

Dual-Readout Calorimeter for future e+e- collider

Seungkyu Ha (Yonsei Univ.)

On behalf of the Dual-Readout Calorimeter Collaboration

Jan 19, 2023

Calorimeter in HEP

- In HEP calorimetry is the detection of particles through total absorption in a block of matter
 - Most particles end their journey in calorimeters
- Calorimeters can measure both charged and neutrals (calorimeters are sensitive to all types of particles)
 - They can even provide indirect detection of neutrinos and their energy through a measurement of the event missing energy
- Relative resolution improves with energy
- Complementary to tracking detectors
 - Trackers measures charged particle bending
 - Calorimeters measure absorbed energy

Calorimeter Types

- Homogeneous calorimeter
 - Single medium development (dense material)
 - It has good energy resolution (all energy deposited is collected)
 - But, it has limited spatial resolution
 - Usually (very) expensive
 - ex) CMS ECal
- Sampling calorimeter
 - Shower is sampled by layers of active medium (low-Z) alternated with dense

radiator (high-Z, passive medium) material

- It has limited energy resolution
- However, it allows detailed shower shape information
- it is cheaper than homogeneous calorimeters
- Dual readout calorimeter

Jan 19, 2023

3

Dual Readout Calorimeter

- The major difficulty of measuring energy of hadronic shower comes from the fluctuation of EM fraction of shower, f_em
- **f_em** can be measured by implementing two different channels with different h/e response in a calorimeter

$$f_{\rm em} = \frac{(h/e)_C - (C/S)(h/e)_S}{(C/S)[1 - (h/e)_S] - [1 - (h/e)_C]} \qquad \cot \theta = \frac{1 - (h/e)_S}{1 - (h/e)_C} = g$$

$$S = E \Big[f_{\rm em} + \frac{1}{(e/h)_S} (1 - f_{\rm em}) \Big]$$
$$C = E \Big[f_{\rm em} + \frac{1}{(e/h)_C} (1 - f_{\rm em}) \Big]$$

$$E = \frac{S - \chi C}{1 - \chi}$$

- Dual-readout calorimeter offers high-quality energy measurement for both EM particles and hadrons
- Excellent energy resolution for hadrons can be achieved by measuring f_em and correcting the energy of hadron event-by-event.

DRC Geometry and Module

Jan 19, 2023

Saga-Yonsei Joint Workshop XIX

Intro: DRC International Collaboration

Jan 19, 2023

XIX

Saga-Yonsei J

Toward TDR!

- In order to move on to TDR, we need to demonstrate feasibility of the 4pi detector construction
 - we will produce more modules! (Contain almost (97.5%) full hadronic shower energy)

HiDRa prototype (capillary based)

Cu Plates (Korea)

2021 Test Beam (Bucatini Calorimeter)

- Basic calorimeter unit: one brass capillary tube of 2 mm external diameter hosting a fiber (1 mm diameter)
 - Electromagnetic dimensions of **10x10x100 cm³**
 - 9 towers containing 16x20 capillaries each (160 C and 160 S)
 - Capillary tube with outer diameter of 2 mm and inner diameter of 1.1 mm. 1-mm-thick fibers
- Goal: millimetric 2-dimensional shower-shape reconstruction in dual-readout calorimeters

2021 Test Beam (Bucatini Calorimeter)

• At DESY (June 2021)

- e^- with energy range 1-6 GeV
- Energy scan both with and without yellow filters on Scintillating fibers

- Scan over multiple points at the calorimeter surface to check the dependency of the response on the position

- At CERN-SPS H8 beam line (August 2021)
 - e+ with energy range 10-125 GeV
 - Energy and position scan
 - e+ beams highly affected by π + 2% contamination
 - $-\mu+$ in non-monochromatic beams

Saga-Yonsei Joint Workshop XIX

Jan 19, 2023

2021 Test Beam (Bucatini Calorimeter)

Saga-Yonsei Joint Workshop XIX

50 60

70

80

90 100

Energy [GeV]

20

10

30

40

Jan 19, 2023

Shower barycenter

0.2

0.1

0.05

10

Distance from shower axis [mm]

20

25

15

10

2022 Test Beam (Korea)

.

