$B \rightarrow KA'A', A' \rightarrow l^+l^-$

Yongkyu Kim, Youngjoon Kwon

Introduction

Multilepton signature of a hidden sect or in rare B decays. Phys. Rev. D 83,054005, B. Batell et al

Final States							
$B^+ \rightarrow K^+ e^+ e^- e^+ e^+$	$B^0 ightarrow K^0 e^+ e^- e^+ e^+$	$B^+ \rightarrow K^{*+}e^+e^-e^+e^+$	$B^0 \rightarrow K^{*0}e^+e^-e^+e^+$				
$B^+ ightarrow K^+ e^+ e^- \mu^+ \mu^+$	$B^0 ightarrow K^0 e^+ e^- \mu^+ \mu^+$	$B^+ ightarrow K^{*+} e^+ e^- \mu^+ \mu^+$	$B^0 ightarrow K^{*0} e^+ e^- \mu^+ \mu^+$				
$B^+ ightarrow K^+ \mu^+ \mu^- \mu^+ \mu^+$	$B^0 ightarrow K^0 \mu^+ \mu^- \mu^+ \mu^+$	$B^+ ightarrow K^{*+} \mu^+ \mu^- \mu^+ \mu^+$	$B^0 ightarrow K^{*0} \mu^+ \mu^- \mu^+ \mu^+$				

Particle selection

- dr < 2 cm, dz < 5 cm
- e^{\pm} : $\mathcal{L}_e > 0.9$, $\mathcal{L}_e > \mathcal{L}_{\mu}$, Bremstrahlung- γ recon $\angle_e^{\gamma} < 0.05$ rad
- μ^{\pm} : $\mathcal{L}_{\mu} > 0.9$, $\mathcal{L}_{e} < \mathcal{L}_{\mu}$
- K^{\pm} : $\mathcal{L}_{K/\pi} > 0.6$, $\mathcal{L}_{P/K} < 0.4$
- π^{\pm} : $\mathcal{L}_{K/\pi} < 0.4$, $\mathcal{L}_{P/\pi} < 0.4$
- γ : Endcap : 150 MeV Barrel : 50 MeV
- K_S^0 : *nisksfinder* standard cut.
- π^0 : 0.1 < M_{π} < 0.14 (GeV), P_{π} > 0.1 GeV

Particle Selection cont'd

- K^{*+} : $K^{*+} \to K_S^0 \pi^+, K^+ \pi^0, 0.8 < M_{K^{*+}} < 1.0$ (GeV)
- K^{*0} : $K^{*0} \to K_S^0 \pi^0$, $K^+ \pi^-$, 0.8 < $M_{K^{*0}}$ < 1.0 (GeV)
- $A': A' \rightarrow e^+e^-, \mu^+\mu^-, \Delta M_{A'} < 0.1 \text{ GeV}$
- Best A' pair selection based on least $\Delta M_{A'}$
- When we select $A' \rightarrow l_{1,3}l_{2,4}$, we call $A'_W \rightarrow l_{1,2}l_{4,3}$
- Best B selection based on least $|\Delta E|$.

of B candidates

Figure 4: Number of *B* candidates before best *B* selection. From left, signalMC(Black Line) and generic backgrounds (Red for $B\bar{B}$ and Blue for $q\bar{q}$) with decay of $B^+ \to K^+ e^+ e^- e^+ e^-$, $B^+ \to K^+ e^+ e^- \mu^+ \mu^-$, $B^+ \to K^+ \mu^+ \mu^- \mu^+ \mu^-$.

nCandidates	Entries	Mean	Max
$B^+ \rightarrow K^+ e^+ e^- e^+ e^-$	21.07	1.05	48
$B^+ \rightarrow K^+ e^+ e^- \mu^+ \mu^-$	10.30	1.07	25
$B^+ \to K^+ \mu^+ \mu^- \mu^+ \mu^-$	4.83	1.09	10
$B^0 \rightarrow K^0 e^+ e^- e^+ e^-$	1.23	1.00	3
$B^0 ightarrow K^0 e^+ e^- \mu^+ \mu^-$	0.63	1.32	2
$B^0 \rightarrow K^0 \mu^+ \mu^- \mu^+ \mu^-$	0.10	1	1
$B^+ \to K^{*+} e^+ e^- e^+ e^-$	92.13	4.13	61
$B^+ \rightarrow K^{*+} e^+ e^- \mu^+ \mu^-$	25.33	3.61	20
$B^+ \to K^{*+} \mu^+ \mu^- \mu^+ \mu^-$	11.63	5.25	7
$B^0 \rightarrow K^{*0} e^+ e^- e^+ e^-$	35.57	1.43	56
$B^0 \rightarrow K^{*0} e^+ e^- \mu^+ \mu^-$	9.16	1.62	15
$B^0 \rightarrow K^{*0} \mu^+ \mu^- \mu^+ \mu^-$	4.80	2.33	10

Best B select using least $|\Delta E|$.

