$B \rightarrow X_s \nu \bar{\nu}$ study at Belle II

Junewoo Park Yonsei University 2023.01.17

Contents

- Belle II experiment
- Motivation
- Event Generation
- Event Selection
- Validation
- Fitting and Limit Setting
- Fitter Check
- Systematic Uncertainty
- Summary & Plan

Belle II experiment

- Electrons and positrons are accelerated up to 7.007 GeV and 4.000 GeV respectively by SuperKEKB
- Its energy correspond to the resonance of $\Upsilon(4S)$ which mainly decay into B meson pair
- In my analysis, B meson pairs from $\Upsilon(4S)$ are used

Motivation

- $B \to X_s \nu \overline{\nu}$ decay is theoretically cleaner than $B \to X_s ll$
- Branching ratio of $B \to X_s \nu \bar{\nu}$ does not depend on form factors cf. branching ratio of $B \to K^{(*)} \nu \bar{\nu}$ depends on form factors
- Its branching ratio depends on right-handed component New physics can enhance the decay

 η

Wolfgang Altmannshofer et al JHEP04(2009)022

Event Generation

• $B \to K \nu \bar{\nu}, B \to K^* \nu \bar{\nu}$, and non-resonant $B \to X_s \nu \bar{\nu}$ MC samples are produced separately ^{†‡} $B \to K \nu \bar{\nu}$ and $B \to K^* \nu \bar{\nu}$ samples are produced based on form factors

$$\mathcal{M}(B \to K \nu \bar{\nu}) \propto f_+(q^2) \left\{ (p_B + p)_\mu - \frac{m_B^2 - m_K^2}{s} q_\mu \right\} (\bar{\nu} \gamma^\mu (1 - \gamma_5) \nu)$$

 $\mathcal{M}(B \to K^* \nu \bar{\nu}) \propto T_{\mu}(\bar{\nu} \gamma^{\mu} (1 - \gamma_5) \nu), \text{ where } T_{\mu} = (m_B + m_{K^*}) A_1(q^2) \epsilon_{\mu}^* - A_2(q^2) \frac{\epsilon^* \cdot q}{m_B + m_{K^*}} (p + p_{K^*})_{\mu} + i \frac{2V(q^2)}{m_B + m_{K^*}} \epsilon_{\mu\nu\rho\sigma} \epsilon^{*\nu} p^{\rho} p_{K^*}^{\sigma}$

[‡] Bharucha, Aoife, David M. Straub, and Roman Zwicky. " $B \rightarrow V \ell^+ \ell^-$ in the Standard Model from light-cone sum rules." Journal of High Energy Physics 2016.8 (2016): 1-64.

Event Generation

- For non-resonant $B \to X_s \nu \bar{\nu}$ MC samples, following distribution is used [†] $\frac{d\Gamma}{dq^2} \propto \sqrt{\lambda(1, \hat{m}_s, s_b)} [3s_b(1 + \hat{m}_s^2 - s_b - 4\hat{m}_s + \lambda(1, \hat{m}_s, s_b))] , \text{ where } \hat{m}_s = m_s/m_b \text{ and } s_b = q^2/m_b^2$
- To determine the mass of non-resonant X_s , Fermi motion model is used [‡]

[†] Altmannshofer, Wolfgang, et al. "New strategies for new physics search in $B \rightarrow K^* v v^-$, $B \rightarrow K v v^-$ and $B \rightarrow X s v v^-$ decays." *Journal of High Energy Physics* 2009.04₆(2009): 022. [‡] Ali, Ahmed, et al. "Power corrections in the decay rate and distributions in $B \rightarrow X s |+|-|$ in the standard model." *Physical Review D* 55.7 (1997): 4105.

- One side of B meson is reconstructed hadronic decays are used for reconstruction this B meson is called B_{tag} (tag side B meson)
- Tag side B meson is used to suppress backgrounds

 $M_{bc}^{tag} \equiv \sqrt{E_{beam}^2 - |p_B^2|}$ - generally B meson mass for signal $\Delta E^{tag} \equiv E_B - E_{beam}$ - generally 0 for signal

• 30 decay modes are reconstructed (sum of exclusive method)