- Duration : Aug. 4th ~ 24th
- Location : CERN North area (H8)
- Measurement Goal

Module 1	 Shower depth Longitudinal shower profile Light attenuation length
Module 2	 Position resolution Lateral shower profile EM energy resolution Uniformity study

- R&D Goal
 - Readout system test (MCP-PMT & SiPM)
 - Study of various type of optical fibers (scintillation)

- Training Goal
 - Training next generation experts for DRC HW

Date	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug			
Module	Building I (fiber+	Module ∙Cu)	At	tach rea	dout	Test Commissioning	Packing/ Shipping	Install @ CERN(H8)		-	
DAQ	Test Mutichannel operation					ו	Packing/ Shipping	Install @ CERN(H8)		-	
Test beam							Packing/ Shipping	8/3 ~ install	Preparation & commissioning @ cern (~8.16)	Taking test beam (8.17~8.24)	
In 19, 2023 II Saga-Yonsei Joint Workshop XIX											

Schedule of test beam

2022 Test Beam (Korea)

• Experimental hall

- During test beam, our experiments conducted at T4-H8 @ North Area

2022 Test Beam (Korea) : 2 Modules

Configuration of Fibers & Readout detector for Test Beam

In the G1.03 CHO Guk and G1.04 KIM Dongwoon, details will be presented 13 Saga-Yonsei Joint Workshop XIX

Jan 19, 2023

2022 Test Beam (Korea) : 2 Modules

2022 Test Beam (Korea) : Readout System

DREAM FOR FUTURE

- Module 1
 - Read out information PMT (6ch) + MCP-PMT (2ch)
- Module 2
 - Read out information PMT (16ch) + SiPM (416ch, T.5)

	Window	size	lig	ht Qu Efficin		uantum inecy (Q.E.)	ma	x. HV (V)	Rise time (ns)	Pulse width (ns)	photo	
PLANACON XP85012	l 53x53 mm² l		scintil	ation	~7%	6 at 550 nm		2400	0.6	1.8		
PLANACON XP85112			Cere	nkov ~21%		% at 400 nm		2800	0.5	0.7		
РМТ	Window size	Q.E. 1	for Ck.	Q.E. for	Sc. r	max. HV (V)			Time response (ns)		photo	
							anode p	oulse rise time	electron transit time	Transit time spread (FWHM	/)	
R8900 series (old)	23.5x23.5 mm ²	35 at 42	5% 20 nm	~7% at 550 r	nm	(000		2.2	11.9	0.75		7
R11265-100 (new)	23x23 mm ²	~3 at 40	5% 00 nm	~7% at 550 r	nm	1000		1.3	5.8	0.27		/
SiPM	photosensitiv e area	pho	oto detec (F	ection efficiency (PDE)		opera volta	ting ge	Gain at V _{BD} +5V	Linearity of Q.	E. number of pixels	geo. Fill factor	
S14160-1310PS	1.3x1.3 (1.69 mm²)	~15%	6 at 400 nm	~17% a	it 550 nm	V V breaking Dov	_{wn} + 5 V	~1.75x10⁵	~2x10 ¹⁰ /sec as incident photor	าร 16675	31 % (0.524 mm²)	
fiber (Φ1 mm)	0.785 mm ²									~7745 (effectively)		

Jan 19, 2023

2022 Test Beam (Korea) : DAQ System

channels 22 4	11 400	
DAQ	2 13	
DAQ	2	13

Jan 19, 2023

2022 Test Beam (Korea) : DAQ System

2022 Test Beam (Korea) : DQM System

Jan 19, 2023

2022 Test Beam (Korea) : DQM System

- Each DAQ created its own data file, and save it on DAQ PC
- Data saved with fixed directory structure for efficient data management
- 100k events stored in single file
- 15 files created for each record (Run)
- Average beam rate for 20GeV e+ : ~20 Hz
- Data size : ~92GB per 1.3 hours