Number of B candidates are not significant on Signal MC and generic MC as shown in figure and Table (Mean ~1).

Table 3: Number of B candidates depending on each decay modes. These values are exaggerated as signal selection on these variables are not applied. ($\Delta m_{A'}(< 0.1), m_{A'}$, and E_{Asym}).

Signal Extraction

2023. 1. 17.

7000

6000

5000

4000

3000^E

2000

1000

Number of event/1M MC vs Dark photon masses in SignalMC

2023. 1. 17.

19th Saga-Yonsei Workshop

Number of event/1stream vs Dark photon masses in GenMC

This is number of background and its statistical error.

Most of case they are in O(1), 4μ decay have least backgroun ds.

Expected U.L. of B.F.

Final State	$m_{A'}$	$N_{obs} = 0$	$N_{obs} = 1$	$N_{obs} = 2$	$N_{obs} = 3$
$K^{0}e^{+}e^{-}e^{+}e^{-}$	0.6	1.32×10^{-7}	2.46×10^{-7}	3.28×10^{-7}	$4.28 imes 10^-7$
	1.1	$1.06 imes 10^{-7}$	1.96×10^{-7}	$2.67 imes 10^{-7}$	$3.43 imes10^{-7}$
	1.6	$9.48 imes 10^{-8}$	$1.77 imes 10^{-7}$	2.37×10^{-7}	$3.08 imes 10^{-7}$
$K^{0}e^{+}e^{-}\mu^{+}\mu^{-}$	0.6	$3.16 imes10^{-7}$	5.87×10^{-7}	$7.98 imes 10^{-7}$	$1.02 imes 10^{-6}$
	1.1	$2.74 imes10^{-7}$	$5.11 imes 10^{-7}$	$6.86 imes10^{-7}$	$8.92 imes10^{-7}$
	1.6	$1.51 imes 10^{-7}$	$2.82 imes 10^{-7}$	$3.83 imes 10^{-7}$	$4.92 imes 10^{-7}$
$K^{0}\mu^{+}\mu^{-}\mu^{+}\mu^{-}$	0.6	1.18×10^{-6}	2.20×10^{-6}	2.94×10^{-6}	$3.84 imes 10^{-6}$
	1.1	$8.74 imes10^{-7}$	$1.63 imes 10^{-6}$	$2.17 imes 10^{-6}$	$2.83 imes10^{-6}$
	1.6	2.87×10^{-6}	$5.34 imes10^{-6}$	$7.13 imes10^{-6}$	$9.31 imes 10^{-6}$

Final State	$m_{A'}$	$N_{obs} = 0$	$N_{obs} = 1$	$N_{obs} = 2$	$N_{obs} = 3$
$K^{*0}e^+e^-e^+e^-$	0.6	$5.07 imes 10^{-7}$	$1.06 imes 10^{-7}$	$1.71 imes 10^{-7}$	$2.71 imes 10^{-7}$
	1.1	$3.05 imes 10^{-8}$	$7.01 imes 10^{-8}$	$1.59 imes10^{-7}$	$2.00 imes10^{-7}$
	1.6	$3.38 imes 10^{-8}$	$6.97 imes 10^{-8}$	$1.08 imes 10^{-7}$	$1.39 imes10^{-7}$
$K^{*0}e^+e^-\mu^+\mu^-$	0.6	$1.07 imes 10^{-7}$	2.42×10^{-7}	$3.68 imes10^{-7}$	5.44×10^{-7}
	1.1	$7.41 imes 10^{-8}$	$1.78 imes 10^{-7}$	$2.77 imes 10^{-7}$	$4.17 imes10^{-7}$
	1.6	4.93×10^{-8}	$1.05 imes 10^{-7}$	$1.72 imes 10^{-7}$	$2.25 imes 10^{-7}$
$K^{*0}\mu^+\mu^-\mu^+\mu^-$	0.6	$8.80 imes 10^{-7}$	1.64×10^{-6}	$2.19 imes 10^{-6}$	$2.85 imes 10^{-6}$
	1.1	$6.25 imes 10^{-7}$	$1.17 imes 10^{-6}$	$1.56 imes 10^{-6}$	$2.03 imes 10^{-6}$
	1.6	$1.47 imes 10^{-7}$	$2.66 imes10^{-7}$	$3.74 imes 10^{-7}$	4.75×10^{-7}

