Isospin-symmetry breaking correction to nuclear β -decay matrix elements for weak interaction studies

Latsamy Xayavong

Department of Science Education, Ewha Womans University, Seoul 120-750, Korea

Saga-Yonsei Joint Workshop XIX, January 2023

1 Motivation

- 2 Shell-model formalism
- 3 Shell-model inputs
- 4 Superallowed $0^+ \rightarrow 0^+$ Fermi β decay
- 5 Gamow-Teller β decay

- Nadezda Smirnova (LP2I, Bordeaux),
- Michael Bender (LP2I, Lyon),
- Karim Bennaceur (LP2I, Lyon),
- Frédérick Nowacki (IPHC, Strasbourg),
- Alex Brown (MSU, Michigan),
- Yi Hua Lam (IMP, Lanzhou).

1 Motivation

- 2 Shell-model formalism
- 3 Shell-model inputs
- 4 Superallowed $0^+
 ightarrow 0^+$ Fermi eta decay
- 5 Gamow-Teller β decay

Nucleus as a laboratory to study weak interaction

- Sperallowed $0^+
 ightarrow 0^+$ Fermi eta decay of T=1 nuclei (CVC, CKM unitarity)
- Fermi β decay of mirror nuclei (alternative to the first process)
- Gamow-Teller β decay of mirror nuclei (search for G-parity violating terms induced by nuclear structure)
- First forbidden β decay (search for structure beyond the V A interaction).

All this requires accurate description of the nuclear states, including isospin-symmetry breaking

Nucleus as a laboratory to study weak interaction

• Superallowed $0^+ \rightarrow 0^+$ Fermi β decay

$$Ft=ft(1+\delta_R')(1-\delta_C+\delta_{NS})=rac{K}{2G_F^2V_{ud}^2(1+\Delta_R^V)}$$

 δ_C has became a limiting factor in the extraction of V_{ud} :

E-mail: xayavong.latsamy@gmail.com

6/38

Nucleus as a laboratory to study weak interaction

• Gamow-Teller β decay of mirror nuclei

$$\delta = rac{(ft)_+}{(ft)_-} - 1 = \delta_{nucl} + \delta_{ssc}, \quad \delta_{nucl} = rac{(M^2)_-}{(M^2)_+} - 1$$

 $\delta_{ssc} = 0$ if \mathcal{G} parity is conserved by weak interaction.

Smirnova, Volpe, NPA714, 441 (2003)

E-mail: xayavong.latsamy@gmail.com

- Derive exact shell-model formalism for δ_C (only LO terms were included in the previous calculations)
- Full model-space diagonalization (MCIA, University of Bordeaux, France)
- Existing well-established effective Hamiltonians (CKP, USD, GXPF1A, etc.)
- Selection of realistic basis functions (Woods-Saxon, Hartree-Fock)

1 Motivation

- 2 Shell-model formalism
- 3 Shell-model inputs
- 4 Superallowed $0^+
 ightarrow 0^+$ Fermi eta decay
- 5 Gamow-Teller β decay

• Matrix element for a transition between $|i\rangle$ and $|f\rangle$,

$$M = \sum_{k_a k_b} ig\langle k_a au_a || \hat{O} || k_b au_b ig
angle ext{OBTD}(k_a au_a k_b au_b if \lambda)$$

with

$$ext{OBTD}(k_a au_ak_b au_bif\lambda) = rac{\langle f||[a^{\dagger}_{k_b au_b}\otimes ilde{a}_{k_b au_b}]^{(\lambda)}||i
angle}{\sqrt{2\lambda+1}},$$

where λ is tensor rank of \hat{O} , and

$$\hat{O} = \left\{egin{array}{cc} au_{\pm}, & ext{for F} \ ec{\sigma} au_{\pm}, & ext{for GT} \end{array}
ight.$$

the operator au_{\pm} only connects 2 isobaric analogue states, whereas $ec{\sigma} au_{\pm}$ involves a larger class of states

The single-particle matrix element

$$\langle k_a au_a || \hat{O} || k_b au_b
angle = heta (l_a l_b j_a j_b) \Omega_{k_a k_b}^{ au_a au_b} \xi_{ au_a au_b}$$

with isospin component $\xi_{ au_a au_b} = \langle au_a | au_\pm | au_b
angle$, angular component

and radial component

$$\Omega_{k_ak_b}^{ au_a au_b} = \int_0^\infty R_{k_a}^{ au_a}(r) R_{k_b}^{ au_a}(r) r^2 dr$$

this integral is slightly deviated from unity because of Coulomb repulsion between protons