	Wave	Fast	Sum
Size / evt (KB)	64	0.25	64.25
Size / 15 files (GB)	91.55	0.36	91.91

2022 Test Beam (Korea) : Geometry Setup

Jan 19, 2023

2022 Test Beam (Korea) : Experimental Setup

HV System

HV monitor for ancillary detectors

CAEN SY1527LC Universal Multichannel Power Supply System

- PSU (A1532, 750 W)
- CPU (A1531, 316 W)
- HV board (A1535SN, 24 ch., -3.5 kV, 3 mA, 8 W/ch.)

Jan 19, 2023

Movement System

2022 Test Beam (Korea) : Ancillary Setup

Delay wire chamber: x,y
 position measurement

• T1T2+veto: trigger

• Pre-shower detector: for obtaining various types of particles by shower

- Tale catcher: to detect particles that are through the DRC
- Muon counter: to detect muon

2022 Test Beam (Korea) : Programs

Aim	Module	Description
Finding towers (scanning tower position)	M1, M2	 Using positron beam (20 GeV) 1cm vertical & horizontal scan Find boundary of tower!
Gain tests	M1, M2	- Check signal level w.r.t. HV
Calibration	M1, M2	- Using 20 GeV positrons, equalized the responses of the scintillation and Cerenkov channels
Resolution	M2	 Energy resolution (6, 10, 20, 30, 40, 60, 80, 100 GeV positrons) Position resolution (6, 10, 20, 30, 40, 60, 80, 100 GeV positrons) Time resolution using SiPM channels (Module 2) and tower equipped with MCP-PMT (Module 1)
3D shower reconstruction	M2	 Using muons and pions steered to the tower equipped with 400 SiPM
Cerenkov channel response	M1	- Using position 20 GeV, rotating & moving module
Longitudinal shower profile	M1	- Using position 20 GeV, variated lead blocks (variation of radiation length)

2022 Test Beam (Korea) : Runs & Results

 During the test beam, we took data 84hours, and ~23M events were taken as fast mode and 4.6M events as waveform mode!

Total wave	Total Fast	Total Time (min)	Total Time (hour)
4,657,849	23,248,704	5,046	84

- The biggest data set is used for prompt analysis
 To do PID, we used auxiliary detector
 - DWC : Selection on beam position and angle
 - Muon counter : Selection on muon signal
 - Pre-shower : Discrimination on b.g. vs electrons

Jan 19, 2023

R&D: HiDRa (Construction)

Quality of capillary is very good This allow for simplified construction tool

building-block: double minimodule (64x16 channels, 2.5 m long)

Assembly system and capillary handling tools install in the clean room (assembly facility)

R&D : HiDRa (SiPM readout – a scalable solution)

R&D : Cu Forming

3D printing

It has very perfect accuracy, but the cost is very high

LEGO-like (Copper pipe)

It has very good accuracy, and pretty low cost

• SF Heatsink

It has very excellent accuracy, and cost is low

Possibility for mass production!

Saga-Yonsei Joint Workshop XIX

Jan 19, 2023

Summary

- Dual-readout calorimeter R&D are very active!
- Two different types of DRC were tested
 - Bucatini type is tested (2021 DESY & CERN)
 - Excellent lateral shower shape development measurements
 - allowed to validate construction method and SiPM readout (scaling up in the number of channels)
 - Plated based two modules (Korea) have test beam 2022
 - Analysis using TB data is on going
- Please Stay tune our activities !!!

