Big Bang nucleosynthesis(BBN) and early dark energy(EDE) in light of the EMPRESS Y_p results and the Hubble tension

Sora Yamashita (Saga University) Collaborator: Tomo Takahashi (Saga University)

Based on Takahashi and S.Y. (2211.04087)

- * Light elements' creation in the early universe ($T \sim 1 \text{ MeV} \sim 10^{10} \text{ K}$).
 - Neutron number determines the created elements' abundance.
 - ▶ Mainly ²H, ³H, ³He, ⁴He, ⁷Li are created.
 - BBN prediction is almost consistent with observations.

- * Light elements' creation in the early universe ($T \sim 1 \text{ MeV} \sim 10^{10} \text{ K}$).
 - ▶ Neutron number determines the created elements' abundance.
 - ▶ Mainly 2 H, 3 H, 3 He, 4 He, 7 Li are created.
 - BBN prediction is almost consistent with observations.

- * Light elements' creation in the early universe ($T \sim 1 \text{ MeV} \sim 10^{10} \text{ K}$).
 - ▶ Neutron number determines the created elements' abundance.
 - ▶ Mainly ²H, ³H, ³He, ⁴He, ⁷Li are created.
 - BBN prediction is almost consistent with observations.

- * Light elements' creation in the early universe ($T \sim 1 \text{ MeV} \sim 10^{10} \text{ K}$).
 - ▶ Neutron number determines the created elements' abundance.
 - ▶ Mainly ²H, ³H, ³He, ⁴He, ⁷Li are created.
 - **BBN** prediction is almost consistent with observations.

EMPRESS Y_p result vs BBN (helium anomaly)

EMPRESS Y_p result (Matsumoto et al. 2022): $Y_p = 0.2379^{+0.0031}_{-0.0030}$

What is the Hubble tension?

 \star 4 σ difference between direct and indirect measurement.

Direct measurement $H_0 = 73.04 \pm 1.04$ km/s/Mpc Indirect measurement $f_0=67.66\pm0.42~{
m km/s/Mpc}$

 \rightarrow Many modified models are proposed to resolve the Hubble tension.

Models to resolve the Hubble tension

Modified ΛCDM models affect the baryon abundance.

Model	$100\Omega_b h^2$	η_{10}	H_0
ACDM	2.242 ± 0.014	6.14 ± 0.038	67.66 ± 0.42
Varying $m_e + \Omega_k$	$2.365\substack{+0.033\\-0.037}$	$6.48\substack{+0.090\\-0.101}$	$72.84^{+1.0}_{-1.0}$
Early dark energy (ϕ^4 +AdS)	$2.346\substack{+0.017\\-0.016}$	$6.42\substack{+0.047\\-0.044}$	$72.64\substack{+0.57\\-0.64}$
Early dark energy (axion type)	2.285 ± 0.021	6.26 ± 0.057	$70.75^{+1.05}_{-1.09}$
New early dark energy	$2.292\substack{+0.022\\-0.024}$	$6.27\substack{+0.060\\-0.066}$	$71.4^{+1.0}_{-1.0}$
Early modified gravity	2.275 ± 0.018	6.23 ± 0.049	71.21 ± 0.93
Primordial magnetic field	2.266 ± 0.014	6.20 ± 0.038	70.57 ± 0.61
Majoron	2.267 ± 0.017	6.21 ± 0.047	70.18 ± 0.61

Takahashi and S.Y. (2022)

A larger baryon abundance is required!! $\eta_{10} \stackrel{\text{def}}{=} n_b/n_\gamma \times 10^{10} > 6.14$

Models to resolve the Hubble tension

Modified ΛCDM models affect the baryon abundance.

Model	$100\Omega_b h^2$	η_{10}	H_0
ACDM	2.242 ± 0.014	6.14 ± 0.038	67.66 ± 0.42
Varying $m_e + \Omega_k$	$2.365\substack{+0.033\\-0.037}$	$6.48\substack{+0.090\\-0.101}$	$72.84^{+1.0}_{-1.0}$
Early dark energy (ϕ^4 +AdS)	$2.346\substack{+0.017\\-0.016}$	$6.42\substack{+0.047\\-0.044}$	$72.64\substack{+0.57\\-0.64}$
Early dark energy (axion type)	2.285 ± 0.021	6.26 ± 0.057	$70.75^{+1.05}_{-1.09}$
New early dark energy	$2.292\substack{+0.022\\-0.024}$	$6.27\substack{+0.060\\-0.066}$	$71.4^{+1.0}_{-1.0}$
Early modified gravity	2.275 ± 0.018	6.23 ± 0.049	71.21 ± 0.93
Primordial magnetic field	2.266 ± 0.014	6.20 ± 0.038	70.57 ± 0.61
Majoron	2.267 ± 0.017	6.21 ± 0.047	70.18 ± 0.61

Takahashi and S.Y. (2022)

A larger baryon abundance is required!! $\eta_{10} \stackrel{\text{def}}{=} n_b/n_\gamma \times 10^{10} > 6.14$ Analysis

$$\chi^{2} = \frac{(Y_{p}^{\text{obs}} - Y_{p}^{\text{th}})^{2}}{\sigma_{Y_{p},\text{obs}}^{2} + \sigma_{Y_{p},\text{sys}}^{2}} + \frac{(D_{p}^{\text{obs}} - D_{p}^{\text{th}})^{2}}{\sigma_{D_{p},\text{obs}}^{2} + \sigma_{D_{p},\text{sys}}^{2}} + \frac{(\eta_{10}^{\text{ref}} - \eta_{10})^{2}}{\sigma_{\eta_{10}}^{2}}$$
$$Y_{p}^{\text{obs}} = 0.2379, \ \sigma_{Y_{p},\text{obs}} = 0.0031, \ \sigma_{Y_{p},\text{sys}}^{2} = (0.0003)^{2} + (0.00012)^{2}$$
$$D_{p}^{\text{obs}} = 2.527 \times 10^{-5}, \ \sigma_{D_{p},\text{obs}} = 0.030 \times 10^{-5}, \ \sigma_{D_{p},\text{sys}}^{2} = (0.05 \times 10^{-5})^{2}$$