Latsamy Xayavong

E-mail: xayavong.latsamy@gmail.com

January 2023

• To derive δ_C , we define

 $egin{array}{lll} D(k_a au_ak_b au_bif\lambda) &= ext{OBTD}_0(k_a au_ak_b au_bif\lambda) - ext{OBTD}(k_a au_ak_b au_bif\lambda) \ & \Lambda^{ au_a au_b}_{k_ak_b} &= 1 - \Omega^{ au_a au_b}_{k_ak_b}. \end{array}$

then, rearrange M as

$$egin{aligned} M &= & M_0 \Big[1 - rac{1}{M_0} \sum\limits_{k_a k_b} heta(l_a l_b j_a j_b) \Lambda^{ au_a au_b}_{k_a k_b} \xi_{ au_a au_b} ext{OBTD}_0(k_a au_a k_b au_b if \lambda) \ &- & rac{1}{M_0} \sum\limits_{k_a k_b} heta(l_a l_b j_a j_b) \xi_{ au_a au_b} D(k_a au_a k_b au_b if \lambda) \ &+ & rac{1}{M_0} \sum\limits_{k_a k_b} heta(l_a l_b j_a j_b) \Lambda^{ au_a au_b}_{k_a k_b} \xi_{ au_a au_b} D(k_a au_a k_b au_b if \lambda) \Big]. \end{aligned}$$

where M_0 is the isospin-symmetry matrix element.

• According to $M^2 = M_0^2(1-\delta_C)$, we obtain $\delta_C = \sum_{i=1}^6 \delta_{Ci}$ where

$$egin{aligned} \delta_{C1} &= rac{2}{M_0} \sum_{k_a k_b} heta(l_a l_b j_a j_b) \xi_{ au_a au_b} D(k_a au_a k_b au_b if \lambda), \ \delta_{C2} &= rac{2}{M_0} \sum_{k_a k_b} heta(l_a l_b j_a j_b) \Lambda_{k_a k_b}^{ au_a au_b} \xi_{ au_a au_b} \operatorname{OBTD}_0(k_a au_a k_b au_b if \lambda), \ \delta_{C3} &= -rac{2}{M_0} \sum_{k_a k_b} heta(l_a l_b j_a j_b) \Lambda_{k_a k_b}^{ au_a au_b} \xi_{ au_a au_b} D(k_a au_a k_b au_b if \lambda), \ \delta_{C4} &= -rac{1}{4} \left(\delta_{C1} + \delta_{C2} \right)^2, \ \delta_{C5} &= -\delta_{C3} \sqrt{|\delta_{C4}|}, \ \delta_{C6} &= -rac{1}{4} (\delta_{C3})^2. \end{aligned}$$

 $\delta_{C1}, \delta_{C2} \equiv LO, \, \delta_{C3}, \delta_{C4} \equiv NLO, \, \delta_{C5} \equiv N^2 LO, \, \delta_{C6} \equiv N^3 LO.$

- Therefore, the isospin-symmetry breaking occurs in 2 ways: $D(k_a \tau_a k_b \tau_b i f \lambda) \neq 0$ and $\Lambda_{k_a k_b}^{\tau_a \tau_b} \neq 0$.
- *LO* approximation

Both $D(k_a \tau_a k_b \tau_b i f \lambda)$ and $\Lambda_{k_a k_b}^{\tau_a \tau_b}$ are expected to be small, then

 $\delta_Cpprox \delta_{C1}+\delta_{C2}$

where δ_{C1} accounts for $D(k_a \tau_a k_b \tau_b i f \lambda) \neq 0$, whereas δ_{C2} accounts for $\Lambda_{k_a k_b}^{\tau_a \tau_b} \neq 0$.

Although this separation ansatz is convenient to handle, the higher order contribution has never been checked.

Towner, Hardy, PRC77, 025501 (2008)

• Higher order contribution

NLO are negligible for F. Contrary it can be as large as 7 % for GT.