Test Beam

• Duration : Aug. 4th ~ 24th

• Location : CERN North area

• Schedule of test beam

Date	Jan	Feb	Mar	Apr	Мау	Jun	Jul		Aug	
Module	Building (fiber-	Module -Cu)	At	ttach rea	dout	Test Commissioning	Packing/ Shipping	Install @ CERN(H8)		-
DAQ	Test Mutichannel operation						Packing/ Shipping	Install @ CERN(H8)		-
Test beam							Packing/ Shipping	8/3 ~ install	Preparation & commissioning @ cern (~8.16)	Taking test beam (8.17~8.24)

Readout Detectors

МСР-РМТ	Window	size	lig	light		Quantum Efficinecy (Q.E.)		ax. HV (V)	Rise time (ns)	Pulse width (ns)	photo
PLANACON XP85012	 	m ²	scinti	llation	~7% at 550 nm		n	2400	0.6	1.8	
PLANACON XP85112	53X53 III I	Cer		nkov ~21%		1% at 400 n	m	2800	0.5	0.7	
PMT	Window size	Q.E.	for Ck.	Q.E. for	Sc.	max. HV (V)			Time response (n	s)	photo
							anode	e pulse rise time	electron transit time	Transit time spread (FWH	IM)
R8900 series (old)	23.5x23.5 mm ²	3 at 42	5% 20 nm	~7% at 550 r	~7% at 550 nm			2.2	11.9	0.75	
R11265-100 (new)	23x23 mm ²	~3 at 40	85% 00 nm	~7% at 550 r	ım	1000		1.3	5.8	0.27	
SiPM	photosensitiv e area	ph	photo detection efficiency (PDE)			y ope vol	rating tage	Gain a V _{BD} +5\	t / Linearity of (Q.E. number of pixels	geo. Fill factor
S14160-1310PS	1.3x1.3 (1.69 mm²)	~15%	% at 400 nm	n ∼17%a	it 550 n	im V _{breaking}	_{Down} + 5 V	~1.75x10	~2x10 ¹⁰ /sec as incident pho	tons 16675	31 % (0.524 mm²)
fiber (Φ1 mm)	0.785 mm ²									~7745 (effectively)	
								"Light Shielding wall" "Fiber Supporting Frame"	Preamp board B (32ch)		
MSP. PUT (SS)			1 m		Single	SiPM	Pre	amp board B (3	32 ch)		
Des in real size	sign e (Module 1)		ir	De n real siz	esign e (Mo	odule 2)	•	eeeeeee eeeeeee eeeeeee		Hunder and Hunder	AIG SIPMS
Apr. 17,	2021									u Ha, 2021 A	PS April Meetir

- Beam Information
 - positron beam : 6, 10, 20, 30, 40, 60, 80, 100, and 125 GeV
 - pion beam : 20, 60, 80, 180 GeV
- Detailed TB Programs
 - Finding tower (scanning tower)
 - Gain tests
 - Calibration
 - Resolution
 - 3D reconstruction (Pion)
 - Cherenkov channel response
 - Longitudinal Shower profile
 - 3D printing module

Finding tower (scanning tower) - Using positron beam (20 GeV) - 1cm vertical & horizontal scan - Find boundary of tower!

Module dimension - upstream side

Center position : (horizontal(cm), vertical(cm))

Sep. 27. 2022

- Beam Information
 - positron beam : 6, 10, 20, 30, 40, 60, 80, 100, and 125 GeV
 - pion beam : 20, 60, 80, 180 GeV
- Detailed TB Programs
 - Finding tower (scanning tower)
 - Gain tests
 - Calibration
 - Resolution
 - 3D reconstruction (Pion)
 - Cherenkov channel response
 - Longitudinal Shower profile
 - 3D printing module

Programs

- Beam Information
 - positron beam : 6, 10, 20, 30, 40, 60, 80, 100, and 125 GeV
 - pion beam : 20, 60, 80, 180 GeV
- Detailed TB Programs
 - Finding tower (scanning tower)
 - Gain tests
 - Calibration
 - Resolution
 - Cherenkov channel response
 - Longitudinal Shower profile
 - 3D printing module

KFC DRC Weekly meeting

Using positron beam (20 GeV)
 Check up the signals w.r.t. HV (50V interval)

