MC information

- MC matching information

1

Yonsei University

Chanho Kim

2023/04/11

content

- MC matching
 - ♦ Usage
 - Method
- Matching failure case
- Decay String Grammar in basf2
- MC matching variable

MC matching

- Usage :
 - Optimization of selection
 - => Labeling the training data for MVA
 - Calculation of signal efficiencies
 - Investigation of background source
 - => TopoAna is more popular for this purpose in these days
- Method :
 - Relate mdst dataObjects (Tracks, ECLClusters, KLMClusters) with MCParticles (with weights)
 - Relate reconstructed particles with MC particles

Matching failure case (variable == NaN)

- CloneTracks :
 - isCloneTrack / isOrHasCloneTrack
- Fake Tracks
- Wrong charge
 - isWrongCharge
- Overlapping clusters
 - nMCMatches
- Cluster split-offs
- Beam background

Decay String Grammar in basf2

- Particles and decays
 - Particles => ex : K+, pi+, K_S0, etc ...
 - each particles has corresponding pdg code such as B+ : 521, B- : -521
 - Decays are represented as arrow : D0 -> K- pi+ or for complex decay trees, D*0 -> [D0 -> K- pi+] pi+
- Marker and keywords
 - @ : consider as signal regardless to the daughters and its mc information
 @Xsd : 0 -> K_S0, @Xsd:1 -> K+ pi- => Xsd:0 and Xsd:1 are both considered as signal
 - '...': missing massive final state particles are ignored for mc matching
 - '?nu' : missing neutrinos are ignored for mc matching

Ex) D0 -> K- pi+ ... nu? : D0 considered as signal only considering K- pi+ not additional massive particles and nu

- Arrow
 - -> : treat as signal considering only final state particles but not radiated photons
 - =direct=> : treat as signal considering about intermediate state but not radiated photons
 - =norad=> : treat as signal considering about radiated photons but not intermediate state
 - = exact=> : direct + norad case

MC matching variables (mcErrors)

• mcErrors :

bit-wise error flags indicate what is wrong in MC matching

$c_Correct = 0$	This Particle and all its daughters are perfectly reconstructed.
$c_MissFSR = 1$	A Final State Radiation (FSR) photon is not reconstructed (based on MCParticle::c_lsFSRPhoton).
$c_MissingResonance = 2$	The associated MCParticle decay contained additional non-final-state particles (e.g. a rho)
—	that weren't reconstructed. This is probably O.K. in most cases.
$c_DecayInFlight = 4$	A Particle was reconstructed from the secondary decay product of the actual particle.
	This means that a wrong hypothesis was used to reconstruct it, which e.g. for tracks might mean
	a pion hypothesis was used for a secondary electron.
$c_MissNeutrino = 8$	A neutrino is missing (not reconstructed).
c_MissGamma = 16	A photon (not FSR) is missing (not reconstructed).
c MissMassiveParticle = 32	A generated massive FSP is missing (not reconstructed).
$c_MissKlong = 64$	A Klong is missing (not reconstructed).
c_MisID = 128	One of the charged final state particles is mis-identified (wrong signed PDG code).
$c_AddedWrongParticle = 256$	A non-FSP Particle has wrong PDG code, meaning one of the daughters (or their daughters)
	belongs to another Particle.
c_InternalError = 512	No valid match was found. For tracks, it indicates that there is not a true track related to the reconstructed one.
	Might indicate fake or background track or cluster.
c MissPHOTOS = 1024	A photon created by PHOTOS was not reconstructed (based on MCParticle::c IsPHOTOSPhoton).
c AddedRecoBremsPhoton = 2048	A photon added with the bremsstrahlung recovery tools (correctBrems or correctBremsBelle) has
—	no MC particle assigned, or it doesn't belong to the decay chain of the corrected lepton mother.

MC matching variables (isSignal)

- Possible value : NaN(failure), 0(fake), 1(signal)
- Aliases for mcErrors variable
 - isSignal : mcErrors == 0
 - isSignalAcceptMissingNeutrino : mcErrors == 0 or mcErrors == 8
 - isSignalAcceptMissingGamma : mcErrors == 0 or mcErrors == 16
 - isSignalAcceptBremsPhotons : mcErrors == 0 or mcErrors == 2048 etc ...
- user define method : create_isSignal_alias(aliasname,flags)
 - For example create_isSignal_alias("isSignalAcceptMissingNeutrinoAndGamma",[8,16])

Reference

- Bremsstrahlung and MC matching (belle2.org)
- 7.1.2. DecayString basf2 light-2303-iriomote documentation (belle2.org)