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QCD axion: solve strong CP problem.

Axionlike particle (ALP): is a psuedoscalar boson, its mass
is not linear proportional to the couplings to SM particles.

ALP remains one of the dark matter candidates.

ALP can couple to photons, leptons, quarks, and gauge
bosons.

ALP-->di-photon searches at Belle II was discussed in
Sungjin Cho’s talk.
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* ALP-photon coupling:

eI/ fa [TeVT]

* ALP-muon coupling:

eyl / fa [TeV_l]
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* ALP-photon coupling:

* ALP-muon coupling:
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* ALP-photon coupling:
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* Cosmic rays reach Earth’s atmosphere, produce large air-
showers of pseudoscalar mesons, =¥ =% K0 K% ...

Cosmic rays: particles from outer space | CERN

* Such pseudoscalar mesons decay to long-lived particals
(LLPs), which potentially may decay in the neutrino
experiments, i.e Super-Kamiokande (SK).
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* In this work, we consider AL P-muon interaction
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* For ALP mass mq < 2my, , ALP primarily decays into

diphoton via the effective coupling: ,
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* ALP can be long-lived due to the loop suppression.
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* ALPs can be produced from charged meson decays 7~ — p~va
in air-showers with mass range o < m, < m; — m,, ~ 33 MeVv

K.Cheung, J.L.Kuo,P.Y.Tseng, Z.S. Wang,
PRD106,095029(2022)

* Numerical code MCEQq to compute the ALP flux at Earth’s
surface.

> The 94 dictates the production rate, while ¢, determines

the decay length of ALP, ¢7a.
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* At SK, the event distribution can be calculated by

d*®,
dT ,dcos 6

d*Neyen
y7e decf)sté' = eAtA (T, cos0)

where we considered the detection efficiency and the
detector geometry.

* The geometry of SK detector is a cylinder:

71':': = yiva
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* At SK, the event distribution can be calculated by

d*®,
dT ,dcos 6

dzNevent
= €AtA (T, cos O
dT ,d cos eAtAq(Tq, 050)

where we considered the detection efficiency and the
detector geometry.

» The SM backgrounds come from z" decay into two-photon
and neutrino-induced electron-like events that create
multiple Cherenkov rings.
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» We perform x° fit to the SK data
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where the expected ALP signal events is computed by

dzNevent
dT ,dcos 6

sig

N! —/ldTadcosé)

* The 90% C.L. constraint by requiring 2Ax*>=3,x? —x2 < 4.865 .
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The 90% C.L. constramt
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FIG. 2. Left panel: 90% C.L. sensitivity reach of SK to the muonphilic ALPs for independent g,,, and c¢r,, (solid curves) and ¢z, as a

function of g, according to Eq. (4) (dashed lines) in the (¢
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) plane, for three benchmark values of m,,

: 1, 10, and 25 MeV. Right

panel: constraints on (m,, g,,,) assuming cz, is proportional to 1/ gﬁw. Note that g,,, always induces the ALP production from the
charged pion decays. For comparison, we also include the constraint from BABAR, which holds only for larger m,, [20], and the bounds

from SN1987A, which cover g, ~
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* The 90% C L. constramt
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FIG. 2. Left panel: 90% C.L. sensitivity reach of SK to the muonphilic ALPs for independent g,,, and c¢r,, (solid curves) and ¢z, as a
function of g, according to Eq. (4) (dashed lines) in the (¢ ) plane, for three benchmark values of m,,: 1, 10, and 25 MeV. Right
panel: constraints on (m,, g,,,) assuming cz, is proportional to 1/ gﬁw. Note that g,,, always induces the ALP production from the
charged pion decays. For comparison, we also include the constraint from BABAR, which holds only for larger m,, [20], and the bounds
from SN1987A, which cover g,,, ~ [107'%,2 x 10~3] for m, < 10 MeV [50].
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* The 90% C L. constramt

