From Nuclei to Nuclear Equation of State

Yeunhwan Lim¹

¹Ewha Womans University

Jan 20, 2023

Saga-Yonsei XIX Joint workshop

Figure 2 from W. Nazarewicz, Journal of Physics G 2016

• Nuclear star as a giant nucleus!

$$R \sim 10 \, \mathrm{km} = 10^4 \, \mathrm{m}$$

< □ > < □ > < □ > < □ > < □ >

Figure 3 from NASA.

 $R \simeq 1.12 A^{1/3} {
m fm} \rightarrow$ Heavy nuclei \sim 200 nucleons, Neutron stars $\sim 10^{57}$ nucleons.

Yeunhwan Lim (EWHA)

・ロト ・回ト ・ヨト ・ヨト

Total binding energy

• Nuclear Mass

$$m_{\rm nuc}(Z,N) = Zm_p + Nm_n - B(Z,N)$$

Total binding energy

• Nuclear Mass

$$m_{\rm nuc}(Z,N)=Zm_p+Nm_n-B(Z,N)$$

• Atomic Mass

$$m_{\rm a}(Z,N) = Z(m_p + m_e) + Nm_n - B(Z,N) - b_{
m electronic}$$

Total binding energy

Nuclear Mass

$$m_{\rm nuc}(Z,N) = Zm_p + Nm_n - B(Z,N)$$

• Atomic Mass

$$m_{\rm a}(Z,N) = Z(m_p + m_e) + Nm_n - B(Z,N) - b_{
m electronic}$$

AME

There are more than 2300 nuclei which are mass measured!

Binding energy per baryon

Figure: Binding energy per baryon as a function of mass number A.

Image: A mathematical states and a mathem

• Semi-emprical mass formula

B(N,Z)

$$B(N,Z) = aA$$

$$B(N,Z) = aA - bA^{\frac{2}{3}}$$

$$B(N,Z) = aA - bA^{\frac{2}{3}} - s\frac{(N-Z)^{2}}{A}$$

$$B(N,Z) = aA - bA^{\frac{2}{3}} - s\frac{(N-Z)^{2}}{A} - d\frac{Z^{2}}{A^{\frac{1}{3}}}$$

$$B(N,Z) = aA - bA^{\frac{2}{3}} - s\frac{(N-Z)^{2}}{A} - d\frac{Z^{2}}{A^{\frac{1}{3}}} - \frac{\delta}{\sqrt{A}}$$
(1)

 $a = 15.835 \,\mathrm{MeV}$ $b = 18.33 \,\mathrm{MeV}$ $s = 23.20 \,\mathrm{MeV}$ $d = 0.714 \,\mathrm{MeV}$

$$\delta = \begin{cases} +11.2 \,\mathrm{MeV} & \text{for odd-odd nuclei (i.e., odd } N, \text{ odd } Z) \\ 0 \,\mathrm{MeV} & \text{for even-odd nuclei (i.e., evn } N, \text{ odd } Z) \\ -11.2 \,\mathrm{MeV} & \text{for even-even nuclei (i.e., even } N, \text{ even } Z) \end{cases}$$
(2)

$$B(N,Z) = aA - bA^{\frac{2}{3}} - s\frac{(N-Z)^{2}}{A} - d\frac{Z^{2}}{A^{\frac{1}{3}}} - \frac{\delta}{\sqrt{A}}$$
(1)

 $a = 15.835 \,\mathrm{MeV}$ $b = 18.33 \,\mathrm{MeV}$ $s = 23.20 \,\mathrm{MeV}$ $d = 0.714 \,\mathrm{MeV}$

$$\delta = \begin{cases} +11.2 \,\mathrm{MeV} & \text{for odd-odd nuclei (i.e., odd } N, \text{ odd } Z) \\ 0 \,\mathrm{MeV} & \text{for even-odd nuclei (i.e., evn } N, \text{ odd } Z) \\ -11.2 \,\mathrm{MeV} & \text{for even-even nuclei (i.e., even } N, \text{ even } Z) \end{cases}$$
(2)

It is assumed that the density($n_0 = 0.16 \,\mathrm{fm}^{-3}$) is uniform for the center to the surface of nucleus. $R \simeq r_0 A^{1/3}$.

