Constraint on Warm dark matter with Lensing power spectrum

<u>Speaker</u>

Takumi Shinohara (Saga Univ.)

<u>Collaborators</u>

K. Inoue (Kinki Univ.), T. Suyama (Tokyo Tech), T. Takahashi (Saga Univ.)

Saga-Yonsei partnership 2022 @ Yonsei Univ.

<u>Abstract</u>

Observation of **"fluctuation of image shift by strong lensing"** can constrain on a nature of **warm dark matter**!

Basis

The density fluctuation is the seed of cosmic structures!

Motivation

• Cold Dark Matter …… Successful in large scale ($\geq 1 \,\mathrm{Mpc}$) (=CDM)⇒ Discrepancy with observations of small scale structures

• Warm Dark Matter Density fluctuations are smoothed due to large speed (Free-streaming) (=WDM)

$$\frac{1}{\lambda_{\rm fs}}$$

$$\lambda_{\rm fs} = 0.114 \text{ Mpc} \left(\frac{1 \text{ keV}}{\overline{m_{\rm WDM}}}\right) \left(\frac{10.75}{g_*(T_D)}\right)^{1/3} \left[2 + \log\left(\frac{t_{\rm eq}}{t_{\rm NR}}\right)\right]$$

 \rightarrow Structure formation on small scale is suppressed

WDM can be constrained from various observations on small scales

WDM models

1. pure WDM

2. CDM+WDM (mixed dark matter: MDM)

 \leftrightarrows Prohibited $m_{\rm WDM}$ in the pure WDM may be allowed again.

 \Leftrightarrow Feasible in *particle physics* (e.g., Harada and Kamada (2016) ...).

$$\Rightarrow \text{WDM fraction:} r_{\text{WDM}} \equiv \frac{\Omega_{\text{WDM}}}{\Omega_{\text{CDM}} + \Omega_{\text{WDM}}}$$

Constrained!

Non-linear matter power spectra

(Used fitting formula)

Strong lensing

Observation

Strong lensing

Observation

Inoue et al. (2021)

Observation of <u>quadruple image quasar</u> by ALMA (radio telescope) (MG J0414+0534)

→ First measurement of power spectrum of astrometric shift perturbation

Basic idea

If DM is much lighter WDM,,,

Basic idea

- If DM is much lighter WDM,,,
 - \rightarrow Structures would not exist!
 - \rightarrow Shift fluctuation $\delta \alpha$ would disappear!!

Basic idea

- If DM is much lighter WDM,,,
 - → Structures would not exist!
 - \rightarrow Shift fluctuation $\delta \alpha$ would disappear!!

⇒ Inconsistent with the observation!!!

Lensing power spectrum

Decomposition of lensing contributions

Lensing power spectrum

Power spectrum of astrometric shift perturbation

Lensing power spectrum

$$\Delta_{\alpha}(l) \equiv \sqrt{2\pi l^2 P_{\alpha}(l)}$$

<u>How to constrain</u>

 $\cdot \Delta \chi^2 \equiv \chi^2 - \chi^2_{\rm min}$

• Recent results of constraint on $m_{\rm WDM}$ (95 % C.L.)

 $rightarrow Lyman-\alpha$ forest: $m_{\rm WDM} > 5.3 \, \rm keV$

 \Rightarrow Strong lensing: $m_{\rm WDM} > 5.58 \, \rm keV$

 $m_{\rm WDM} > 5.2 \,\rm keV$

 $rac{d}{c}$ Satellite Gs in MW G: $m_{WDM} > 3.99 \, \text{keV}$

 $m_{\rm WDM} > 4.4 \,\rm keV$

☆ Strong lensing + Lyman- α + Satellite Gs in MW G: $m_{\rm WDM} > 6.048 \, \rm keV$

☆ Strong lensing + Satellite Gs in MW G:

 $m_{\rm WDM} > 9.7 \,\rm keV$

Our result: $m_{\rm WDM} \ge 1.5 \,\rm keV$

Enzi et al. (2021)

Nadler et al.	(2021)
---------------	--------

• Recent results of constraint on $r_{\rm WDM}~(95~\%~{\rm C\,.\,L.})$

 \Leftrightarrow Strong lensing:

 $r_{\rm WDM} < 0.47$ for $0.1 \, \rm keV$ (Kamada et al. (2016)

☆ Planck + BOSS DR11 + BAO:

 $r_{\rm WDM} < 0.29$ for $1 - 10 \, \rm keV$ Diamanti et al. (2017)

Our results: $r_{WDM} \le 0.43$ (for $m_{WDM} = 0.1 \text{ keV}$) $r_{WDM} \le 0.85$ (for $m_{WDM} = 1 \text{ keV}$)

