On the impact of the H_0 tension on the primordial tilt

Fumiya Okamatsu (Saga University)

In collaboration with Tomo Takahashi (Saga University)

FO, T. Takahashi, in prep

2023/1/ Yonsei - Saga Partnership Program

Hubble constant (H_0) problem

Direct measurements
 ex) SH0ES Collaboration

 $H_0 = 73.04 \pm 1.04$ km/s/Mpc

A.G.Riess et al., Astrophys. J. Lett (arXiv:2112.04510)

Indirect measurements
 ex) Cosmic Microwave Background (CMB) :

 $H_0 \simeq 67.36 \pm 0.54 \text{ km/s/Mpc}$

Planck Collaboration., A&A (arXiv:1807.06209)

There is a statistically significant tension between direct and indirect measurements

- What's the origin of the tension?
 - Systematic error?

• Need to extend the LCDM model?

Indirect measurements

$$\Lambda$$
CDM model

 $\stackrel{67.4_{-0.5}^{+0.5}}{\stackrel{-0.5}{\stackrel{-$

Wong et al., MNRAS (arXiv1907.04869)

It may be difficult to explain the origin of the tension because independent measurements are consistent within either direct and indirect ones

 \rightarrow

Various models have been proposed to solve the H_0 tension

76

• Various models have been proposed to solve the H_0 problem

ex) Early Dark Energy, varying $m_{\rm e} \cdot \cdot \cdot$

 \rightarrow Such models affect cosmological parameters other than H_0

<u>Purpose</u>

In particular,

we investigated the effect on the spectral index n_s of the primordial power spectrum

Purpose

• In particular,

we investigated the effect on the spectral index n_s of the primordial power spectrum

<u>Purpose</u>

Sound horizon

- One of the methods to solve the H_0 problem is decreasing the sound horizon at the recombination period.
- sound horizon
 - In the early universe, baryons and photons behave as mixed fluid
 - The mixed fluid participate in acoustic oscillation
 - The sound horizon is the distance at which fluctuations propagate as waves of acoustic oscillation

$$r_{s} = \int_{0}^{t} \frac{c_{s}}{a} dt = \frac{1}{\sqrt{3}} \int_{0}^{a} \frac{1}{\sqrt{1+R}} \frac{da'}{a'^{2}H}$$

 $R = \frac{3}{4} \frac{\bar{\rho_b}}{\bar{\rho_\gamma}}$ C_s : the sound speed of the mixed fluid

http://background.uchicago.edu/~whu/SciAm/sym3b.html

Diffusion damping (Silk damping)

 In photon decoupling, photons diffuse in a random walk, and fluctuations below the diffusion scale erase

Diffusion damping or Silk damping

• k_D : Wave number of the scale at which diffusion damping becomes effective

$$[k_D(\tau)]^{-2} \equiv \frac{1}{6} \int \frac{\tau_c}{1+R} \left(\frac{16}{15} + \frac{R^2}{1+R} \right) d\tau$$

 $\tau_{\rm c} \equiv 1/an_{\rm e}\sigma_{\rm T}$: optical depth

 $n_{\rm e}$: the number density of electrons $\sigma_{\rm T}$: Thomson scattering cross-section

The ratio $1/k_D(=\lambda_D)$ to sound horizon r_{s^*} determines the damping scale

Example 1) Early Dark Energy (EDE) model

- Introduce a scalar field
- increase the total energy density before the recombination era due to the additional contribution from the scalar field
- Therefore the sound horizon decreases and H_0 increases

$$H(z) = H_0 \sqrt{\Omega_{\rm m}(z) + \Omega_{\rm r}(z) + \Omega_{\Lambda} + \Omega_{\phi}(z)}$$

The additional contribution from the scaler field

Adding a scalar field leads to an increase of H(z)

• In general, we introduce a scalar field with the potential $V \propto (1 + \cos \Theta)^n$

Example 1) Early Dark Energy (EDE) model

we use a model discussed in Poulin et al, Phys. Rev. D (arXiv:1806.10608)

Example 2) Varying m_e model

T. Sekiguchi and T. Takahashi., Phys. Rev. D (arXiv:2007.03381)

- we consider the time-varying electron mass m_{e}
- A model that attempts to solve the H_0 problem

by making the recombination epoch earlier with a larger m_e

- The energy level of hydrogen R_g is proportional to $m_e R_g \propto m_e$ The recombination temperature is determined by $R_g R_g \propto T_{\gamma^*}$ $\Big\} m_e \propto T_{\gamma^*} \propto \frac{1}{a_*}$

$$r_s(z_*) = \frac{1}{\sqrt{3}} \int_0^{a_*} \frac{1}{\sqrt{1+R}} \frac{da}{a^2 H} \qquad (* : \text{recombination era})$$