Figure: one neutron separation energy : $S_n = B(N, Z) - B(N - 1, Z)$, pairing

Jan 20, 2023

• • • • • • • • • • • •

Figure: Binding energy per baryon from each contribution

イロト イヨト イヨト イヨ

Question : Is actually the proton density or neutron density constant through out a nucleus?

Question : Is actually the proton density or neutron density constant through out a nucleus?

FIG. 1. Mass distributions $\rho(r)$ calculated with interaction I for the nuclei ¹⁶O, ⁴⁰Ca, ²⁰⁸Pb, and ²⁹⁸114.

Figure: Nuclear density profile, Vauterin, Brink, 10.1103/PhysRevC.5.626

< □ > < 同 > < 回 > < Ξ > < Ξ

Yeunhwan Lim (EWHA)

Finite Nuclei : compressible model

The total binding energy of the finite nuclei at T = 0 MeV, i) Bulk, ii) Surface, iii) Coulomb,

$$F(A,Z) = \left[-B + S_{v}\delta^{2}\right]A + 4\pi r^{2}(\sigma_{0} - \delta^{2}\sigma_{\delta}) + \frac{3}{5}\frac{Z^{2}e^{2}}{r}$$

$$F(A,Z) = \left[-B + S_{\nu}\delta^{2}\right]A + 4\pi r^{2}(\sigma_{0} - \delta^{2}\sigma_{\delta}) + \frac{3}{5}\frac{Z^{2}e^{2}}{r}$$
$$+ \lambda_{1}\left[\frac{4\pi}{3}r^{3}n - A\right] + \lambda_{2}\left[\frac{4\pi}{3}r^{3}nx - Z\right]$$

$$F(A, Z) = \left[-B + S_{\nu}\delta^{2}\right]A + 4\pi r^{2}(\sigma_{0} - \delta^{2}\sigma_{\delta}) + \frac{3}{5}\frac{Z^{2}e^{2}}{r} + \lambda_{1}\left[\frac{4\pi}{3}r^{3}n - A\right] + \lambda_{2}\left[\frac{4\pi}{3}r^{3}nx - Z\right]$$

where $\delta = 1 - 2x$ and $\sigma = \sigma_0 - (1 - 2x)^2 \sigma_\delta$ is surface tension .

< □ > < □ > < □ > < □ > < □ >

(3)

$$F(A,Z) = \left[-B + S_v \delta^2\right] A + 4\pi r^2 (\sigma_0 - \delta^2 \sigma_\delta) + \frac{3}{5} \frac{Z^2 e^2}{r} + \lambda_1 \left[\frac{4\pi}{3} r^3 n - A\right] + \lambda_2 \left[\frac{4\pi}{3} r^3 n x - Z\right]$$

where $\delta = 1 - 2x$ and $\sigma = \sigma_0 - (1 - 2x)^2 \sigma_\delta$ is surface tension .

$$\frac{\partial F}{\partial n} = \frac{\partial F}{\partial x} = \frac{\partial F}{\partial r} = \frac{\partial F}{\partial \lambda_1} = \frac{\partial F}{\partial \lambda_2} = 0$$
(4)

イロン イロン イヨン イヨン

(3)

$$F(A,Z) = \left[-B + S_{v}\delta^{2}\right]A + 4\pi r^{2}(\sigma_{0} - \delta^{2}\sigma_{\delta}) + \frac{3}{5}\frac{Z^{2}e^{2}}{r} + \lambda_{1}\left[\frac{4\pi}{3}r^{3}n - A\right] + \lambda_{2}\left[\frac{4\pi}{3}r^{3}nx - Z\right]$$

where $\delta = 1 - 2x$ and $\sigma = \sigma_0 - (1 - 2x)^2 \sigma_\delta$ is surface tension .

