Study of SCS radiative D^0 decays, $D^0 \rightarrow V \gamma$ at Belle II

Jaeyoung Kim¹, Youngjoon Kwon¹

¹Yonsei University Seoul, Korea

Saga-Yonsei Joint Workshop

Introduction & motivation

Introduction

Signal decays: $D^0 \rightarrow V\gamma$, $(V = \phi, \rho^0, \omega)$ (Charge-conjugated decays are also included)

Figure: Feynman diagrams [PRD 58, 092001(1998)]

 $D^0
ightarrow ar{K}^{*0} (
ightarrow K^- \pi^+) \gamma$: π^0 veto calibration

Motivations

- $D^0 \rightarrow V \gamma$
 - Previous results at Belle (see below table)
 - $\bigcirc \Delta Br \sim \mathcal{O}(10\%), \Delta A_{CP} \sim \mathcal{O}(10^{-2})$
 - \bigcirc No evidence so far of non-zero A_{CP}
 - ▶ Sensitive to NP in A_{CP} measurement
 - \odot SM prediction: $\mathcal{O}(10^{-3})$ [James Lyon and Roman Zwicky, PRD 106, 053001(2022)]
 - \bigcirc SM extension with chromomagnetic dipole operators: up to $\mathcal{O}(10^{-2})$ for $V=\phi,
 ho^0$ [Gino Isidori and Jernej F. Kamenik, PRL 109, 171801(2012)]
 - $\blacktriangleright~D^0\to\omega\gamma$ not yet been measured
 - Table of Belle results [T.Nanut et al.(Belle), PRL 118, 151801(2017)]

Channels	Br	A _{CP}
$D^0 ightarrow ho^0 \gamma$	$(1.77\pm0.30\pm0.07) imes10^{-5}$	$+0.056\pm0.152\pm0.066$
$D^0 ightarrow \phi \gamma$	$(2.76\pm0.19\pm0.10) imes10^{-5}$	$-0.094 \pm 0.066 \pm 0.001$
$D^0 o ar{K}^{*0} \gamma$	$(4.66\pm0.21\pm0.21) imes10^{-4}$	$-0.003\pm0.020\pm0.000$

Motivations

Expectation for Belle II

Table 113: A_{CP} results of the Belle study and extrapolation of the statistical uncertainty to Belle II, for different values of integrated luminosity.

	Int. luminosity	$A_{CP}(D^0 \to \rho^0 \gamma)$
Belle result	$1 {\rm ~ab^{-1}}$	$+0.056 \pm 0.152 \pm 0.006$
	5 ab^{-1}	± 0.07
Belle II statistical error	$15 {\rm ~ab^{-1}}$	± 0.04
	$50 {\rm ~ab^{-1}}$	± 0.02
		$A_{CP}(D^0 \to \phi \gamma)$
Belle result	$1 {\rm ~ab^{-1}}$	$-0.094 \pm 0.066 \pm 0.001$
	5 ab^{-1}	± 0.03
Belle II statistical error	$15 {\rm ~ab^{-1}}$	± 0.02
	$50 \ {\rm ab^{-1}}$	± 0.01
		$A_{CP}(\overline{D^0 \to \overline{K}^{*0} \gamma})$
Belle result	1 ab^{-1}	$-0.003 \pm 0.020 \pm 0.000$
	5 ab^{-1}	± 0.01
Belle II statistical error	$15 {\rm ~ab^{-1}}$	± 0.005
	$50 {\rm ~ab^{-1}}$	± 0.003

[The Belle II Physics Book, PTEP 123C01(2019)]

D^* flavour tagging (D^0 or $\overline{D^0}$?)

D^* flavour tagging (D^0 or $\overline{D^0}$?)