In the varying $m_{\rm e}$ model, we show the fit to BAO, and other low-z distance measures

Example 2) Varying $m_{\rm e} + \Omega_K$ model

BAO scale measured along the horizontal and line-of-sight directions, respectively $\theta_{\rm T}(z) \equiv \frac{r_s(z_*)}{D_{\rm M}(z)}, \quad \theta_{\rm L}(z) \equiv r_s(z_*)H(z)$

In varying $m_{\rm e}$ model, combine CMB with BAO/SNela

Even if $m_{\rm e}$ increases,

CMB is not affected by adjusting other cosmological parameters, but the fit to BAO is not good

$$\Delta_{m_{\rm e}} = \log(m_{\rm e}/m_{\rm e, baseline})$$

T. Sekiguchi and T. Takahashi., Phys. Rev. D (arXiv:2007.03381)

Example 2) Varying $m_e + \Omega_K$ model

Extending the background model from the Λ CDM model gives an even better fit while achieving a larger H_0

T. Sekiguchi and T. Takahashi., Phys. Rev. D (arXiv:2007.03381)

Example 2) Varying $m_e + \Omega_K$ model

T. Sekiguchi and T. Takahashi., Phys. Rev. D (arXiv:2007.03381)

- we consider the time-varying electron mass m_{e}
- A model that attempts to solve the H_0 problem

by accelerating the recombination period with a lager m_{e}

- The energy level of hydrogen R_g is proportional to $m_e R_g \propto m_e$ The recombination temperature is determined by $R_g R_g \propto T_{\gamma^*}$ $\Big\} m_e \propto T_{\gamma^*} \propto \frac{1}{a_*}$

$$r_{s}(z_{*}) = \frac{1}{\sqrt{3}} \int_{0}^{a_{*}} \frac{1}{\sqrt{1+R}} \frac{da}{a^{2}H}$$

(*: recombination era)

We consider varying $m_e + \Omega_K$ proposed by

T. Sekiguchi and T. Takahashi., Phys. Rev. D (arXiv:2007.03381)

14

Example 3) Λ **CDM**+ N_{eff} ($Y_p = 0.16, 0.18$)

Analysis

- the Markov chain Monte Carlo method (MCMC) (CosmoMC)
 - Planck 2018 (including TTTEEE and lensing) N. Aghanim et al., A&A (arXiv:1807.06209)
- •BAO
 - SDSS-III BOSS DR12 galaxy samples (z=0.38, 0.51, 0.61) S. Alam et al., MNRAS (arXiv:1607.03155)
 - SDSS DR7 Main Galaxy Sample (z=0.15) J. Ross et al, MNRAS (arXiv:1409.3242)
 - 6dF Galaxy Survey F. Beutler et al., MNRAS (arXiv:1106.3366)
- SNela
 - Pantheon sample D. M. Scolnic et al., ApJ (arXiv:1710.00845)
- $\bullet H_0$ prior

 $H_0 = 74.03 \pm 1.42 \text{ km/s/Mpc}$ Riess et al., Astrophys. J. (arXiv:1903.07603)

Result(ACDM model)

Derived parameters

 $H_0 = 67.71 \pm 0.40, \quad n_s = 0.967 \pm 0.0038$

 $r_{s^*} = 144.59 \pm 0.212, \ k_D = 0.141 \pm 0.0003$

 k_D : Wave number of the scale at which

diffusion damping becomes effective

We compare other models with the ΛCDM model

Result(EDE (n=2) model)

Result(varying $m_e + \Omega_K$ model)

Result(Λ **CDM**+ N_{eff} ($Y_p = 0.16, 0.18$))

Result ($n_s - r$ plot)

• The bottom figure shows the $n_s - r$ plot for the EDE (n=2) model

Conclusion

Thank you for your attention!