$$\frac{\partial F}{\partial n} = \frac{\partial F}{\partial x} = \frac{\partial F}{\partial r} = \frac{\partial F}{\partial \lambda_1} = \frac{\partial F}{\partial \lambda_2} = 0$$
(4)

gives

$$2 \cdot 4\pi r^2 \left[\sigma_0 - \sigma (1 - 2x)^2 \right] - \frac{3}{5} \frac{Z^2 e^2}{r} = 0,$$
 (5)

$$\frac{4\pi r^3}{3}n = A, \quad \left(x = \frac{Z}{A}\right). \tag{6}$$

イロン イロン イヨン イヨン

(3)

• Nuclear mass table from LDM ($S_v = 32 \,\mathrm{MeV}, L = 50 \,\mathrm{MeV}$)

Jan 20, 2023

 Neutron drip line study using LDM, Calcium (Z=20); without shell effect (left), with shell effect(right)

Jan 20, 2023

イロト イヨト イヨト イヨ

Yeunhwan Lim (EWHA)

Neutron Stars and Nuclear EOS

Jan 20, 2023

(日) (四) (日) (日) (日)

- Formed after core collapsing supernovae.
- Suggested by Walter Baade and Fritz Zwicky (1934) Only a year after the discovery of the neutron by James Chadwick
- Jocelyn Bell Burnell and Antony Hewish observed pulsar in 1965.
- $\bullet\,$ Neutron star is cold after 30s $\sim\,$ 60s of its birth
 - inner core, outer core, inner crust, outer crust, envelope
 - R : ~ 10km, M : 1.2 ~ 2.x M_{\odot} (2.14^{+0.1}_{-0.09} M_{\odot} PSR J0704+6620; 2.01 ± 0.04 M_{\odot} PSR J0348+0432 ; 1.97 ± 0.04 M_{\odot} PSR J614-2230)
 - 2×10^{11} earth g \rightarrow General relativity
 - B field : $10^8 \sim 10^{12} G.$
 - Central density : $3 \sim 10\rho_0 \rightarrow \text{Nuclear physics}!!$
- TOV equations for macroscopic structure

$$\frac{dp}{dr} = -\frac{G(M(r) + 4\pi r^3 p/c^2)(\epsilon + p)}{r(r - 2GM(r)/c^2)c^2},$$

$$\frac{dM}{dr} = 4\pi \frac{\epsilon}{c^2} r^2,$$
(7)

イロト イヨト イヨト イヨト

Jan 20, 2023

• Inner structure of neutron stars

- Neutron Stars:
 - Dense nuclear matter physics

Jan 20, 2023

• In the core of neutron star, uniform nuclear matter exists. Because of charge neutrality, electrons or muons exist depending on the condition. Now we want to find the ground state-which we are usually interested. Let's apply the Lagrange multiplier method and see the conclusion.

イロト イ団ト イヨト イヨト

- In the core of neutron star, uniform nuclear matter exists. Because of charge neutrality, electrons or muons exist depending on the condition. Now we want to find the ground state-which we are usually interested. Let's apply the Lagrange multiplier method and see the conclusion.
 - Write total free energy density from each contribution,

$$F_{tot} = F_N + F_e + F_\mu \tag{8}$$

イロト イヨト イヨト イヨト

- In the core of neutron star, uniform nuclear matter exists. Because of charge neutrality, electrons or muons exist depending on the condition. Now we want to find the ground state-which we are usually interested. Let's apply the Lagrange multiplier method and see the conclusion.
 - Write total free energy density from each contribution,