- Useful in charm meson analysis,
 - \bigcirc Provide a clean sample of flavor-tagged D^0 , used extensively at B factories
 - \bigcirc Determine the flavor of D^0 or \bar{D}^0 through the charge of pion emitted in D^* decay

$$D^{*+}
ightarrow D^0 \pi^+$$

 $D^{*-}
ightarrow \overline{D}^0 \pi^-$

$$\blacktriangleright \Delta m = M(D^{*+}) - M(D^0)$$

- Shows sharply peaking distribution,
- \bigcirc Belle II achieved Δm resolution of $180 \mathrm{keV/c^2}$
- O Eliminates considerable background
- Typical $\epsilon_{D*} = 80\%$
- Typical mis-taggin rate = 0.2%

Dominant background from π^0

Dominant background from π^0

Sources

$$\blacktriangleright D^0 \to V \pi^0 (\to \gamma \gamma)$$

Features

- ▶ Background peak in $M(D^0)$ overlaps with signal peak
- Branching fraction [R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01(2022)]

V	$D^0 ightarrow V \pi^0$	$D^0 o V \gamma$
ϕ	$(6.6\pm0.4)\cdot10^{-4}$	$(2.81\pm0.19)\cdot10^{-5}$
$ ho^0$	$(3.86 \pm 0.23) \cdot 10^{-3}$	$(1.82\pm0.32)\cdot10^{-5}$
$ar{K}^{*0}$	$(1.95\pm0.24)\cdot10^{-2}$	$(4.1\pm0.7)\cdot10^{-4}$
ω	$(1.17\pm0.35)\cdot10^{-4}$	$< 2.4 \cdot 10^{-4}$ (C.L. 90%)

Analysis procedure

- 1. Pre-selection
- **2.** Dedicated π^0 veto (MVA)
- 3. Signal extraction with additional cuts
- 4. Check and calibrate data/MC discrepancy of π^0 veto (plan)
- 5. Calculation of Br and A_{CP} with normalization modes (plan)

V	$D^0 ightarrow V\gamma$	Normalization mode
ϕ	$D^0 \rightarrow \phi (\rightarrow K^+ K^-) \gamma$	$D^0 o K^+ K^-$
$ ho^{0}$	$D^0 \rightarrow \rho^0 (\rightarrow \pi^+ \pi^-) \gamma$	$D^0 o \pi^+\pi^-$
$ar{K}^{*0}$	$D^0 ightarrow ar{K}^{*0} ightarrow K^- \pi^+) \gamma$	$D^0 o K^- \pi$
ω	$D^0 \rightarrow \omega (\rightarrow \pi^+ \pi^- \pi^0) \gamma$	$D^0 o \pi^+ \pi^- \pi^0$

Event selection & background study

Pre-selection

Criteria

Particles	selection criteria
Tarticles	selection criteria
K^{\pm}	in CDC acceptance
	$\mathcal{L}_{K\pi} > 0.5$
	dr < 1.5, dz < 3.5
hard π^{\pm}	in CDC acceptance
	$\mathcal{L}_{\pi K} > 0.5$
	dr < 1.5, dz < 3.5
slow π^+	in CDC acceptance
	dr < 1.5, dz < 3.5
π^0	eff30_May2020
M(V) - m(V)	$\phi:<0.02 { m GeV}$
	$\bar{K}^{*0} :< 0.22 \text{GeV}$
	$ ho^{0}:<0.245 \mathrm{GeV}$
	$\omega:<0.04{ m GeV}$

γ	$E > 300 { m MeV}$				
	clusterE9E21 > 0.95				
	$clusterNHits \geq 5$				
	${\sf clusterSecondMoment} \leq 1.5$				
D^0	$p_{CM} > 2 \text{GeV}$				
D*+	$\Delta m = M(D^{*+}) - M(D^0) < 0.160 { m GeV}$				
	vertex treeFit:				
	min(confidence level)=0.001				
	IP constraint				

$p_{CM}(D^{*+})$ cut

- ▶ 1. Maximize $FOM(N_{sig}/\sqrt{N_{sig} + N_{bkg}})$
- ▶ 2. Suppress the combinatorial bkg from $B^0\bar{B}^0, B^+B^- \& q\bar{q}(u\bar{u}, d\bar{d}, s\bar{s})$

Jaeyoung Kim

 $D^0 \rightarrow V\gamma$ at Belle II

$p_{CM}(D^{*+})$ cut

▶ 1. Maximize FOM $(N_{sig}/\sqrt{N_{sig}+N_{bkg}})$

▶ 2. Suppress the combinatorial bkg from $B^0\bar{B}^0, B^+B^- \& q\bar{q}(u\bar{u}, d\bar{d}, s\bar{s})$

	ϕ	\bar{K}^{*0}	ρ^0	ω	all
$ M(V) - m_{nominal}(V) $	< 11 MeV	< 60MeV	< 125 MeV	< 15 MeV	
$ Q-Q_{nominal} $					< 0.6 MeV
$p_{ m CM}(D^{*+})$	> 2.3GeV	> 2.45GeV	> 2.57GeV	> 2.73GeV	