Example) varying $m_{\rm e}$

Barrow, John D. and Magueijo, Joao., Phys. Rev. D (arXiv:astro-ph/0503222)

- Dynamical electron mass
- Dirac lagrangian $\mathscr{L}_{\Psi} = i\bar{\Psi}\gamma^{\mu}\partial_{\mu}\Psi m\bar{\Psi}\Psi$ • "dilaton" field ϕ control electron mass $m = m_0 \exp \phi$ m_0 : current electron mass \longrightarrow Consider the varying m_e Dirac equation with varying mass $(i\chi^{\mu}\partial_{\mu} - m)\Psi = 0$
- Dirac equation with varying mass $(i\gamma^{\mu}\partial_{\mu} m)\Psi = 0$
- minimal dynamics of ϕ $\mathscr{L}_{\phi} = \frac{w}{2} \partial_{\mu} \phi \partial^{\mu} \phi$ w: coupling constant

• dynamical equation of the logarithm ($\phi = \ln(m/m_0)$) of mass $\partial^2 \phi = -\frac{m}{w} \bar{\Psi} \Psi$

Example) varying $m_{\rm e}$

Barrow, John D. and Magueijo, Joao., Phys. Rev. D (arXiv:astro-ph/0503222)

Dynamical electron mass

• "dilaton" field
$$\phi$$
 control electron mass $m = m_0 \exp \phi$ m_0 : current electron mass
— Consider the varying m_e

• the exact solution of m

$$m = \exp[\phi] = -\frac{2C^2}{Mt} \left(\frac{t}{T}\right)^{\pm C} \frac{1}{[1 - (t/T)^{\pm C}]^2}$$

$$M = \frac{a^3 n_L m_0}{w} \simeq \frac{\rho_{\rm e0} a_0^3}{w}$$

C: Constant n_L : lepton number density ρ_{e0} : current electron energy density

Example) Early Dark Energy (EDE) model

we use the model proposed by Poulin et al, Phys. Rev. D (arXiv:1806.10608)

Result(triangle plot summary)

AdS phase + EDE model

Gen Ye and Yun-Song Piao., Phys. Rev. D(arXiv:2001.02451)

Example of potential

$$V(\phi) = \begin{cases} V_0 \left(\frac{\phi}{M_p}\right)^4 - V_{ads} & \frac{\phi}{M_p} < \left(\frac{v_{ads}}{V_0}\right)^{1/4} \\ 0 & \frac{\phi}{M_p} > \left(\frac{v_{ads}}{V_0}\right)^{1/4} \end{cases}$$

 V_{ads} : the depth of AdS well, $M_p = \frac{c\hbar}{G}$

AdS phase + EDE モデル

- 1. The scalar field ϕ is in the middle of the potential. That energy density ρ_{ϕ} is negligible
- 2. As expanding the universe, the radiation, and matter dilute. When $H^2 \simeq \partial_{\phi}^2 V$ before the recombination,

the field starts to roll the potential, and that ρ_{ϕ} isn't negligible.

- 3. The field rolls the AdS phase, and ρ_{ϕ} quickly redshifts during this period.
- 4. The field rises to the region of $\Lambda>0$, and the universe settles in the ΛCDM phase until now

AdS phase + EDE model

The contribution of energy density

 ϕ^4 + AdS model

 $f_{\rm EDE}$ is very small in the recombination period

- A model that attempts to solve the Hubble tension by giving an additional contribution due to the interaction of Majoron and neutrinos.
 - New parameters
 - m_{ϕ} : Majoron mass $\Gamma_{
 m eff}$: Effective decay width
 - $N_{\rm eff}$: The effective number of neutrinos

Phenomenologically Emergent Dark Energy (PEDE)

Weiqiang Yang et al., Phys. Dark Univ.(arXiv:2007.02927)

- This model is motivated that dark energy could be an emergent phenomenon only arising at low redshift.
- Some transition forms can obtain a larger value of H_0
- parameters

$$\Omega_{\rm ED}(z) = \Omega_{\rm DE,0} \left[1 - \tanh(\log_{10}(1+z)) \right] \qquad \Omega_{\rm DE,0}: \text{ The present-day value of } \Omega_{\rm DE}$$

$$w_{\rm DE}(z) = \frac{1}{3} \frac{d \ln \Omega_{\rm DE}}{dz} (1+z) - 1:$$

The reason k_D is large in the varying $m_e + \Omega_K$ model

$$1/k_D(z_*) \propto a_* \quad m_e \propto T_{\gamma^*} \propto \frac{1}{a_*}$$

$$k_D(z_*) \propto m_{\rm e}$$

a larger $m_{\rm e}$ leads to a larger k_D

Result(plot summary)

$$S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5} \qquad \sigma_8^2 = \frac{A_0}{2\pi^2} \int dk k^{n+2} W^2 \left(k \cdot 8h^{-1} {\rm Mpc}\right) T^2(k, t_0)$$

Result($n_s - r$ plot)

• The bottom figure shows $n_s - r$ plot of the EDE (n=2) model