$$F_{tot} = F_N + F_e + F_\mu \tag{8}$$

イロト イヨト イヨト イヨト

Pind the contraints

$$n = n_n + n_p, \quad n_p = n_e + n_\mu \tag{9}$$

- In the core of neutron star, uniform nuclear matter exists. Because of charge neutrality, electrons or muons exist depending on the condition. Now we want to find the ground state-which we are usually interested. Let's apply the Lagrange multiplier method and see the conclusion.
 - Write total free energy density from each contribution,

$$F_{tot} = F_N + F_e + F_\mu \tag{8}$$

イロト イポト イヨト イヨト

Pind the contraints

$$n = n_n + n_p, \quad n_p = n_e + n_\mu \tag{9}$$

Write the function we need to take derivatives

$$G = F_N + F_e + F_\mu + \lambda_1 (n - n_n - n_p) + \lambda_2 (n_p - n_e - n_\mu)$$
(10)

- In the core of neutron star, uniform nuclear matter exists. Because of charge neutrality, electrons or muons exist depending on the condition. Now we want to find the ground state-which we are usually interested. Let's apply the Lagrange multiplier method and see the conclusion.
 - Write total free energy density from each contribution,

$$F_{tot} = F_N + F_e + F_\mu \tag{8}$$

イロト イヨト イヨト イヨト

Pind the contraints

$$n = n_n + n_p, \quad n_p = n_e + n_\mu \tag{9}$$

Write the function we need to take derivatives

$$G = F_N + F_e + F_\mu + \lambda_1 (n - n_n - n_p) + \lambda_2 (n_p - n_e - n_\mu)$$
(10)

• Take derivatives w.r.t. n_n , n_p , n_e , n_μ , λ_1 , and λ_2

$$\frac{\partial G}{\partial n_n} = 0, \frac{\partial G}{\partial n_p} = 0, \frac{\partial G}{\partial n_e} = 0, \frac{\partial G}{\partial n_\mu} = 0, \frac{\partial G}{\partial \lambda_1} = 0, \frac{\partial G}{\partial \lambda_2} = 0.$$
(11)

Yeunhwan Lim (EWHA)

▲□▶ ▲圖▶ ▲国▶ ▲国▶

• The compressible model can be used to study the properties of neutron star crust.

- The compressible model can be used to study the properties of neutron star crust.
- There are several diffference between finite nuclei and nuclei in neutron star crust.

- The compressible model can be used to study the properties of neutron star crust.
- There are several difference between finite nuclei and nuclei in neutron star crust.
- First of all, we have to think the presence of electrons.

イロト イ団ト イヨト イヨト

- The compressible model can be used to study the properties of neutron star crust.
- There are several diffference between finite nuclei and nuclei in neutron star crust.
- First of all, we have to think the presence of electrons.
- As density increases, neutrons drips out of neutron rich heavy nuclei : Unbound neutron exists

(日) (四) (日) (日) (日)

- The compressible model can be used to study the properties of neutron star crust.
- There are several diffference between finite nuclei and nuclei in neutron star crust.
- First of all, we have to think the presence of electrons.
- As density increases, neutrons drips out of neutron rich heavy nuclei : Unbound neutron exists
- Write energy contribution and apply Lagrange Multiplier Method with constraints !

• F_i : Energy density of a heavy nucleus

• F_i : Energy density of a heavy nucleus

イロト イヨト イヨト イヨ

• F_s : Surface energy density

• F_i : Energy density of a heavy nucleus

<ロト < 回 > < 回 > < 回 > < 回 >

- *F_s* : Surface energy density
- *F_c* : Coulomb energy density(*Z Z*, *Z e*, *e e*)

- F_i : Energy density of a heavy nucleus
- F_s : Surface energy density
- *F_c* : Coulomb energy density(*Z Z*, *Z e*, *e e*)
- F_o : Energy density of outside nucleons

イロト イヨト イヨト イ

- F_i : Energy density of a heavy nucleus
- F_s : Surface energy density
- *F_c* : Coulomb energy density(*Z Z*, *Z e*, *e e*)
- F_o : Energy density of outside nucleons