Final State	$m_{A'}$	$N_{obs} = 0$	$N_{obs} = 1$	$N_{obs} = 2$	$N_{obs} = 3$
$K^{+}e^{+}e^{-}e^{+}e^{-}$	0.6	$4.43 imes10^{-8}$	$8.09 imes10^{-8}$	1.12×10^{-7}	$1.43 imes 10^{-7}$
	1.1	$3.82 imes 10^{-8}$	$7.12 imes10^{-8}$	$9.56 imes10^{-8}$	$1.24 imes 10^{-7}$
	1.6	$2.47 imes10^{-8}$	$4.65 imes10^{-8}$	$6.83 imes10^{-8}$	$8.67 imes10^{-8}$
$K^+e^+e^-\mu^+\mu^-$	0.6	$3.33 imes10^{-8}$	$6.19 imes10^{-8}$	$8.41 imes 10^{-8}$	$1.08 imes 10^{-7}$
	1.1	$2.40 imes10^{-8}$	$4.80 imes 10^{-8}$	$7.31 imes 10^{-8}$	$9.35 imes10^{-8}$
	1.6	$2.60 imes10^{-8}$	$5.04 imes10^{-8}$	$7.53 imes10^{-8}$	$9.59 imes10^{-8}$
$K^{+}\mu^{+}\mu^{-}\mu^{+}\mu^{-}$	0.6	$3.31 imes 10^{-7}$	6.07×10^{-7}	$8.36 imes 10^{-7}$	1.07×10^{-6}
	1.1	$2.46 imes10^{-7}$	$4.49 imes 10^{-7}$	$6.22 imes 10^{-7}$	$7.94 imes10^{-7}$
	1.6	$8.10 imes10^{-8}$	$1.48 imes 10^{-7}$	$2.05 imes 10^{-7}$	2.62×10^{-7}

Final State	$m_{A'}$	$N_{obs} = 1$	$N_{obs} = 2$	$N_{obs} = 3$	$N_{obs} = 4$
$K^{*+}e^{+}e^{-}e^{+}e^{-}$	0.6	$9.19 imes10^{-8}$	$1.66 imes10^{-7}$	$2.36 imes10^{-7}$	$2.99 imes10^{-7}$
	1.1	$4.89 imes10^{-8}$	$1.03 imes 10^{-7}$	$1.65 imes 10^{-7}$	$2.14 imes10^{-7}$
	1.6	$5.19 imes10^{-8}$	$9.51 imes10^{-8}$	$1.37 imes10^{-7}$	$1.73 imes 10^{-7}$
$K^{*+}e^{+}e^{-}\mu^{+}\mu^{-}$	0.6	$2.16 imes10^{-7}$	$4.12 imes 10^{-7}$	$6.12 imes10^{-7}$	$7.79 imes10^{-7}$
	1.1	$1.82 imes 10^{-7}$	$3.43 imes 10^{-7}$	$5.06 imes10^{-7}$	$6.42 imes 10^{-7}$
	1.6	$8.90 imes10^{-8}$	$1.64 imes10^{-7}$	$2.38 imes10^{-7}$	$3.01 imes 10^{-7}$
$K^{*+}\mu^{+}\mu^{-}\mu^{+}\mu^{-}$	0.6	$9.73 imes10^{-7}$	$1.77 imes 10^{-6}$	2.47×10^{-6}	$3.15 imes 10^{-6}$
	1.1	$7.25 imes10^{-7}$	$1.35 imes 10^{-6}$	$1.81 imes 10^{-6}$	$2.36 imes10^{-6}$
	1.6	$1.88 imes 10^{-7}$	$3.51 imes 10^{-7}$	4.71×10^{-7}	$6.13 imes10^{-7}$

Expected upper limit of branching fraction using MC. $O(10^{-8}) \sim O(10^{-6})$

2023. 1. 17.