		B^{0} , $ar{B}^{0}$			B^{\pm}	
K	K_s^0			K±		
$K\pi$	$K^{\pm}\pi^{\mp}$	$K_s^0 \pi^0$		$K^{\pm}\pi^{0}$	$K_s^0 \pi^{\pm}$	
$K2\pi$	$K^{\pm}\pi^{\mp}\pi^{0}$	$K_s^0 \pi^{\pm} \pi^{\mp}$	$K_s^0 \pi^0 \pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}$	$K_s^0 \pi^{\pm} \pi^0$	$K^{\pm}\pi^{0}\pi^{0}$
K3π	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$	$K_s^0 \pi^{\pm} \pi^{\mp} \pi^0$	$K^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{0}$	$K_s^0 \pi^{\pm} \pi^{\mp} \pi^{\pm}$	$K^0_s \pi^{\pm} \pi^0 \pi^0$
$K4\pi$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}\pi^{0}$	$K_s^0 \pi^{\pm} \pi^{\mp} \pi^{\pm} \pi^{\mp}$	$K_s^0 \pi^{\pm} \pi^{\mp} \pi^0 \pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}\pi^{\pm}$	$K_s^0 \pi^{\pm} \pi^{\mp} \pi^{\pm} \pi^0$	$K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{0}\pi^{0}$
3 <i>K</i>	$K^{\pm}K^{\mp}K^0_s$			$K^{\pm}K^{\mp}K^{\pm}$		
$3K\pi$	$K^{\pm}K^{\mp}K^{\pm}\pi^{\mp}$	$K^{\pm}K^{\mp}K^0_s\pi^0$		$K^{\pm}K^{\mp}K^{\pm}\pi^0$	$K_s^0 K^{\pm} K^{\mp} \pi^{\pm}$	

- It covers ~83% of my non-resonant X_s sample
- Pre-selections are based on
 - the number of remaining tracks
 - remaining energy deposited in the calorimeter
 - vertex fit information
 - mass of X_s candidate

Number of event

Selection	SIGNAL	CHG	MIX	UUBAR	DDBAR	SSBAR	CHARM
Generated	22946.1	364.436 fb ⁻¹					
Skim	761.7	$3.65 \cdot 10^{7}$	$2.81 \cdot 10^{7}$	$8.61 \cdot 10^{7}$	$2.07 \cdot 10^7$	$1.75 \cdot 10^{7}$	$9.80 \cdot 10^{7}$
Reconstruction & preselection	86.9	98380	58118	257768	61379	125023	430049
$M_{bc}^{tag} > 5.27 \text{ GeV}$	61.7	27808	16007	51977	12613	26308	82031
$ \Delta E^{tag} < 0.2 \text{ GeV}$	58.0	26917	15284	49152	11947	24805	77699
$E_{ecl} < 1.5 \text{ GeV}$	56.4	12647	7678	19456	4859	12849	34144
$0.297 < \theta_{missing} < 2.618$	53.1	11227	6760	16244	4087	11537	29495
$0.5 < p_{X_s} < 2.96$	51.3	10255	6100	14923	3772	10962	27334
D veto $(1.84 < M_{Xs} < 1.89)$	51.2	9945	5834	14735	3736	10858	26903
BCS	51.2	9945	5834	14735	3736	10858	26903
MVA	40.5	1461	791	365	109	366	552

% Signal and background samples are scaled by 364.436 fb^{-1}

 $M_{bc}^{tag} \equiv \sqrt{E_{beam}^2 - |p_B^2|}$

тV

- BDT is used as MVA method
- 43 variables are used

they are selected based on data

FastBDT Variables	Explanation
aplanarity	3/2 of the third sphericity eigenvalue.
Btag_chiProb	p-value of vertex fit from tag side
$Btag_CleoConeCS_1,2,3,4,5$	cleo cones from the continuum suppression
$Btag_cosTBTO$	cosine of angle between thrust axis of the B_{tag} and thrust axis of ROE
Btag_deltaE	ΔE of B_{tag}
Btag_KSFWVariables_hoo1, hoo2, hoo3, hoo4, hso1, hso03, hso04, hso10, hso12, hso20, hso22, hso24	, KSFW variables of B_{tag}
$Btag_useCMSFrame_theta$	polar angle of B_{tag} in CMS frame
cleoConeThrust0, 1, 2, 3, 4, 5	Cleo cone calculated with respect to the thrust axis
foxWolframR1, 2, 3	Ratio of the i-th to the 0-th order Fox Wolfram moments.
harmonicMomentThrust1,3,4	Harmonic moment calculated with respect to the thrust axis
$Btag_extraInfo_SignalProbability$	Signal probability value of FEI
missing Energy Of Event CMS	missing energy in center-of-mass frame
missingMomentumOfEvent	magnitude of the missing momentum in laboratory frame
$missingMomentumOfEvent_theta$	theta angle of the missing momentum of the event in laboratory frame
nParticlesInListbomuplclMuonFBDT_tightbc	the number of muon candidates which satisfy $PID_{\mu} > 0.9$
roeEextra_bocleanMask_bc	extra energy from ECLClusters
roePTheta_bocleanMask_bc	polar angle θ of momentum of ROE. ROE means rest of event with respect to B_{tag} plus X_s
Bsig_daughter_0_extraInfo_Dcsimpleveto_M	mass of charged D meson candidate
Bsig_daughter_0_extraInfo_D0simpleveto_M	mass of neutral D meson candidate