イロト イヨト イヨト イ

• F_e : Electron energy density

Yeunhwan Lim (EWHA)

$$F = un_i f_i + \frac{\sigma(x_i)ud}{r_N} + 2\pi (n_i x_i er_N)^2 u f_d(u)$$

$$F = un_i f_i + \frac{\sigma(x_i)ud}{r_N} + 2\pi (n_i x_i er_N)^2 uf_d(u) + (1-u)n_{no}f_o$$

$$F = un_i f_i + \frac{\sigma(x_i)ud}{r_N} + 2\pi (n_i x_i er_N)^2 uf_d(u) + (1-u)n_{no}f_o + f_e$$
(12)

$$F = un_i f_i + \frac{\sigma(x_i)ud}{r_N} + 2\pi (n_i x_i er_N)^2 uf_d(u) + (1-u)n_{no}f_o + f_e$$
(12)

$$n - un_i - (1 - u)n_{no} = 0,$$

$$nY_p - un_i x_i = 0,$$

$$nY_p - n_e = 0.$$
(13)

イロト 不同下 不同下 不同下

$$F = un_i f_i + \frac{\sigma(x_i)ud}{r_N} + 2\pi (n_i x_i er_N)^2 uf_d(u) + (1 - u)n_{no}f_o + f_e$$
(12)

$$n - un_i - (1 - u)n_{no} = 0,$$

$$nY_p - un_i x_i = 0,$$

$$nY_p - n_e = 0.$$
(13)

$$G = F + \lambda_1 (n - un_i - (1 - u)n_{no}) + \lambda_2 (nY_p - un_i x_i) + \lambda_3 (nY_p - n_e).$$
(14)

$$F = un_i f_i + \frac{\sigma(x_i)ud}{r_N} + 2\pi (n_i x_i er_N)^2 uf_d(u) + (1 - u)n_{no}f_o + f_e$$
(12)

$$n - un_i - (1 - u)n_{no} = 0,$$

$$nY_p - un_i x_i = 0,$$

$$nY_p - n_e = 0.$$
(13)

メロト メタト メヨト メヨト

$$G = F + \lambda_1 (n - un_i - (1 - u)n_{no}) + \lambda_2 (nY_p - un_i x_i) + \lambda_3 (nY_p - n_e).$$
(14)

• Unknows are u, n_i , n_{no} , x_i , r_N , n_e , λ_1 , λ_2 , and λ_3 .

$$F = un_i f_i + \frac{\sigma(x_i)ud}{r_N} + 2\pi (n_i x_i er_N)^2 uf_d(u) + (1 - u)n_{no}f_o + f_e$$
(12)

$$n - un_i - (1 - u)n_{no} = 0,$$

$$nY_p - un_i x_i = 0,$$

$$nY_p - n_e = 0.$$
(13)

メロト メタト メヨト メヨト

$$G = F + \lambda_1 (n - un_i - (1 - u)n_{no}) + \lambda_2 (nY_p - un_i x_i) + \lambda_3 (nY_p - n_e).$$
(14)

• Unknows are u, n_i , n_{no} , x_i , r_N , n_e , λ_1 , λ_2 , and λ_3 .

$$\frac{\partial G}{\partial u} = \frac{\partial G}{\partial n_o} = \frac{\partial G}{\partial n_{no}} = \frac{\partial G}{\partial n_i} = \frac{\partial G}{\partial x_i} = \frac{\partial G}{\partial n_e} = \frac{\partial G}{\partial \lambda_1} = \frac{\partial G}{\partial \lambda_2} = \frac{\partial G}{\partial \lambda_3} = 0.$$
(15)

Jan 20, 2023

For hot dense matter equation of state,

- Realistic nuclear force model Bulk energy $(-B + S_v \delta^2)$ should be replaced. Energy density functional (n, x, T)
- Wigner Seitz Cell method + Liquid drop approach

