{\nu}_\tau \pi^0 \pi^+, \tau^- \to e^- \bar{\nu}_e \nu_\tau, \rho^- \to \pi^0 \pi^-, \\ D^{*+} \to \pi^+ D^0, D^0 \to K^- a_1^+, a_1^+ \to \pi^+ \pi^+ \pi^- \gamma^F \\ (\Upsilon(4S) \to e^- \bar{\nu}_e \nu_\tau \bar{\nu}_\tau \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- K^- \gamma^F) \end{array} \\ \hline \Upsilon(4S) \to B^0 \bar{B}^0, B^0 \to D^{*-} a_1^+, \bar{B}^0 \to \tau^+ \tau^-, D^{*-} \to \pi^0 D^-, a_1^+ \to \pi^+ \pi^- \pi^- \gamma^F, \tau^+ \to \bar{\nu}_\tau \pi^0 \pi^+, \\ \tau^- \to \nu_\tau \pi^0 \pi^+ \pi^- \pi^-, D^- \to \pi^0 \pi^- K_S^0, K_S^0 \to \pi^+ \pi^- \\ (\Upsilon(4S) \to \nu_\tau \bar{\nu}_\tau \pi^0 \pi^0 \pi^0 \pi^0 \pi^0 \pi^+ \pi^+ \pi^+ \pi^- \pi^- \pi^- \pi^- \pi^- \gamma^F) \end{array}$	iDcyTr 71 74 76 82	nEtr 2 2 2 2 2	nCEtr 279 281 283 285

% [Topology Analysis: Sphinx Manual] <u>https://b2-master.belle2.org/software/sphinx/light-2212-foldex/online_book/analysis/topoana.html</u>

TopoAna: Output (3): $B^0 o au^+ au^-$

Table 3: Case	ade decay	branches	of B^0 .
---------------	-----------	----------	------------

rowNo	cascade decay branch of B^0	iCascDcyBrP	nCase	nCCase
1	$B^0 \to \tau^+ \tau^-, \tau^+ \to \bar{\nu}_\tau \pi^0 \pi^+, \tau^- \to \nu_\tau \pi^0 \pi^-$	6	73	73
2	$B^0 \to \tau^+ \tau^-, \tau^+ \to \mu^+ \nu_\mu \bar{\nu}_\tau, \tau^- \to \nu_\tau \pi^0 \pi^-$	39	46	119
3	$B^0 \to \tau^+ \tau^-, \tau^+ \to \mu^+ \nu_\mu \bar{\nu}_\tau, \tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$	30	43	162
4	$B^0 ightarrow au^+ au^-, au^+ ightarrow ar{ u}_ au \pi^0 \pi^+, au^- ightarrow \mu^- ar{ u}_\mu u_ au$	124	40	202
5	$B^0 \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow \bar{\nu}_\tau \pi^0 \pi^+, \tau^- \rightarrow \nu_\tau \pi^-$	102	35	237
6	$B^0 ightarrow au^+ au^-, au^+ ightarrow \mu^+ u_\mu ar u_ au, au^- ightarrow u_ au \pi^0 \pi^0 \pi^-$	139	30	267
7	$B^0 ightarrow au^+ au^-, au^+ ightarrow ar{ u}_ au \pi^+, au^- ightarrow u_ au \pi^0 \pi^-$	109	29	296
8	$B^0 ightarrow au^+ au^-, au^+ ightarrow ar{ u}_ au \pi^0 \pi^+, au^- ightarrow u_ au \pi^0 \pi^0 \pi^-$	99	24	320
9	$B^0 ightarrow au^+ au^-, au^+ ightarrow e^+ u_e ar u_ au, au^- ightarrow \mu^- ar u_\mu u_ au$	122	24	344
10	$B^0 \to \tau^+ \tau^-, \tau^+ \to e^+ \nu_e \bar{\nu}_\tau, \tau^- \to \nu_\tau \pi^0 \pi^-$	180	24	368
	÷			
145	$B^0 \rightarrow \tau^+ \tau^-, \tau^+ \rightarrow \bar{\nu}_\tau \pi^0 \pi^+, \tau^- \rightarrow \nu_\tau \pi^- \gamma^F$	732	3	1173
146	$B^0 ightarrow \pi^+ \pi^- p \bar{\Lambda}^c, \bar{\Lambda}^c ightarrow \pi^- K^+ \bar{p}$	741	3	1176
147	$B^0 ightarrow \pi^0 \pi^+ \eta D^{*-}, \eta ightarrow \gamma \gamma, D^{*-} ightarrow \pi^- ar D^0, ar D^0 ightarrow \pi^0 \pi^- K^+$	755	3	1179
148	$B^0 \rightarrow D^- D^+_s, D^- \rightarrow \pi^- \rho^- K^+, D^+_s \rightarrow \pi^+ \pi^- K^+, \rho^- \rightarrow \pi^0 \pi^- \gamma^F$	764	3	1182
149	$B^0 \to \pi^0 \pi^0 \rho^+ D^{*-}, \rho^+ \to \pi^0 \pi^+, D^{*-} \to \pi^- \bar{D}^0, \bar{D}^0 \to K^+ K^-$	765	3	1185
150	$B^0 \to \pi^0 K^{*+} D^-, K^{*+} \to \pi^0 K^+, D^- \to \pi^- K^+ K^-$	840	3	1188
\mathbf{rest}	$B^0 \rightarrow \text{others (898 in total)}$		1127	2315

% [Topology Analysis: Sphinx Manual] <u>https://b2-master.belle2.org/software/sphinx/light-2212-foldex/online_book/analysis/topoana.html</u>

References

- [Monte Carlo matching in the Belle II software]
 - https://doi.org/10.1051/epjconf/202125103021
- [All you wanted to know about brems correction and MC matching and never dared asking, Belle II Physics Meeting (2023.02.06 MON)]
 - https://indico.belle2.org/event/8674/#42-all-you-wanted-to-know-abou
- [TopoAna: A generic tool for the event type analysis of inclusive Monte-Carlo samples in high energy physics experiments]
 - https://www.sciencedirect.com/science/article/pii/S0010465520302575?via%3Dihub
- [Topology Analysis: Sphinx Manual]
 - https://b2-master.belle2.org/software/sphinx/light-2212-foldex/online_book/analysis/topoana.html

