Enhancement of the GW spectrum in early dark energy-like scenario

Tatsuki Kodama

in collaboration with Takumi Shinohara (Saga U.) Tomo Takahashi (Saga U.)

(TK, T. Shinohara, T. Takahashi in preparation)

Saga-Yonsei Partnership XIX @ Yonsei University 20. Jan. 2023

Motivation and Contents

- How does Ω_{GW} behave if there was EDE in the early Universe?
- What are the parameter ranges that Ω_{GW} can be observed?

Table of contents

- Introduction to gravitational waves
- Early dark energy (see Fumiya's slide)
- Analysis and results
- Summary

First detection GW159014 (11. Feb. 2016)

B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) Phys. Rev. Lett. 116, 061102

✓ What is gravitational waves?

 \Rightarrow waves propagating in space with varying the curvature

https://www.ligo.org/multimedia/gallery/lho.php

https://www.ligo.caltech.edu/image/ligo20160615f

✓ What are gravitational waves?

e.g.) GWs with the background is Minkowski spacetime

$$h_{ij} + h_{ij} dx^i dx^j$$
 (If $h_{ij} = 0$, it is Minkowski.)

Tensor perturbation

$$GT_{\mu\nu}$$
 (c = 1)

$$+\nabla^2 \int h_{ij} = 0$$

TT gauge

GWs propagate light speed in Minkowski spacetime

✓ What are gravitational waves?

• Line element $ds^2 = -dt^2 + (\delta_{ij} + h_{ij})dx^i dx^j$

Consider GWs propagates along z axis

Proper distance is varied periodically e.g.)

$$d\ell_x = \left(1 + \frac{1}{2}h_+(t)\right)dt$$

Tensor perturbation

✓ GWs in the FLRW background

FLRW line element

Linearized Einstein eq.

EoM for tensor pert.

 $\ddot{h}_{\mathbf{k}}^{\lambda} + 3Hh_{\mathbf{k}}^{\lambda} + \frac{\kappa}{a^2}h_{\mathbf{k}}^{\lambda} = 0$ $(\Pi_{ij} = 0)$

 $ds^{2} = -dt^{2} + a^{2}(t) \left[\delta_{ij} + h_{ij}\right] dx^{i} dx^{j}$

Scale factor

 $\ddot{h}_{ij} + 3H\dot{h}_{ij} - \frac{1}{\alpha^2}\nabla^2 h_{ij} = 16\pi G\Pi_{ij}$

✓ Stochastic GW background and Observable

• GW spectrum ... dimensionless quantity to characterize the strength of GW

$$\Omega_{\rm GW} = \frac{1}{12} \left(\frac{k}{aH}\right)^2 \mathscr{P}_{\rm T,prim}(k) T_T^2(k) \qquad \left(\Omega_{\rm GW} \equiv \frac{1}{\rho_{\rm crit}} \frac{d\rho_{\rm GW}}{d\log k}\right)$$

 $\mathscr{P}_{T,prim}(k) \dots$ Primordial GW power spectrum, $T_T(k)$... Transfer function

✓ Stochastic GW background and Observable

• GW spectrum ... dimensionless quantity to characterize the strength of GW

$$\Omega_{\rm GW} = \frac{1}{12} \left(\frac{k}{aH}\right)^2 \mathscr{P}_{\rm T,prim}(k)$$

 $\mathscr{P}_{T,prim}(k) \dots$ Primordial GW power spectrum, $T_T(k) \dots$ Transfer function

$$\mathcal{P}_{T,prim}(k) = A_T \left(\frac{k}{k_*}\right)^{n_T} k_*$$
: pivo

 $r = -8n_T$ Consistency relation (Single field inf.) (Yuta will talk!)

Stochastic GW background and Observable

• GW spectrum ... dimensionless quantity to characterize the strength of GW

$$\Omega_{\rm GW} = \frac{1}{12} \left(\frac{k}{aH}\right)^2 \mathscr{P}_{\rm T,prim}(k)$$

 $\mathscr{P}_{T,prim}(k)$... Primordial GW power spectrum, $T_T(k)$... Transfer function

$$\mathcal{P}_{T,prim}(k) = A_T \left(\frac{k}{k_*}\right)^{n_T} k_*$$
: pivo

 $r = -8n_T$ Consistency relation (Single field inf.)

the primordial power spectrum

ot scale

✓ What is EDE?

\Rightarrow Axion-like scalar field that can solve Hubble tension

(See Sora or Fumiya's presentation!) (Note: we will consider scalar field different from the scalar field that can solve it)

 $V(\phi) = V_0 \left(1 - \cos \frac{\phi}{f} \right)^n$ V. Poulin et al, [arXiv: 1806.10608]

Motivation & Set up

- How does Ω_{GW} behave if there was EDE in the early Universe?
- What are the parameter ranges that Ω_{GW} can be observed?

- EDE slow-roll on the potential
- There are studies that the dependence of ρ is similar to ours, but mechanism is different

Y. Gouttenoire et al. [arXiv: 2108.10328] [arXiv: 2108.09299] R. T. Co et al. Y. Gouttenoire et al. [arXiv: 2111.01150]

• EDE should decay faster than radiation to be consistent with current observation

Evolution of EDE

 \mathcal{A}

De Sitter phase appears between the radiation phase in our setup.

Early-dark energy (EDE)

\checkmark How does $\Omega_{\rm GW}$ be affected by EDE?