Systematic uncertainty

- Major contribution is PID.
- Tracking 0.35%/track
- Increased 0.7%p systematic errors including K^0 particle as I forgot to applied tracking error from $K_S^0 \rightarrow \pi^+\pi^-$

Decay	$K^{+}e^{+}e^{-}e^{+}e^{-}$	$K^0 e^+ e^- e^+ e^-$	$K^{*+}e^{+}e^{-}e^{+}e^{-}$	$K^{*0}e^+e^-e^+e^-$
Mass	1100	1100	1100	1100
Kaon ID	0.0086	0.0001	0.0107	0.0187
Lepton ID 1	0.0207	0.0207	0.0213	0.0214
Lepton ID 2	0.0255	0.0253	0.0259	0.0262
Lepton ID 3	0.0269	0.0270	0.0273	0.0273
Lepton ID 4	0.0287	0.0288	0.0291	0.0294
Tracking	0.0175	0.0210	0.0245	0.0210
NBB	0.0137	0.0137	0.0137	0.0137
Sum	0.1046	0.1037	0.1065	0.1083
Decay	$K^+e^+e^-\mu^+\mu^-$	$K^0 e^+ e^- \mu^+ \mu^-$	$K^{*+}e^{+}e^{-}\mu^{+}\mu^{-}$	$K^{*0}e^+e^-\mu^+\mu^-$
Mass	1100	1100	1100	1100
Kaon ID	0.0088	0.0001	0.0110	0.0190
Lepton ID 1	0.0196	0.0202	0.0207	0.0207
Lepton ID 2	0.0279	0.0280	0.0278	0.0281
Lepton ID 3	0.0206	0.0205	0.0206	0.0208
Lepton ID 4	0.0242	0.0244	0.0246	0.0249
Tracking	0.0175	0.0210	0.0245	0.0210
NBB	0.0137	0.0137	0.0137	0.0137
Sum	0.0953	0.0951	0.0969	0.0989
Decay	$K^+\mu^+\mu^-\mu^+\mu^-$	$K^0\mu^+\mu^-\mu^+\mu^-$	$K^{*+}\mu^+\mu^-\mu^+\mu^-$	$K^{*0}\mu^+\mu^-\mu^+\mu^-$
Mass	1100	1100	1100	1100
Kaon ID	0.0094	0.0002	0.0114	0.0195
Lepton ID 1	0.0200	0.0201	0.0203	0.0201
Lepton ID 2	0.0224	0.0226	0.0227	0.0227
Lepton ID 3	0.0236	0.0240	0.0241	0.0239
Lepton ID 4	0.0215	0.0215	0.0214	0.0218
Tracking	0.0175	0.0210	0.0245	0.0210
NBB	0.0137	0.0137	0.0137	0.0137
Sum	0.0908	0.0903	0.0920	0.0933

19th Saga-Yonsei Workshop

PID Correction ratio R vs Masses

R is around 0.85, and its error is around 10%.

The more muon event have less error.

Control sample study

Figure 9: Fitted result of signalMC, genericMC, data from left using M_{BC}

Figure 10: Fitted result of signal MC, generic MC, data from left using modified ${\cal M}_{BC}$

Cuts	notes
$M_{BC} > 5.22 GeV$	
$-0.05 < \Delta E < 0.05$	
$3.0 < M_{J\psi} < 3.2$	
$0.97 < M_{\phi} < 1.07$	
$ (M_{J\psi} - M_{\phi}) - (3.1 - 1.020) < 0.0701$	determined by 95% cut
$M_{(l,K)_i(l,K)_j} > 0.1$	
$R_2 < 0.4$	

Table 19: Signal extraction cut of Control sample $B^+ \rightarrow J/\psi \phi K^+$

To validate R_2 cut.

For signal, CB function have used. For background, Argus function have used. Comparison between M_{BC} and Modified M_{BC} tested.

Modified
$$M_{BC} = M_{BC} - E_{beam} + 5.29$$

Figure 11: Fitted result of signal MC, generic MC, data from left using modified M_{BC} with R_2

Control sample study cont'd

$R_{trk,/wR_2}$	0.9585 ± 0.0595	$R_{trk,/woR_2}$	0.9578 ± 0.0598
$N_{Sig,MC,/wR_2}$	231 ± 12	$N_{Sig,MC./woR_2}$	245.5 ± 6.9
$N_{Sig,Data,/wR_2}$	176 ± 17	$N_{Sig,Data,/woR_2}$	182 ± 17
$\frac{N_{Sig,MC,/wR_2}}{N_{Sig,MC,/wR_2}}$	$0.9409 \pm 0.052 \pm 0.062$	Nsig,DATA,/wR2 Nsig,DATA,/woR2	0.9670 ± 0.097
$\frac{N_{Sig,Data,/wR_2}}{N_{Sig,Data,/woR_2}}$ $\frac{N_{Sig,MC,/wR_2}}{N_{Sig,MC,/woR_2}}$	$1.027 \pm 0.118 \pm 0.068$	$\frac{N_{Sig,Data,/wR_2}}{N_{Sig,MC,/wR_2}}$	0.7619 ± 0.0836

Table 20: Some Values from Control Sample study

Our double ratio comparison on R_2 is well agree between DATA & MC

According to Pull distribution, our fitting works well.