Xayavong, Smirnova, submitted to PRC.

so that radial wave functions can be evaluted with excitation energies of $|\pi
angle$

Latsamy Xayavong

• Subsequently δ_{C2}, δ_{C3} are evaluated as

$$\delta_{C2} = ~~ rac{2}{M_0} \sum_{k_a k_b \pi} heta(l_a l_b j_a j_b) \Lambda_{k_a k_b}^{ au_a au_b \pi} \xi_{ au_a au_b} \Theta(j_a j_b J_i J_f J_\pi \lambda) \ imes A_0(f; \pi k_a au_a) A_0(i; \pi k_b au_b),$$

$$egin{aligned} \delta_{C3} &= & -\delta_{C2} + rac{2}{M_0}\sum_{k_ak_b\pi} heta(l_al_bj_aj_b)\Lambda_{k_ak_b}^{ au_a au_b\pi}\xi_{ au_a au_b} \ & imes\Theta(j_aj_bJ_iJ_fJ_\pi\lambda)A(f;\pi k_a au_a)A(i;\pi k_b au_b). \end{aligned}$$

where

$$A(i;\pi k_b au_b)=rac{\langle i||a^{\dagger}_{k_b au_b}||\pi
angle}{\hat{J}_i},~~~A(f;\pi k_a au_a)=rac{\langle f||a^{\dagger}_{k_a au_a}||\pi
angle}{\hat{J}_f}$$

• Cut-off for the \sum

Usually, a thousand lowest states (for a given J^{π}) must be must be included. δ_{C3} converges much faster.

Latsamy Xayavong

E-mail: xayavong.latsamy@gmail.com

• Influence of intermediate states

Usually δ_{C2} becomes larger and agrees better with the Standard Model, when intermediate states are included.

Towner, Hardy, PRC77, 025501 (2008)

Latsamy Xayavong

E-mail: xayavong.latsamy@gmail.com

• Isospin structure of δ_{C2} for $T_i = T_f$ (F transitions)

$$egin{aligned} \delta_{C2} &= rac{\sqrt{(T_i+2t_{az}T_{iz}+1)(T_i-2t_{az}T_{iz})}}{T_iM_0} \sum\limits_{k_ak_b} heta(l_al_bj_aj_b) \xi_{ au_a au_b} \ & imes \left[\sum\limits_{\pi'} \Theta(j_aj_bJ_iJ_fJ_{\pi'}) \Lambda_{k_ak_b}^{ au_a au_b\pi'} \sqrt{S_0(f\pi'k_a)S_0(i\pi'k_b)}
ight. \ &- rac{T_i}{(T_i+1)} \sum\limits_{\pi''} \Theta(j_aj_bJ_iJ_fJ_{\pi''}) \Lambda_{k_ak_b}^{ au_a au_b\pi''} \sqrt{S_0(f\pi''k_a)S_0(i\pi''k_b)}
ight], \end{aligned}$$

where π' and π'' denote intermediate states with $T_{\pi} = T_i - \frac{1}{2}$ and $T_{\pi} = T_i + \frac{1}{2}$, respectively.

Smaller δ_{C2} is expected for Fermi transitions.

• Isospin structure of δ_{C2} for $T_i \neq T_f$ (GT transitions)

$$egin{aligned} \delta_{C2} &= -rac{\sqrt{(T-2t_{az}T_{iz})(T+2t_{bz}T_{iz}+1)}}{(T+1)M_0} \ & imes \sum_{k_ak_b ilde{\pi}} heta(l_al_b j_a j_b) \Theta(j_a j_b J_i J_f J_{ ilde{\pi}}) \Lambda_{k_ak_b}^{ au_a au_b ilde{\pi}} \xi_{ au_a au_b} \sqrt{S_0(f ilde{\pi} k_a)S_0(i ilde{\pi} k_b)}. \end{aligned}$$

 $ilde{\pi}$ denotes intermediate states with $T_{\pi} = T + rac{1}{2}$ where $T = \min{(T_i, T_f)}.$

No cancellation occurs! Hence larger δ_{C2} is expected for GT.

• Comparision of δ_{C2} for Fermi and Gamow-Teller transitions

In general, δ_{C2} for GT is much larger, and varies strongly from transition to transition.