- Heavy nuclei at the center, n,p, α, e , exist outside + d, t, h.

$$\langle A \rangle \simeq \sum_{A,Z} A n_{A,Z}, \quad \langle Z \rangle \simeq \sum_{A,Z} Z n_{A,Z}.$$
 (16)

Image: A image: A

- Simple artist view of supernovae Link
- Computational simulation <a>Link

- Nuclear EOS is thermodynamic relations for given ρ , Y_e , T with wide range of varibles (Fig: Oertel et al., Rev. Mod. Phys. 89, 015007). ($\rho : 10^4 \sim 10^{14} \text{g/cm}^3$, $Y_e : 0.01 \sim 0.56$, $T : 0.5 \sim 200 \text{MeV}$)

- Nuclear EOS is important to simulate core collapsing supernova explosion, proto-neturon stars, and compact binary mergers involving neutron stars.

Yeunhwan Lim (EWHA)

イロト イ団ト イヨト イヨト

- 1 Total pressure P
- 3 Total entropy per baryon s
- 5 Neutron chemical potential wrt rest mass
- 7 Neutron mass fraction (external to nuclei)
- 9 Alpha particle mass fraction
- 11 Baryon free energy per baryon
- 13 Baryon internal energy per baryon
- 15 Baryon density inside heavy nucleus
- 17 dP/dT
- 19 ds/dT
- 21 Mass number of heavy nucleus
- 23 Number of neutrons in neutron skin of heavy nucleus
- 24 Baryon density of nucleons external to heavy nucleus and alpha particles
- 25 Proton fraction of nucleons external
 - to heavy nucleus and alpha particles
- 26 Out of whackness:

 $\mu_{\it n}-\mu_{\it p}-\mu_{\it e}{+}1.293~{
m MeV}$

- 2 Total free energy per baryon f
- 4 Total internal energy per baryon e
- 6 Proton chemical potential wrt rest ma
- 8 Proton mass fraction (external to nuc
- 10 Baryon pressure
- 12 Baryon entropy per baryon
- 14 Nuclei filling factor u
- 16 dP/dn
- 18 dP/dYe
- 20 ds/dYe
- 22 Proton fraction of heavy nucleus

イロト イ団ト イヨト イヨト

- Representative EOSs.
 - LS EOS (Lattimer Swesty 1991) Use Skyrme type potential with Liquid droplet approach
 - Consider phase transition, several K
 - STOS EOS (H. Shen, Toki, Oyamastu, Sumiyoshi 1998), new version (2011) Use RMF with TF approximation and parameterized density profile (PDP)
 - Old : awkward grid spacing
 - New : finer grid spacing, adds Hyperon($\Lambda, \Sigma^{+,-,0}$)
 - SHT EOS (G. Shen, Horowitz, Teige 2010) Use RMF with Hartree approximation
 - HSB (M. Hempel and J. Schaffner-Bielich). 2010, 2012
 - Use Relativistic mean field model (TM1, TMA, FSUgold)
 - Nuclear statistical equilibrium (alpha, deutron, triton, helion)

イロト イヨト イヨト

	LS 220	STOS	SHT
$\rho(\text{fm}^{-3})$	$10^{-6} \sim 1 \; (121)$	$7.58 imes 10^{-11} \sim 6.022~(110)$	$10^{-8} \sim 1.496~(328)$
Y_{ρ}	$0.01 \sim 0.5~(50)$	$0\sim 0.65~(66)$	$0\sim 0.56~(57)$
T (MeV)	$0.3\sim 30~(50)$	$0.1 \sim 398.1$ (90)	$0 \sim 75.0~(109)$

- STOS & SHT tables don't provide second derivative $\left(\frac{\partial(P,S)}{\partial(T,\rho,Y_p)}\right)$.

<ロト < 回 > < 回 > < 回 > < 回 >

How can we construct EOS table ?

We need nuclear force model and numerical method.