T b T
o mu=1 MeV
101 & mg = 10 MeV . 4 100k
F—— my = 25MeV
107F 10"
3 ].O_J E ES ].[)_l 3
& ] S
> (=5
1072¢ 1072
107° ] 107F SK(this work) 3
. BN BABAR ]
Solid: SK constraint for ill(le[)érulent- Gapye B0 e s
10-* 3 | Dashed: cr, as functions (ij Gappt \"\ | E 1074E : | . : SngSTA E
1073 10! 10! 103 10° 107 107! 10" 10! 10? 10° 101 10°
1, (k) mg (MeV)

FIG. 2. Left panel: 90% C.L. sensitivity reach of SK to the muonphilic ALPs for independent g, and ¢z, (solid curves) and ¢z, as a
function of g, according to Eq. (4) (dashed lines) in the (¢7,,, g,,,) plane, for three benchmark values of m,,: 1, 10, and 25 M'V'E@T
panel: consfraints on (i1,, g,,,) assuming ¢z, 1s proportional to 1/ gﬁw. Note that g,,, always induces the ALP production from the
charged pion decays. For comparison, we also include the constraint from BABAR, which holds only for larger m,, [20], and the bounds
from SN1987A, which cover g,,, ~ [107'%,2 x 10~3] for m, < 10 MeV [50].

Sagz= (o3l joint worsnoo 4.4 PANAISENE)

—r




* The 90% C L. constramt 0 < mq < Mg —my ~ 33 MeV
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* The 90% C L. constramt
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function of g, according to Eq. (4) (dashed lines) in the (¢7,, g,,,,) plane, for three benchmark values of m,,: 1, 10, and 25 MeV. Right
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From the air-shower, require the =* decay before reach to
the Earth surface, energy of »+ should below 115 GeV.
Therefore, we focus on SK, which has good resolution in
sub-GeV and multi-GeV ranges.

ALP couples to photons, can also be produced from air-
shower of 7" .

But the lifetime of 7" is too short, so that the ALP
production branching ratio is too small.

IceCube focuses on ultrahigh energy, therefore, sensitive to
shorter decay length cz, ~5x 105 km for m,~10 mev. We expect

the constraint on 9« will be weaker.
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We focus on muonphilic axionlike particle, which can
radiatively couples to photons.

ALPs are produced from 7z~ — p~va in the air-shower,
when cosmic-rays hit the atmosphere.

If consider o< m, < my —m, ~33Mev, ALP decays ¢ = yr
instead of «— ", ALP becomes long-lived. It can reach
Earth surface and decay inside SK detector.

SK can probe gau: ~5x107" and ma. ~ 20 MeV, complementary
to the limits from BABAR and SN1987A.

4 J
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Thank you for your attention!
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* At SK, the event distribution can be calculated by

d>d,

Y — eAtA (T, cos0
eAtAq(T . cos )dTadcosé’

dT,dcosf

where we considered the detection efficiency and the
detector geometry.

* The geometry of SK detector is a cylinder:
20'm
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» The effective detection area:

Aesi(T,,co80) = | cosO|A(T,, cos @) + | sinB|A,(T,,cos 0), (B1)
where
R -
(T, cos8) = /ma’rrf dpd 1 —exp |- Ndﬁ'l(lrt:cc}bg’('b) , (B2)
CTﬂa (Tﬂ)
H /2 Algei2(h, cos 6,
Ay(T,, cos 0) = Rgx f e f d¢.{1 _exp [— e S ‘m”, (B3)
0 ~n/2 e (L)

with ¢z being the ALP decay length in the lab frame. The ALP trajectories inside the detector are

H R 1 —(r*/R: 2
Al 1(r,cosb, ¢p) = Sl SK\/ /Ry )sin"ep + rcos ¢ and (B4)
' | cos 0]’ | sin 0|
; HSK_ h ZRSKCOSf;ﬁ
Al ,c0s 0, ) = . : B5
dcl,Z(r COs frb) min [ ‘ cos § ‘ sin 9‘ ( )
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