1 Motivation

2 Shell-model formalism

3 Shell-model inputs

- 4) Superallowed $0^+
 ightarrow 0^+$ Fermi eta decay
- 5 Gamow-Teller β decay

• Model spaces and effective Hamiltonians,

Generally, the nuclear many-body problem cannot be solved in the full Hilbert space due to computational limit.

Hamiltonian	model space	mass range
CKPcd/CKIcd/CKIIcd	p shell	$A \leq 14,$
$\operatorname{REWILcd}/\operatorname{ZBMcd}$	$1p_{rac{1}{2}}1d_{rac{5}{2}}2s_{rac{1}{2}}$	$15\leq A\leq 22$,
USDcd/USDAcd/USDBcd	sd shell	$23\leq A\leq 34$,
ZBM2+Coulomb	$2s_{rac{1}{2}}1d_{rac{3}{2}}1f_{rac{7}{2}}2p_{rac{3}{2}}$	$35\leq A\leq$ 46,
GXPF1Acd/FPD6cd/KB3Gcd	pf [°] shell [°]	$47\leq A\leq$ 66,
JUN45+Coulomb	$2p_{rac{3}{2}}2p_{rac{1}{2}}1f_{rac{5}{2}}1g_{rac{9}{2}}$	$A\geq$ 69.

We employ well-established empirical effective Hamiltonians

Shell-model inputs

• Woods-Saxon potential,

$$V(r)=-V_0f(r,a_0,r_0)-V_0\lambdarac{\hbar^2}{4\mu^2c^2}rac{1}{r}rac{d}{dr}f(r,a_s,r_s)ig\langle l.m{\sigma}
angle+V_{coul}(r)$$

with

$$V_{coul}(r)=(Z-1)e^2 \left\{ egin{array}{c} rac{1}{r}, & r>R_c \ rac{1}{R_c}\left(rac{3}{2}-rac{r^2}{2R_c^2}
ight), & ext{otherwise}, \end{array}
ight.$$

 R_c is extracted from charge radii R_{ch} via,

$$R_c^2 = rac{5}{3}R_{ch}^2 + corr. \; terms$$

 V_0 and r_0 are readjusted to fix separation energies and ch. radii, respectively.

Latsamy Xayavong

January 2023

• Hartree-Fock potential using Skyrme interaction,

$$egin{aligned} v_{Sk} &= t_0(1+x_0P_\sigma)\delta + rac{1}{2}t_1(1+x_1P_\sigma)(\mathbf{k}'^2\delta+\delta\mathbf{k}^2) + t_2(1+x_2P_\sigma)\mathbf{k}'.\delta\mathbf{k} \ &+ rac{1}{6}t_3(1+x_3P_\sigma)
ho^lpha(\mathbf{R})\delta + iW_0(\sigma_i+\sigma_j).\mathbf{k}' imes\delta\mathbf{k} + v_{cou} \end{aligned}$$

We employed the transformation $R^L_{lpha}(r) = [m/m^*]^{rac{1}{2}}R_{lpha}(r)$ to get a local equivalent potential,

$$V^L(r,\epsilon_lpha) = V^0(r,\epsilon_lpha) + V^{so}(r) \left< \mathrm{l.}\sigma \right> + V_{coul}(r)$$

then, scaling $V^0(r, \epsilon_{\alpha})$ to reproduce separation energies.

1 Motivation

- 2 Shell-model formalism
- 3 Shell-model inputs
- 4 Superallowed $0^+ \rightarrow 0^+$ Fermi β decay
- 5 Gamow-Teller β decay

• Our preliminary result for δ_{C1}

HT readjusted interaction to reproduce IMME coefficients. Their result agrees very well with the Standard Model. Our values are too large for ¹⁰C and too small for ³⁰S, ³⁴Cl, ⁶²Ga. The interactions obtained from a global fit are not accurate enough.

• The results for δ_{C2}

For SM-WS, our result agrees well with the latest result of Hardy-Towner, except for some cases in pf shell for which a full model space calculation is still challenging.

Latsamy Xayavong

E-mail: xayavong.latsamy@gmail.com

• The results for δ_{C2}

Unresolvable problem with HF: 1) sensitivity to beyond mean field contribution coming with readjustment, 2) spurious isospin mixing cannot be exactly suppressed.