Bkg constituents of $D^0 o \phi \gamma$ in $\int {\cal L} dt = 1/{
m ab}$ MC

$$Q = M(D^{*+}) - M(D^0) - M(\pi^+) = \Delta m - M(\pi^+)$$

Jaeyoung Kim $D^0 \rightarrow V\gamma$ at Belle II Jan.18, 2023

	ϕ	\bar{K}^{*0}	$ ho^{0}$	ω	all
$ M(V) - m_{nominal}(V) $	< 11MeV	< 60MeV	< 125 MeV	< 15 MeV	
$ Q-Q_{nominal} $					< 0.6MeV
$p_{ m CM}(D^{*+})$	> 2.3GeV	> 2.45GeV	> 2.57GeV	> 2.73GeV	

Bkg constituents of $D^0 o ar{\mathcal{K}}^{*0} \gamma$ in $\int \mathcal{L} dt = 1/\mathsf{ab}$ MC

	ϕ	\bar{K}^{*0}	ρ^{0}	ω	all
$ M(V) - m_{nominal}(V) $	< 11 MeV	< 60MeV	< 125 MeV	< 15 MeV	
$ Q-Q_{nominal} $					< 0.6 MeV
$ ho_{ m CM}(D^{*+})$	> 2.3GeV	> 2.45GeV	> 2.57GeV	> 2.73GeV	

Bkg constituents of $D^0 o
ho^0 \gamma$ in $\int {\cal L} dt = 1/{
m ab}$ MC

	ϕ	\bar{K}^{*0}	ρ^0	ω	all
$ M(V) - m_{nominal}(V) $	< 11 MeV	< 60MeV	< 125 MeV	< 15 MeV	
$ Q-Q_{nominal} $					< 0.6 MeV
$p_{ m CM}(D^{*+})$	> 2.3GeV	> 2.45GeV	> 2.57GeV	> 2.73GeV	

Bkg constituents of $D^0 \to \omega \gamma$ in $\int \mathcal{L} dt = 1/ab$ MC, (caution: upper limit!)

Not included: $D^0 \to \omega(\pi^0 \to \gamma\gamma), D^0 \to \omega(\eta \to \gamma\gamma), D^0 \to \pi^+\pi^-\pi^0(\eta \to \gamma\gamma)$ in bkg MC Jaeyoung Kim $D^0 \to V\gamma$ at Belle II Jan.18, 2023 18

An issue for $D^0 \rightarrow \omega \gamma$

- ▶ Not included main bkg($D^0 \to \omega \pi^0, D^0 \to \omega \eta, D^0 \to \pi^+ \pi^- \pi^0 \eta$) in bkg MC Adding according to PDG value $Br(D^0 \to \omega \pi^0)_{2016,BESIII} = (1.17 \pm 0.35) \cdot 10^{-4}$ $Br(D^0 \to \omega \eta)_{2018,BESIII} = (1.98 \pm 0.18) \cdot 10^{-3}$ $Br(D^0 \to \pi^+ \pi^- \pi^0 \eta)_{2020,BESIII} = (3.23 \pm 0.22) \cdot 10^{-3}$
- ▶ We will add these 3 decays.

π^0 veto

π^0 veto (MVA)

- Purpose: suppression of dominant background, $D^0 \rightarrow V \pi^0 (\rightarrow \gamma_1 \gamma_2)$ \bigcirc not π^0 -like vs. π^0 -like
- Tool: BDT(Boosted Decision Tree)
- ► Training variables: $M(\gamma_1\gamma_2), E(\gamma_2), \text{cosHelicityAngleMomentum}$
 - $\bigcirc \gamma_1$: primary candidate in $D^0 \rightarrow V\gamma$ reconstuction
 - γ_2 : any photons except γ_1 remained in each event signal: $D^0 \rightarrow V \gamma_1$, bkg: $D^0 \rightarrow V \pi^0 (\rightarrow \gamma_1 \gamma_2)$
- Selection of photons

particles	selection criteria
γ_1	clusterTiming < 200 <i>ns</i> clusterTiming clusterErrorTiming <i>E</i> > 300MeV clusterE9E21> 0.95
	$\stackrel{-}{\text{clusterNHits} \geq 5}_{\text{clusterSecondMoment}} \leq 1.5$
γ2	clusterTiming < 200ns clusterTiming clusterTeroTiming < 2.0 in forward, E > 25MeV in barrel, E > 20MeV in backward, E > 20MeV clusterNHits≥ 2