We consider two cases for the prior on η_{10} :

$$\eta_{10}^{\text{ref},1} = 6.14, \qquad \sigma_{\eta_{10},1} = 0.038,$$

 $\eta_{10}^{\text{ref},2} = 6.40, \qquad \sigma_{\eta_{10},2} = 0.060.$

Helium and Deuterium abundances

Observational value of $Y_p \cdots$ Matsumoto et al. (2022):

 $Y_p = 0.2379_{-0.0030}^{+0.0031}.$

Observational value of $D_p \cdots$ Cooke et al. (2018):

 $D_p = (2.527 \pm 0.0030) \times 10^{-5}.$

Theoretical errors $\sigma_{Y_{p},sys}$ & $\sigma_{D_{p},sys}$ are determined with neutron lifetime & model parameters η_{10} .

Effects of baryon density on N_{eff} and ξ_e constraints

If EDE is present in BBN era, can we resolve the helium anomaly?

Energy density is:

$$\rho_{\text{total}} = \rho_{\gamma} + \rho_{\nu} + \rho_{e^+e^-} + \rho_b + \rho_{\text{EDE}}$$

Energy density affects Hubble parameter:

$$\frac{8\pi G}{3}\rho = H^2 \stackrel{\text{def}}{=} \left(\frac{\dot{a}}{a}\right)^2$$

Thus, effects of ρ_{EDE} on H(T) follow :

$$\begin{split} \rho_{\text{EDE}} > & 0 \Rightarrow H_{\text{noEDE}}(T) < H_{+\text{EDE}}(T) & (\text{neutron freezes out earlier}) \\ \rho_{\text{EDE}} < & 0 \Rightarrow H_{\text{noEDE}}(T) > H_{+\text{EDE}}(T) & (\text{neutron freezes out later}) \end{split}$$

EDE models we consider

★ EDE1 (e.g. Poulin et al. 2018) :

$$\rho_{\Lambda} = \rho_0 \qquad (T > T_t),$$
 $\rho_{\Lambda} = \rho_0 \left(\frac{T}{T_t}\right)^n \qquad (T \le T_t).$

n = 6 is fixed in our computation.

* EDE2 (e.g. Ahmed et al. 2002 & Zwane et al. 2017) :

$$\rho_{\Lambda} = -\rho_0 \qquad (T > T_t),$$
 $\rho_{\Lambda} = 0 \qquad (T \le T_t).$

Parameters are $\rho_0 \& T_t$.

Examples of the EDE (1)

 $V_n(\phi) = V_0(1 - \cos(\phi/f))^n$ (Poulin et al. 2018) : "Ultra-light axion-like field."

Poulin et al. 2018

The field equation shows :

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV}{d\phi} = 0$$

Initially, $3H\dot{\phi}$ is dominant. But $dV/d\phi$ increases and come to be dominant gradually.

$$3H\dot{\phi} > {dV\over d\phi} \rightarrow 3H\dot{\phi} < {dV\over d\phi}$$

The reversal starts an energy density dilution.

Examples of the EDE (2)

Ahmed et al. 2002 & Zwane et al. 2017 : "Everpresent Λ "

If spacetime is discrete, its elements' number would depend on Poisson fluctuation :

 $N \sim V \pm \sqrt{V}.$

While the uncertainty principle would show :

$$\Delta\Lambda \times \Delta V = \Delta\Lambda \times \sqrt{V} \sim 1$$
$$\therefore \Delta\Lambda \sim 1/\sqrt{V} \sim H^2 = \frac{1}{3}\rho_c$$

This means negative dark energy of $O(\rho_c)$ can exist with $\langle \Lambda \rangle = 0$.

Definitions of energy density fraction

Energy density fraction f_{EDE} :

$$f_{\text{EDE}} \stackrel{\text{def}}{=} \left. \frac{\rho_{\text{EDE}}}{\rho_{\text{total}}} \right|_{T=T_t} = \frac{\rho_0}{\rho_0 + \rho_{erB}(T_t)}$$

Two of $\{\rho_0, T_t, f_{EDE}\}$ determine the other.

Takahashi and S.Y. 2022

Result: η_{10} vs N_{eff} $(\xi_e = 0)$

Takahashi and S.Y. 2022

Able to tune the η_{10} value by adding EDEs.

Result: EDE1 N_{eff} vs ξ_e (η_{10} prior)

Takahashi and S.Y. 2022

Ether ξ_e or N_{eff} can be fixed to a standard scenario.

Result: EDE2 N_{eff} vs ξ_e (η_{10} prior)

Takahashi and S.Y. 2022

In η_{10}^{ref1} prior, both N_{eff} and ξ_e can be fixed to standard scenario. In η_{10}^{ref2} prior, ξ_e can be fixed to a standard scenario.

Conclusion

- * Standard parameters cannot explain Empress Y_p observation (Matsumoto et al. 2022). \longrightarrow helium anomaly
- * Modified models to resolve the Hubble tension make η_{10} larger.
- \star An EDE in BBN era makes helium anomaly better.

Especially, an EDE2 explained observation with standard scenario $N_{\text{eff}} = 3.046, \ \xi_e = 0.$

An EDE1 also explained with either $N_{\text{eff}} = 3.046$ or $\xi_e = 0$ fixed.