• Future observations (ALMA, JWST, ngVLA)

 \Rightarrow More data (number $\equiv N_L$) \rightarrow Uncertainty of measurement is relaxed ($\sigma \propto 1/\sqrt{N_L}$)

m _{WDM}	N_L	$r_{\rm WDM} = 1 \; ({\rm pure \; WD})$	OM) $r_{ m WDM} = 0.5$ (1)	mixed) $r_{\rm WDM}$	= 0.1 (mixed)
	30	> 5.21 keV	> 3.46 ke	eV >	$0.85 \ \mathrm{keV}$
	300	$> 10.08 { m ~keV}$	> 6.85 ke	eV >	$2.12 \ \mathrm{keV}$
	1000	> 13.84 keV	> 9.45 ke	eV >	$3.05 \ \mathrm{keV}$
r _{WDM}	N_L	$m_{\rm WDM} = 1 \ {\rm keV}$	$m_{\rm WDM} = 2 \ {\rm keV}$	$m_{\rm WDM} = 5~{ m km}$	eV
	30	< 0.118	< 0.256	< 0.905	
	300	< 0.038	< 0.092	< 0.323	
	1000	< 0.022	< 0.056	< 0.202	

⇒ More stringent constraints may be imposed in future

Summary

• We show the method to constrain WDM with the <u>new observable</u>.

= fluctuation of "shift of the image position due to strong lensing"

• We constrain on the mass and fraction of WDM based on the latest observation. (One system)

$$\begin{cases} \text{WDM:} & m_{\text{WDM}} \ge 1.5 \text{ keV}, \\ \text{MDM:} & r_{\text{WDM}} \le 0.43 \text{ for } m_{\text{WDM}} = 0.1 \text{ keV} \end{cases}$$
(95% C.L.)

• More stringent constraints may be imposed from **future observations**.

Backup

***Small-scale problems**

 \cancel{x} missing-satellite

Moore et al. (1999)

⇒ Discrepancy regarding the number of satellite galaxies: (simulation) > (observation)

*Currently, many satellite galaxies have found. It expects to find more ones.

 \cancel{x} too-big-to-fail

Boylan-Kolchin et al. (2011)

⇒ Discrepancy regarding the density of subhalo

Simulation: "There are subhalos dense enough for star formation to occur."

Observation: "There are no such halos anywhere."

 $\stackrel{\wedge}{\bowtie}$ core-cusp

e.g., Moor (1994)

⇒ Discrepancy regarding the density profile of halo

Simulation: **cusp**

Observation: core

<u>XMDM</u>

Rotation curves of twelve satellite galaxies

A. Schneider et al. (2014)

 \Rightarrow It requires $m_{\rm WDM} \lesssim 3 \, {\rm keV}$

 $\leftrightarrow m_{\rm WDM} > 3.3 \, {\rm keV}$ from Lyman- α forest

 $CDM + WDM \mod may allow m_{WDM} \le 3.3 \text{ keV}$

*****Astrometric shift perturbation

• **convergence** Indirectly observed.

Modeling of shear perturbation is needed.

astrometric shift …… Directly observed.
 Less uncertainty!

XTwo-point correlation function

$$\begin{aligned} \xi_{\alpha}(\theta) &\equiv \langle \delta\alpha(\mathbf{0}) \,\delta\alpha(\theta) \rangle \\ &= 4 \int_{0}^{r_{S}} dr \, \left(\frac{Q(r)}{g(r)}\right)^{2} \int_{0}^{\infty} \frac{dk}{2\pi k} \, W_{k}(k;k_{\min},k_{\max}) \, P(k;r) \, J_{0}\big(kg(r) \,\theta\big) \end{aligned}$$

$$Q(r) = \frac{3H_0^2 \Omega_{m,0}}{2c^2} \frac{r(r-r_S)}{r_S} \left[1 + z(r)\right]$$

Light pass curved by main lens:
$$g(r) = \begin{cases} r & (r < r_L) \\ \frac{r_L(r_S - r)}{r_S - r_L} & (r \ge r_L) \end{cases}$$

Window function selecting LOS contributions:

$$W_k(k; k_{\min}, k_{\max}) = \begin{cases} 1 & (k_{\min} \le k \le k_{\max}) \\ 0 & (\text{otherwise}). \end{cases}$$

*****Scale of LOS contributions

 k_{\min} Result of CDM simulation consists with the observational result.

⇒ Fixed so that the theoretical result for CDM is equal to median of the observational one.

 k_{\max} Determined so that it does not includes contributions of subhalos.