Nuclear force model	Numerical technique	
Skyrme Force model	Liquid Drop(let) approach (LDM)	
(non-relativistic potential model)		
Relativistic Mean Field model (RMF)	Thomas Fermi Approximatoin (TF)	
Finite-Range Force model	Hartree-Fock Approximation (HF)	
	Nuclear Statistical Equilibrium (NSE)	

- LS EOS \Rightarrow Skyrme force + LDM (without neutron skin)
- STOS \Rightarrow RMF + Semi TF (parameterized density profile)
- SHT \Rightarrow RMF + HARTREE
- HSB \Rightarrow RMF + NSE

Nuclear force model should be picked up to represent both finite nuclei and neutron star observation + Neutron matter calculation.

イロト イヨト イヨト

• Schematic picture of inhomogeneous nuclear matter(neutron star crust)

- Liquid Drop Model(Fast and accurate)
- Most difficult part: inhomogeneous matter, low temperature
- Adopt state-of-the-art neutron matter results
 -ex) MBPT(Drischler *et al.*, PRL 2019), QMC(Tews *et al.*, PRC 2016)

• • • • • • • • • • •

• New energy density functional for the nuclear EOS. (Y. Lim, S. Huth, and A. Schwenk *in preparation*)

Jan 20, 2023

<ロト < 回 > < 回 > < 回 > < 回 >

Total free energy density consists of

$$F = F_N + F_o + F_\alpha + F_d + F_t + F_h + F_e + F_\gamma$$
(17)

where F_N , F_o , F_α , F_e , and F_γ are the free energy density of heavy nuclei, nucleons out the nuclei, alpha particles, electrons, and photons.

•
$$F_N = F_{bulk,i} + F_{coul} + F_{surf} + F_{trans}$$

- α , d, t, h particles : Non-interacting Boltzman gas
- e, γ : treat separately

For $F_{bulk,i}$, $F_{bulk,o}$, and F_{surf} , we use the same force model. F_{surf} from the semi infinite nuclear matter calculation

The is the modification of LPRL (1985), LS (1991, No skin)

- Consistent calculation of surface tension
- Deuteron, triton, helion
- The most recent parameter set

イロト イヨト イヨト イヨト

For fixed independent variables (ρ , Y_p , T), we have the 11 dependent variables (ρ_i , x_i , r_N , z_i , u, ρ_o , x_o , ρ_α , ρ_d , ρ_t , ρ_h).

where *i* heavy nuclei, *o* nucleons outside, *x* proton fraction, *u* filling factor, and ν_n neutron skin density.

From baryon and charge conservation, we can eliminate x_o and ρ_o .

Free energy minimization, $\frac{\partial F}{\partial \rho_i} = \frac{\partial F}{\partial x_i} = \frac{\partial F}{\partial r_N} = \frac{\partial F}{\partial z_i} = \frac{\partial F}{\partial u} = \frac{\partial F}{\partial \rho_\alpha} = \frac{\partial F}{\partial \rho_d} = \frac{\partial F}{\partial \rho_t} = \frac{\partial F}{\partial \rho_h} = 0.$

- Finally, we have 6 equations to solve and 6 unknowns. $z = (\rho_i, \ln(\rho_{no}), \ln(\rho_{po}), x_i, \ln(u), z_i).$
- The code (f90) is fast. $165(\rho) \times 101(T) \times 65(Y_{\rho})$ zones < 20 mins in single machine. $(1.0 \times 10^{-8} \le \rho \le 1.6 \,\mathrm{fm^{-3}}, 0.1 \le T \le 100 \,\mathrm{MeV}, 0.01 \le Y_{\rho} \le 0.65)$ more grid points (maybe) needed
- Any Skyrme functionals (or any symmetric or neutron matter property EOSs) can be compared,

Jan 20, 2023

イロト イヨト イヨト イヨト

Particle fraction

Yeunhwan Lim (EWHA)

∃ ∽ Jan 20, 2023