• Gridsearch is used to optimize hyperparameters

hyper parameter	tested values	selected value
nTrees	100, 500, 1000, 1500, 2000	1000
depth	2,3,4	2
shrinkage	0.05,0.1,0.15,0.2	0.15
subsample	0.3,0.4,0.5,0.6,0.7	0.5
binning	6, 7, 8, 9	5

• Small overtraining can be found

However, it is acceptable amount

• MVA output value is also used for a fitting and limit setting

Validation

• Lower beam energy data is checked for a validation Because beam energy is lower, $\Upsilon(4S) \rightarrow B\overline{B}$ is not produced

Validation

• Side band is checked for a validation definition of sideband: $5.20 < M_{bc}^{tag} < 5.26$ GeV

dates dd dd ss u<u>u</u> dd mixed 14000 candidat 18000 14000 _____ ss _____ s s can 16000 cc cc ---- cc //// MC stat error 12000 //// MC stat error 1/1/ MC stat error đ of 12000 of ber number 14000 10000 10000 12000 8000 8000 10000 8000 6000 6000 6000 4000 4000 4000 2000 2000 2000 0.1 0.15 0_____ 0 0.05 0.2 0.3 0.2 0.25 0.35 0.4 0.45 -0.4 -0.2 0 0.4 0.4 harmonicMomentThrust1 0.6 -2.5-2 -1.5 -0.5 log₁₀SignalProbability -1 aplanarity 1.5 1.4 1.3 1.2 MC/data MC/data MC/data 1.4 1.3 1.2 1.4 1.3 1.2 1.1 0.9 0.8 0.7 0.6 0.5 0.6 0.9 0.8 0.7 0.6 0.9 0.8 0.7 0.6 0.5^E 0.25 0.35 0.2 0.4 -2.5 -1.5 -0.5 0.05 0.1 0.15 0.2 0.3 0.4 0.45 -0.2 0 6 -0.4 -2 -1

Fitting and Limit Setting

- BDT output value is used for a fitting and limit setting
- Histogram PDF is used

HistFactory is used as a tool

Signal_nominal

Fitting and Limit Setting

• Probability density function is constructed by number of bin and constraint term

Fitting and Limit Setting

• Upper limit of branching ratio is calculated by CLs method

% SM prediction: 2.9 \cdot 10⁻⁵

Fitter Check

• Toy MC study is done to check a fitter quality

All nuisance parameters are fluctuated for each toy ($\mu = 1$ when SM)

- Pull distribution seems to be fine $\mu = 0.027 \pm 0.010$
 - $\sigma = 0.991 \pm 0.006$

- Linearity test is done
- Linearity test show good linearity

 $y = p_1 x + p_0$

 $p_1 = 0.996 \pm 0.002$

 $p_0 = 0.205 \pm 0.009$ (small bias)

Systematic Uncertainty

Source	Type
Tracking efficiency	HistoSys
Pion ID	Not yet
Kaon ID	HistoSys
K_S^0 reconstruction	HistoSys
π^0 reconstruction	HistoSys
FastBDT efficiency	Not yet
FEI calibration for $B\bar{B}$	HistoSys
Efficiency correction for $q\bar{q}$	OverallSys
$B \to K$ form factor	HistoSys
$B \to K^*$ form factor	HistoSys
Fermi motion momentum	HistoSys
$K^* - X_s$ transition	HistoSys
b-quark mass	HistoSys
Fraction of decay modes	HistoSys
MC statistics	StatError
Fragmentation	HistoSys
Mass width of K^*	HistoSys
Background normalization	OverallSys

• Systematic uncertainties are partially estimated remaining uncertainties will be estimated

Summary

- $B \rightarrow X_s \nu \bar{\nu}$ analysis is theoretically clean
- Tagging method is used
- Some of systematic uncertainties are estimated
- Validations are done

Plan

• Control sample study $(B \rightarrow XJ/\psi)$

Back up