 \Rightarrow Thermal history changes from Λ CDM

$$\Rightarrow T_T(k) \text{ changes}$$
$$\Omega_{\text{GW}} = \frac{1}{12} \left(\frac{k}{aH}\right)^2 \mathscr{P}_{\text{T,prim}}(k) T_T^2(k)$$

Q

 \Rightarrow Therefore, EDE affects Ω_{GW}

a

Early-dark energy (EDE)

 ∞

W

$$|+w_n\rangle/2 \rightarrow a_{hc} \propto k^{-2/(1+3w)}$$

$$\Omega_{GW,0} = \frac{1}{12} \left(\frac{k}{H_0}\right)^2 \mathscr{P}_{T,prim}(k) T_T^2(k)$$

$$\propto k^2 a_{hc}^2$$
is enhanced

$$v_0 \left(1 - \cos \frac{\phi}{f}\right)^n$$

$$\Omega_{GW,0} \propto k^{2(-1+3w)/(1+3w)}$$

The peak Ω_{GW} moves high frequency as the energy scale increases.

The peak Ω_{GW} moves high frequency as the energy scale increases.

 $n = 4, V_0 = 10^{20} [\text{GeV}^4]$

 $n = 4, V_0 = 10^{30} [\text{GeV}^4]$

 $n = 4, V_0 = 10^{40} [\text{GeV}^4]$

 $n = 4, V_0 = 10^{50} [\text{GeV}^4]$

f[Hz]

22

GW spectrum in EDE scenario

A period of slow-rolling is getting longer if you put it next to the top on the potential.

Since the EDE-dominated era is getting longer Ω_{GW} can further enhance.

The peak height Ω_{GW} enhances by ϕ_* putting close to the top of potential.

 $n = 4, V_0 = 10^{27} [\text{GeV}^4]$

24

 $n = 4, V_0 = 10^{27} [\text{GeV}^4]$

25

 $n = 4, V_0 = 10^{27} [\text{GeV}^4]$

26

 $n = 4, V_0 = 10^{27} [\text{GeV}^4]$

27

Detectable parameter region

n = 4

- Ω_{GW} can be enhanced by EDE-like matter decaying faster than radiation.
- The energy scale of potential controls the period at Ω_{GW} enhances.
- •The more ϕ_* is fine-tuned on top of potential, the more Ω_{GW} is enhanced.

- ✓ Detector of GWs
 - LIGO/Virgo/KAGRA

・LISA/DECIGO/天琴(TianQin)

It would detect the primordial GW background in the future.

https://www.ligo.caltech.edu/image/ligo20160615f

T. Nakamura et al. Prog. Theor. Exp. Phys. 2016, 129301

LISA ... The launch date will be postponed to 2037.

B-DECIGO...The predecessor of DECIGO will be launched in the 2030s.

DECIGO ... The launch after B-DECIGO

S. Kawamura et al. Prog. Theor. Exp. Phys. 2021, 05A105

Schedule of DECIGO and B-DECIGO

We plan to launch B-DECIGO as a precursor to DECIGO in the 2030s to demonstrate the technologies required for DECIGO, as well as to obtain fruitful scientific results to expand multi-messenger astronomy further. Then we hope to launch DECIGO at a later time, incorporating lessons learned from B-DECIGO.

LISA The Laser Interferometer Space Antenna Observing gravitational waves from space	
Cosmic Vision Themes	The Gravitational Universe
Primary goals	Observing low-frequency gravitational w (from 0.1 mHz to 0.1 Hz) and studying various sources from across the cosmos
Orbit	Three spacecraft in an Earth-trailing he orbit about 50 million km from Earth (in spacecraft separation of 2.5 million km)
Launch	2037
Lifetime	Four years, with possible six-year exter
Туре	L-class mission
https://sci.esa.int/web/lisa/-/61367-mission-summary	

The tensor primordial power spectrum

 $\left\langle h_{\mathbf{k}}(t)h_{\mathbf{k}'}(t)\right\rangle \equiv \frac{k^{2}}{2\pi}$

This term is model-dependent.

$$H^{2} = \frac{1}{3}\rho = \frac{1}{3}\left(\frac{1}{2}\dot{\phi}^{2} + V(\phi)\right)$$

e.g.)
Chaotic inflation:
$$V(\phi) = \frac{1}{2}m^2\phi^2$$

Natural inflation: $V(\phi) = \Lambda^4 \left(1 - \cos \frac{\phi}{f} \right)$

$$h_{\mathbf{k}}^{\lambda} + \frac{k^2}{a^2} h_{\mathbf{k}}^{\lambda} = 0$$

$$\frac{\lambda^3}{\pi^2} \mathscr{P}_{\mathrm{T,prim}}(k) \delta_D^{(3)}(\mathbf{k} + \mathbf{k}')$$

depends on inflationary models

There are a lot of inflationary models...

Detectable parameter region

 \rightarrow The EDE-dominated era will be shortened.

 \rightarrow GW spectrum becomes less amplified.

Period of the EDE decaying

 ρ [GeV⁴]

Enhancement of GW spectrum independent on V_0

The amplitude seems to be independent of the energy scale V_0

$$a_{c} = \left[\left(\frac{\rho_{r,0}}{V(\phi_{*})} + a_{*}^{4} \right) \left(\frac{\cos[\phi_{c}/(2f)]}{\cos[\phi_{*}/(2f)]} \right)^{(8/n)(f/M_{Pl})^{2}} \right]$$

$$a_{2} = \left[a_{c}^{3(1+w)} \frac{\rho_{c}}{\rho_{r0}} \right]^{1/4}$$

 10^{0}

 10^{0}

Enhancement of GW spectrum independent on V_0

 $k_2 = a_2 H_2 \qquad k_c = a_c H_c$

 10^{5}

 \checkmark the enhancement rate of GW spectrum