• Constancy of corrected Ft

To make a test on an equal footing, data on (δ'_R, δ_{NS}) as well as theoretical uncertainties for δ_C are taken from Hardy, Towner, PRC102, 045501 (2020).

• Constancy of corrected Ft

Calculation	\overline{Ft}	χ^2/ u ($ u=$ 14)
SM-WS (Hardy-Towner 2020)	3073.15(75)	0.493
SM-WS (this work)	3075.31(71)	1.869
SM-HF (this work)	3078.33(71)	4.040

The latest result of Hardy-Towner agrees excellently with the CVC hypothesis. The large χ^2/ν value for SM-HF reflects the remaining problems in the SM-HF protocol.

1 Motivation

- 2 Shell-model formalism
- 3 Shell-model inputs
- 4 Superallowed $0^+
 ightarrow 0^+$ Fermi eta decay
- **5** Gamow-Teller β decay

• p shell nuclei

Transition	J_i^π, T_i	J_f^{π}, T_f	δ_{C1}	δ_{C2}	δ_{C3}	δ_{C4}
$^{-8}\mathrm{Li}(eta^-)^{8}\mathrm{Be}$	$2^+, 1$	$2^+_1, 0$	-10.775	6.925	0.673	-0.037
$^8{ m B}(eta^+)^8{ m Be}$	$2^+, 1$	2^+_1 , 0	-7.597	11.336	2.751	-0.035
$^{9}\mathrm{Li}(eta^{-})^{9}\mathrm{Be}$	$\frac{3}{2}^{-}, \frac{3}{2}$	$rac{3}{2} rac{-}{1}, rac{3}{2}$	-4.785	1.559	0.227	-0.026
$^9\mathrm{C}(eta^+)^9\mathrm{B}$	$rac{3}{2}^{-},rac{3}{2}$	$\frac{3}{2}^{-}, \frac{3}{2}$	-6.082	2.862	0.233	-0.026
$^{12}\mathrm{B}(eta^-)^{12}\mathrm{C}$	$ar{1}^+,ar{1}$	$\bar{0}_1^{ op}, \bar{0}$	-5.602	8.597	0.279	-0.022
$^{12}\mathrm{N}(eta^+)^{12}\mathrm{C}$	$1^+, 1$	$0^+_1,0$	-4.926	16.356	0.288	-0.327
$^{13}{ m B}(m{eta}^{-})^{13}{ m C}$	$\frac{3}{2}^{-}, \frac{3}{2}$	$rac{1}{2} rac{-}{1}, rac{1}{2}$	-3.589	2.464	0.096	-0.003
$^{13}{ m O}(eta^+)^{13}{ m N}$	$rac{3}{2}^{-},rac{3}{2}$	$\frac{1}{2}^{-}_{1}, \frac{1}{2}$	-1.489	5.777	0.104	-0.046

• p - sd cross shell nuclei

Transition	J_i^π, T_i	J_f^π, T_f	δ_{C1}	δ_{C2}	δ_{C3}	δ_{C4}
$^{17}{ m N}(m{eta}^-)^{17}{ m O}$	$rac{1}{2}^-,rac{3}{2}$	$rac{3}{2}^-,rac{1}{2}$	13.729	1.481	-0.166	-0.578
$^{17}\mathrm{Ne}(eta^+)^{17}\mathrm{F}$	$\frac{1}{2}^{-}, \frac{3}{2}$	$\frac{3}{21}^{-}, \frac{1}{2}$	49.537	5.039	-0.718	-7.446
$^{20}\mathrm{F}(eta^-)^{20}\mathrm{Ne}$	$\bar{2}^+, \bar{1}$	$\bar{2}_{1}^{+}, \bar{0}$	6.156	1.106	-0.004	-0.132
$^{20}\mathrm{Na}(eta^+)^{20}\mathrm{Ne}$	$2^+, 1$	$2^+_1,0$	12.516	2.787	-0.074	-0.585
$^{20}\mathrm{O}(eta^-)^{20}\mathrm{F}$	$0^+, 2$	$1^+_1, 1$	9.079	0.368	-0.013	-0.223
$^{20}\mathrm{Mg}(eta^+)^{20}\mathrm{Na}$	$0^{+}, 2$	$1^{+}_1, 1$	11.32	1.626	-0.076	-0.419
$^{21}\mathrm{F}(eta^-)^{21}\mathrm{Ne}$	$\frac{5}{2}^+, \frac{3}{2}$	$\frac{3}{2}\frac{+}{1}, \frac{1}{2}$	5.967	1.072	-0.052	-0.124
$^{21}\mathrm{Mg}(eta^+)^{21}\mathrm{Na}$	$\frac{5}{2}^+, \frac{3}{2}$	$\frac{3}{2}^{+}, \frac{1}{2}$	8.775	2.898	-0.267	-0.341
$^{24}\mathrm{Ne}(eta^-)^{24}\mathrm{Na}$	$ar{0}^+,ar{2}$	$\overline{1}_1^+, \overline{1}$	-3.316	0.252	-0.016	-0.023
$^{24}\mathrm{Si}(eta^+)^{24}\mathrm{Al}$	$0^{+}, 2$	$1_{1}^{+}, 1$	4.742	1.529	-0.056	-0.098