Sep. 27. 2022

Programs

- Beam Information
 - positron beam : 6, 10, 20, 30, 40, 60, 80, 100, and 125 GeV
 - pion beam : 20, 60, 80, 180 GeV
- Detailed TB Programs
 - Finding tower (scanning tower)
 - Gain tests
 - Calibration
 - Resolution
 - Cherenkov channel response
 - Longitudinal Shower profile
 - 3D printing module

KFC DRC Weekly meeting

- Using positron beam (20 GeV)
- Check up the signals w.r.t. HV (50V interval)

Ex) module 2 & tower 4

module2 - tower4					
V_PMT (V)	<adc_peak (sc)=""></adc_peak>	<adc_peak (ck)=""></adc_peak>			
550					
600					
650	722	305.9			
700	1427	625.5			
750	2766	1239			
800		2256			

- Beam Information
 - positron beam : 6, 10, 20, 30, 40, 60, 80, 100, and 125 GeV
 - pion beam : 20, 60, 80, 180 GeV
- Detailed TB Programs
 - Finding tower (scanning tower)
 - Gain tests
 - Calibration
 - Resolution
 - Cherenkov channel response
 - Longitudinal Shower profile
 - 3D printing module

Calibration HV (at 500 ADC)

		volta	ge [V]	current [uA]		
		S	С	S	С	
	T1	654	629	240	231	
N 41	T2	633	650	232.5	239.5	
INIT	T3 (MCP)	1808	2680	363	494.5	
	T4	676	688	248.5	243	
	T1	619	715	228	262.5	
	T2	669	682	246	250.5	
	Т3	609	672	225	246.5	
	T4	624	684	230.5	253.5	
M2	T5 (SiPM)					
	T6	683	653	253.5	240	
	T7	664	664	242	244.5	
	T8	614	667	227.5	248	
	Т9	669	674	246	248	

- Beam Information
 - positron beam : 6, 10, 20, 30, 40, 60, 80, 100, and 125 GeV
 - pion beam : 20, 60, 80, 180 GeV
- Detailed TB Programs
 - Finding tower (scanning tower)
 - Gain tests
 - Calibration
 - Resolution
 - 3D reconstruction (Pion)
 - Cherenkov channel response
 - Longitudinal Shower profile
 - 3D printing module

- Beam Information
 - positron beam : 6, 10, 20, 30, 40, 60, 80, 100, and 125 GeV
 - pion beam : 20, 60, 80, 180 GeV
- Detailed TB Programs
 - Finding tower (scanning tower)
 - Gain tests
 - Calibration
 - Resolution
 - 3D reconstruction (Pion)
 - Cherenkov channel response
 - Longitudinal Shower profile
 - 3D printing module

Angle (degree)	36	30	25	20	15	10	5
Horizont al (cm)	53.4	53.7	53.9	54.1	54.4	54.5	54.8
Target events	30k						

Sep. 27. 2022

Programs

- Beam Information
 - positron beam : 6, 10, 20, 30, 40, 60, 80, 100, and 125 GeV
 - pion beam : 20, 60, 80, 180 GeV
- Detailed TB Programs
 - Finding tower (scanning tower)
 - Gain tests
 - Calibration
 - Resolution
 - 3D reconstruction (Pion)
 - Cherenkov channel response
 - Longitudinal Shower profile
 - 3D printing module

KFC DRC Weekly meeting

Total Run & Events

 During 84hours, we took ~23M events as fast mode and 4.6M events as waveform mode

Total wave	Total Fast	Total Time (min)	Total Time (hour)
4,657,849	23,248,704	5,046	84