Figure 12: Control sample Toy MC study result

Control sample study cont'd

	BF	Notes
BF_{PDG}	$(5.0 \pm 0.4) \times 10^{-5}$	BABR/CLE2
BF_{MC}	$(5.2) \times 10^{-5}$	DECAY.DEC
BF_{MC}	$(5.41 \pm 0.28 \pm 0.34) \times 10^{-5}$	
BF_{DATA}	$(4.30 \pm 0.41 \pm 0.27) \times 10^{-5}$	
BF_{DATA}^{BN1565}	$(4.35 \pm 0.31 \pm 0.19) \times 10^{-5}$	Belle Note 1565 [5]
BF _{DATA} BF _{PDG}	(0.86 ± 0.12)	slight bigger than 1 σ from 1

Table 21: Branching fraction of $B^+ \to J\psi\phi K^+$ with R_2

- There are some discrepancy between DATA & MC.
- Also have some discrepancy between DATA & PDG
- But our B.F measurement on DATA is consistent with our new study, BN#1565

Intermediate scalar particle effect test

Referees asked to check difference between $B \rightarrow Kh', h' \rightarrow A'A', A \rightarrow l^+l^-$ And

 $B \to KA'A', A \to l^+l^-$

Both are *A*'(1100) signal MC samples. To see the differences, I draw figure of 2 dark photon separate.

Red empty circle decay via h'(3000) Blue Full square is direct decay

Have almost no difference Except $m_{A_w}(m_{l_{1,2},l_{4,3}})$ as it is limited by h' mass. Also efficiency little bit affected.

PHOTOS effect test

Easym Easym eA_1_h1 eA_2_h1 0.1558 -0.155 0.3031 0.298 5000 5000 4000 3000 2000 1000

Referees also asked to check difference between

Decay B+ 1.0 K+ A(1600) A(1600) PHSP

And

Decay B+ 1.0 K+ A(1600) A(1600) PHOTOS PHSP

Both are *A*'(1600) signal MC samples. To see the differences, I draw figure of 2 dark photon separate.

Red empty circle decay via h'(3000)Blue Full square is direct decay

Both of signalMC have almost no discrepancy ¹⁶

Summary

- Testing several unconsidered/ignored effect according to internal referees' advice
 - Intermediate scalar particle masses.
 - Not using PHOTOS on hadron and dark-photon decay (ex : $B^+ \rightarrow K^+ A' A'$).
 - K_S^0 tracking uncertainty
- Updating Belle Note according to test result

Backup

Bremsstrahlung reconstruction

mbc:de mbc:de о ця 29 oqu ₩29 5.285 5.285 5.28 5.28 5.275 5.275 5.27 5.27 5.265 5.265 5.26 5.26 -0.15 -0.1

 $M_{bc} vs \Delta E$ before, after bremsstrahlung reconstruction

Effect on J/ψ , $\psi(2S)$ background veto

 $\angle_{e}^{\gamma} < 0.05 \, rad$ used bremsstrahlung reconstruction. Electron containing mode have Bremsstrahlung reconstruction process

 J/ψ veto : 2.8 < $m_{A'_w}$ < 3.15 GeV $\psi(2S)$ veto : 3.55 < $m_{A'_w}$ < 3.7 GeV Low mass veto $m_{A'}$ < 0.1 GeV, $m_{A'}$ < 0.1 GeV

Low mass/cc veto

$\Delta m_{A'}$ cut determination

Background is almost flat. Figure of merit punzi fluctuates hard due to lack of background. (O(1))Signal 95% cut applied to some points, And interpolated it with dark photon mass