• sd shell nuclei

Transition	J_i^π , T_i	J_f^π, T_f	δ_{C1}	δ_{C2}	δ_{C3}	δ_{C4}
2^{5} Na $(eta^{-})^{25}$ Mg	$\frac{5}{2}^+, \frac{3}{2}$	$\frac{5}{21}^+, \frac{1}{2}$	1.328	0.545	-0.014	-0.009
$^{25}\mathrm{Si}(eta^+)^{25}\mathrm{Al}$	$\frac{5}{2}^+, \frac{3}{2}$	$\frac{5}{2}^{+}, \frac{1}{2}$	0.741	0.301	0.001	-0.003
$^{28}\mathrm{Al}(eta^-)^{28}\mathrm{Si}$	$\bar{3}^+, \bar{1}$	$\bar{2}_1^{ op}, \bar{0}$	0.547	2.558	-0.004	-0.024
$^{28} ext{P}(eta^+)^{28} ext{Si}$	$3^{+}, 1$	$2^+_1,0$	0.621	10.285	-0.013	-0.297
$^{31}\mathrm{Al}(m{eta}^-)^{31}\mathrm{Si}$	$\frac{5}{2}^+, \frac{5}{2}$	$\frac{3}{2}\frac{1}{1}^{+}, \frac{3}{2}$	-1.77	1.261	0.023	-0.001
$^{31}\mathrm{Ar}(eta^+)^{31}\mathrm{Cl}$	$\frac{5}{2}^+, \frac{5}{2}$	$\frac{3}{2}^{+}, \frac{3}{2}$	7.186	4.527	-0.111	-0.343
$^{35}\mathrm{S}(eta^-)^{35}\mathrm{Cl}$	$\frac{3}{2}^+, \frac{3}{2}$	$\frac{3}{2}^{+}, \frac{1}{2}$	0.052	0.187	-0.018	0
$^{35}\mathrm{K}(eta^+)^{35}\mathrm{Ar}$	$\frac{3}{2}^+, \frac{3}{2}$	$\frac{3}{2}^{+}_{1}, \frac{1}{2}$	2.045	3.607	-0.431	-0.08
$^{35} extsf{P}(eta^-)^{35} extsf{S}$	$\frac{1}{2}^+, \frac{5}{2}$	$\frac{1}{2}^{+}_{1}, \frac{3}{2}$	-3.322	0.531	0.017	-0.019
$^{35}\mathrm{Ca}(eta^+)^{35}\mathrm{K}$	$\frac{1}{2}^+, \frac{5}{2}$	$\frac{1}{2}^{+}_{1}, \frac{3}{2}$	2.755	5.875	-0.081	-0.186

Gamow-Teller β decay

• Asymmetry of mirror Gamow-Teller β decays

Smirnova-Volpe 2003 and - this work

We got a better result for A = 20.

- W have derived a suitable exact shell-model formalism for δ_C
- Our shell-model diagonalizations were performed in full model spaces
- δ_{C1} is strongly interaction-dependent (generally, a global fitted interactions do not work)
- Calculation using Woods-Saxon basis (SM-WS) agrees well with the Standard Model
- Hartree-Fock suffers from a number of deficiencies (correlations, spontaneous symmetry breaking)
- Understanding of the isospin-symmetry breaking mechanism in Fermi and Gamow-Teller transitions