GeV	Total wave e+/e-	Total fast e+/e-	Total wave pion	Total fast pion	Total wave mu	Total fast mu	Total wave	Total fast
20	3,014,502	3,044,800	141,339	471,424	-	-	3,155,841	3,516,224
30	111,453	111,360	-	-	-	-	111,453	111,360
40	181,690	181,504	-	-	-	-	181,690	181,504
60	150,952	571,584	109,825	439,232	-	-	260,777	1,010,816
80	471,194	1,451,968	110,209	220,416	-	-	581,403	1,672,384
100	110,317	882,496	-	-	-	-	110,317	882,496
125	100,060	800,448	-	-	-	-	100,060	800,448
160	-	-	-	-	30,966	30,848	30,966	30,848
180	-	-	125,342	15,042,624	-	-	125,342	15,042,624
SUM	4,140,168	7,044,160	486,715	16,173,696	30,966	30,848		

North Area Beam characteristics

Parameters		T2	τ4			
Beam Line	H2	H4	H6	H8		
Maximum Momentum [GeV/c]	400 / 380	400 /380	- / 205	400 / 360		
Maximum Acceptance [uSr]	1.5	1.5	2	2.5		
Maximum Δp/p [%]	± 2.0%	± 1.4 %	±1.5%	±1.5%		
Maximum Intensity / spill * (Hadrons / Electrons)	10 ⁷ /10 ⁵	10 ⁷ /10 ⁷	10 ^{7 **} / 10 ⁵	10 ^{7 **} / 10 ⁵		
Available Particle Types	Primary protons*** OR electrons OR muons OR mixed hadrons (pions, protons, kaons)					
Other / Special requests	sba-physicists@cern.ch & sps.coordinator@cern.ch					

 * Imposed by Radiation Protection, and not available to every zone
 ** In some zones can be elevated up to 10⁸ subject to certain restrictions
 *** Not available in H6 Nota Bene : The particle momenta in H2/H4 and in H6/H8 are coupled. Send your beam request and discuss in advance with the SPS coordinator and the responsible liaison physicists.

Quality Check of Cerenkov fibers

• Defect on the fibers

We are checking which points are curved

• We have been checking status of fibers

Apr. 20, 2022

2022 KPS Spring Meeting

Procedure of Polishing Fibers

• How to polish a fiber manually

- Using sandpaper and polishing a fiber, we can polish

Polishing film

Result of polishing fiber for each step

Before Polishing	Step1	Step2	Step3	Step4	Step5
-	Sandpaper	9µm Film	3μm Film	1μm Film	Final Film
Apr 20 2022		4	3	2022 KP	S Spring Meeting

• Since it is not easy to align the end of fibers, we need some tools

• To make wall with gap, we can align the fibers easily

Supporter for attaching reflector

- To easily and strongly attach the reflector (aluminum) to holder

DAQ scheme with two Trigger modes

Initial requirement of readout system

- need \leq 50 ps to achieve lower than 1% position precision toward the radial direction

- need good energy resolution (26%)

MCP-PMT

	XP85122	XP85112	XP85022	XP85012		
Exterior						
МСР	10µm MCP-PMT	10µm MCP-PMT	25µm MCP-PMT	25µm MCP-PMT		
Active area	53x53 mm	53x53 mm	53x53 mm	53x53 mm		
Anode	32x32 array, 1.1 / 1.6 mm (size / pitch)	8x8 array, 5.9 / 6.5 mm (size / pitch)	32x32 array, 1.1 / 1.6 mm (size / pitch)	8x8 array, 5.9 / 6.5 mm (size / pitch)		
Quantum Efficiency	22% (Typ)	22% (Typ) 18% (Min)	22% (Typ)	22% (Typ)		
Transit Time Spread	< 30 ps	35 ps (Typ) 60 ps (Max)	< 40 ps	< 40 ps		
Additional Info.		 Superior Magnetic Field Immunity Enhanced Timing Performance 				

Apr. 17, 2021

Seungkyu Ha, 2021 APS April Meeting

Packing Module

• We completed packing the module (Jul. 21) and we shipped our module to CERN

KFC DRC Weekly meeting

Arrived Module & DAQ

• Our two modules and DAQ systems arrived at Bldg. 887 area

Sep. 27. 2022

Module Setup

KFC DRC Weekly meeting