Jaeyoung Kim

veto training

- Samples
 - \bigcirc not π^0 like: pre-selected 1M signal MC of 4 channels($\phi, \rho^0, \bar{K}^{*0}, \omega$) (required grand-daughter of D^{*+} and daughter of D^{0})
 - $\bigcirc \pi^0$ like: true π^0 in pre-selected background MC
- Distribution of training variables $M(\gamma_1\gamma_2), E(\gamma_2), \text{cosHelicityAngleMomentum}$

 $\cos \theta$: θ between the line defined by the $\vec{p}_2 - \vec{p}_1$ in π^0 frame and $\vec{p}(\pi^0)$ in lab frame $(\pi^0 \rightarrow \gamma_1 \gamma_2)$

π^0 veto results

MVA output for each channel

(bkg: true daughter of π^0 in $1ab^{-1}$ bkg MC, signal: 1M true signal MC)

• Bkg constituents of $D^0 o ar{K}^{*0} \gamma$: before vs. after

Jaeyoung Kim

 $D^0 \rightarrow V\gamma$ at Belle II

Bkg constituents of $D^0 \to \omega \gamma$: before vs. after ,(caution: upper limit!)

Jaeyoung Kim

 $D^0 \rightarrow V\gamma$ at Belle II

Future plans

Plan1:check and calibrate π^0 **veto**

▶ Using $D^0 \to \bar{K}^{*0}\gamma$, check π^0 veto data/MC discrepancy between $D^0 \to \bar{K}^{*0}(\to K^-\pi^+)\pi^0$ and $D^0 \to \bar{K}^{*0}(\to K^-\pi^+)\gamma$

• Compare
$$\epsilon_{veto} = \frac{N_{after veto}}{N_{before}}$$
 of data & MC

For ideal case, $R \equiv \epsilon_{veto,MC}/\epsilon_{veto,data} = 1$

Plan2:extract signal

- ► Do 2D fitting $(M(D^0), \cos \theta_H)$
- Calculation Br&A_{CP} with normalization modes,

V	$D^0 ightarrow V\gamma$	Normalization mode
ϕ	$D^0 ightarrow \phi (ightarrow K^+ K^-) \gamma$	$D^0 o K^+ K^-$
$ ho^{0}$	$D^0 o ho^0 (o \pi^+ \pi^-) \gamma$	$D^0 o \pi^+\pi^-$
$ar{K}^{*0}$	$D^0 \rightarrow \bar{K}^{*0} \rightarrow K^- \pi^+)\gamma$	$D^0 o {K^-} \pi$
ω	$D^0 \rightarrow \omega (\rightarrow \pi^+ \pi^- \pi^0) \gamma$	$D^0 o \pi^+\pi^-\pi^0$

For example, $Br(D^0 \to \phi\gamma) = Br(D^0 \to K^+K^-) \frac{N_{rec,D^0 \to \phi\gamma}/\epsilon_{D^0 \to \phi\gamma}}{N_{rec,D^0 \to K^+K^-}/\epsilon_{D^0 \to K^+K^-}}$

Jan.18. 2023

Thank you for your attention!

Backup

$COS\theta_{H}$ $D^{0} \to V\gamma, (V = \phi, \rho^{0}, \bar{K}^{*0}, \omega)$ For $V = \phi, \rho^{0}, \bar{K}^{*0}$ in $D^{0} \to V(\to f^{+}f^{-})\gamma$ $COS\theta_{H}$

For $V = \omega$ $\cos\theta_H$

Jaeyoung Kim

 $D^0 \rightarrow V\gamma$ at Belle II

Jan.18, 2023

$cos\theta_H$ distribution

π^0 veto results

- Mass veto: remove the region of near $m(\pi^0)$ (details are in backup)
- BDT is the best until now

Mass veto

- Select one primary photon
- Make pair with other photons in ROE
- Choose one candidate where $M(\gamma_1\gamma_2)$ is nearest to nominal mass $(\pi^0: 0.135 \text{GeV})$