Final States	$0.6~{ m GeV}$	$1.1 \mathrm{GeV}$	$1.6 \mathrm{GeV}$	Final States	$0.6~{ m GeV}$	$1.1 \mathrm{GeV}$	$1.6~{\rm GeV}$
$K^0 e^+ e^- e^+ e^-$	0.062	0.068	0.078	$K^+e^+e^-e^+e^-$	0.060	0.068	0.080
$K^0 e^+ e^- \mu^+ \mu^-$	0.056	0.064	0.074	$K^+e^+e^-\mu^+\mu^-$	0.054	0.062	0.074
$K^{0}\mu^{+}\mu^{-}\mu^{+}\mu^{-}$	0.016	0.020	0.030	$K^+\mu^+\mu^-\mu^+\mu^-$	0.014	0.020	0.030
$K^{*0}e^+e^-e^+e^-$	0.062	0.068	0.078	$K^{*+}e^{+}e^{-}e^{+}e^{-}$	0.064	0.068	0.078
$K^{*0}e^+e^-\mu^+\mu^-$	0.058	0.064	0.076	$K^{*+}e^+e^-\mu^+\mu^-$	0.056	0.062	0.072
$K^{*0}\mu^+\mu^-\mu^+\mu^-$	0.016	0.024	0.030	$K^{*+}\mu^+\mu^-\mu^+\mu^-$	0.020	0.028	0.030

PID Correction

	Mass		<i>K</i> ⁺		K ⁰		K *+		<i>K</i> * ⁰	
	(GeV)	R	σ_R	R	σ_{R}	R	σ_R	R	σ_R	
$e^{+}e^{-}e^{+}e^{-}$	0.6	0.8751	0.1004	0.8553	0.1004	0.8402	0.1026	0.8483	0.1041	
	1.1	0.8849	0.1021	0.8628	0.1018	0.8519	0.1042	0.8609	0.1059	
	1.6	0.9049	0.0983	0.8765	0.0978	0.8757	0.1009	0.8844	0.1024	
$e^+e^-\mu^+\mu^-$	0.6	0.8750	0.0896	0.8526	0.0895	0.8434	0.0908	0.8509	0.0925	
	1.1	0.8673	0.0928	0.8427	0.0931	0.8375	0.0943	0.8422	0.0965	
	1.6	0.8777	0.0918	0.8520	0.0906	0.8553	0.0918	0.8637	0.0935	
$\mu^+\mu^-\mu^+\mu^-$	0.6	0.8949	0.0825	0.8663	0.0811	0.8699	0.0824	0.8741	0.0848	
	1.1	0.8661	0.0881	0.8357	0.0882	0.8385	0.0892	0.8396	0.0906	
	1.6	0.8568	0.0912	0.8352	0.0895	0.8395	0.0901	0.8596	0.0881	

Table. PID correction ratio($R = \frac{\epsilon_{DATA}}{\epsilon_{MC}}$) and its uncertainty2023. 1. 17.19th Saga-Yonsei Workshop

N_{BKG} and its statistical error

Final State	$m_{A'}$	N _{Bkg}	σ_{Bkg}	Final State	$m_{A'}$	N _{Bkg}	σ_{Bkg}
$B^+ \\ \rightarrow K^+ e^+ e^- e^+ e^-$	1.1	0.30	0.17	$B^{0} \rightarrow K^{0}e^{+}e^{-}e^{+}e^{-}$	1.1	0.32	0.19
$B^+ \\ \rightarrow K^+ e^+ e^- \mu^+ \mu^-$	1.1	1.20	0.35	$B^{0} \rightarrow K^{0}e^{+}e^{-}\mu^{+}\mu^{-}$	1.1	0.10	0.10
$B^+ \to K^+ \mu^+ \mu^- \mu^+ \mu^-$	1.1	0.30	0.17	$B^{0} \rightarrow K^{0} \mu^{+} \mu^{-} \mu^{+} \mu^{-}$	1.1	0.00	0.00
$B^+ \to K^{*+}e^+e^-e^+e^-$	1.1	2.87	0.80	$B^{0} \rightarrow K^{*0}e^{+}e^{-}e^{+}e^{-}$	1.1	2.12	0.71
$B^+ \to K^{*+}e^+e^-\mu^+\mu^-$	1.1	3.67	0.88	$B^{0} \rightarrow K^{*0} e^{+} e^{-} \mu^{+} \mu^{-}$	1.1	1.92	0.46
$\overrightarrow{B^+} \rightarrow K^{*+} \mu^+ \mu^- \mu^+ \mu^-$	1.1	0.87	0.43	$ \begin{array}{c} B^{0} \\ \rightarrow K^{*0}\mu^{+}\mu^{-}\mu^{+}\mu^{-} \end{array} $	1.1	0.40	0.20

After cut, in most of mass region, $N_{BKG} \sim O(1)$, E.U.L of B.F $O(10^{-8}) \sim O(10^{-6})$