

Introduction to the ALICE experiment

Takahiro Fusayasu Saga University

- 1. Introduction
- 2. Basics of Heavy Ion Collisions
- 3. Results from RHIC/LHC

YSWS 18th

Attends two experiments

- ・The ALICE collaboration @ LHC. Joined in 2021. Study of quark-gluon plasma.
- ・International Linear Collider (ILC). Higgs factory for precise Higgs measurements.

YSWS 18th

Members

- Prof. Akira Sugiyama (retiring Mar/2023) Assoc. Prof. Takahiro Fusayasu \rightarrow Join the WS $\&$
- Mr. Tomoki Ishida (M2) ALICE electronics
- Mr. Yu Tsukigawa (M2) Gas detector
- Mr. Kamei Kazuma (M2) Gas detector
- Mr. Haruki Kanemitsu (M1) ALICE electronics \rightarrow Join the WS $\&$ Mr. Keiichiro Higuchi (M1) ILC TPC electronics \rightarrow Join the WS $\&$
- Mr. Kai Ishizuka (B4) \rightarrow Join the WS $\hat{\mathbb{X}}$
- Mr. Ryota Iwanaga (B4)
- Mr. Toshiyuki Ono (B4)
- Mr. Yuta Shimazaki (B4)
- Mr. Kaito Mine (B4)

Introduction

Quark-Gluon Plasma

T. Fusayasu @ Saga U

5

Proton, neutron, other hadrons

Quarks are bound by gluons, which mediate strong interactions

V ∝ *A r* + *Br* Huge force if large r.

Cannot extract a quark.

Quark-Gluon Plasma

T. Fusayasu @ Saga U

Protons, neutrons Quark-Gluon Plasma (QGP)

High T, high P

No boundary between p, n. Quarks and gluons are free.

Quark-Gluon Plasma

T. Fusayasu @ Saga U

Quarks carry only 1% of p, n mass. Other 99% is thought to be because of the mechanism "chiral symmetry breaking."

High T, high P

Chiral symmetry is restored. Important knowledge for the origin of p, n mass, i.e. nuclear mass.

Protons, neutrons Quark-Gluon Plasma (QGP)

Water phase diagram.

It's based on electromagnetic interactions, i.e. QED.

Phases of Quark matter (QCD) $\frac{1}{T}$ $\$

9

~Pressure

History of the Universe T. Fusayasu @ Saga U

$Mistory$ of the Universe T. Fusayasu @ Saga U

http://www-utap.phys.s.u-tokyo.ac.jp/~sato/index-j.htm

Heavy Ion Colliders

T. Fusayasu @ Saga U

$\sqrt{s_{NN}}$ = 200 GeV $\sqrt{s_{NN}}$ = 5.02 TeV

5.02 TeV per nucleon collision corresponds to ~1000 TeV per Pb-Pb !!

< Just a very simple question > \sqrt{s} of pp collision at LHC before the previous shutdown (2018-2022) was 13 TeV. Why does it decrease to 5.02 TeV for heavy ion collisions?

Heavy Ion Collider Experiments T. Fusayasu @ Saga U

 $ln < 5$

 η = -In (tan θ /2)

Hadron Forward
2.9<|n|< 5.2

PHENIX

RHIC

LHC

Heavy Ion Collider Experiments T. Fusayasu @ Saga U

16

CMS

ATLAS

RHIC

LHC

YSWS 18th
T. Fusayasu @ Saga U

XXX 18th ALICE detector photo
T. Fusayasu @ Saga U

Pb-Pb collision data by ALICE YSWS 18th T. Fusayasu @ Saga U

19

Basics of Heavy Ion Collisions

(Helped by Prof. T. Sakaguchi's slides at YSJW 2020)

Rather different collision profile at low and high energies.

Reality of collisions $Y_{\text{SWS 18th}}$ T. Fusayasu @ Saga U

22

$System development after collisions $Y_{\text{T. Fusayasu @ Saga U}}^{23}$$

YSWS 18th

- Gold ions pass through each other \bullet
	- High momentum (high-x) partons fly away
	- Low momentum (low-x) gluons remain in the mid-rapidity (y=0), and
create "gluon matter"
- (Pre-equilibrium) Gluon plasma \rightarrow QGP \rightarrow Hadronization \bullet
- Transition temperature (quark to hadron) : $T = 180$ MeV \bullet
- Energy density: >2 GeV/fm³ \bullet
	- Estimate from Lattice QCD calculation

Time and Temperature profile after collisions YSWS 18th T. Fusayasu @ Saga U

- Four characteristic temperatures
- Initial $(T_i \sim 300\text{-}600\text{MeV})$
	- As going to higher collision energy,
this temperature goes higher.
- QGP (T_{OGP} ~200-300MeV)
- Critical (phase transition) or
chemical freezeout ($T_c \approx 170$ MeV)
	- Particle composition (μ_b) is fixed
- Thermal freezeout $(T_F^{\sim}100\text{MeV})$
	- Momenta of particles are fixed
	- System expansion velocity (β) is fixed \bullet

Physics quantities in H.I. collisions $\frac{Y\text{SWS 18th}}{T. \text{ Fusayasu @ Saga U}}$

Transverse momentum (pT)

- Momentum component normal to the beam direction in centre-of-mass frame

Number of participant nucleons (Npart)

- Calculable from impact parameters
- A measure of energy density

Number of nucleon collisions (Ncoll)

- Number of nucleon collisions in an event
- Nucleons are considered to collide individually in high energy collisions.

Centrality

- Proportional to impact parameters
- 0%: b=0, central collisions
- 100%: b=bmax, peripheral collisions

Results from RHIC/LHC

(Helped by Prof. T. Sakaguchi's slides at YSJW 2020)

27

- In 2005, RHIC experiments discovered generation of the QGP state, which is high-T, high-density material.
- QGP had been expected to be a gas-like state, but the discovered QGP was almost perfect fluid, i.e. fluid with very low viscosity.
- LHC (2009~) measurements follow the RHIC results.

- Yields of jets and photons are well-reproduced by perturbative QCD (pQCD) calculation.
- Yields in Au-Au and Pb+Pb scale with number of binary-nucleon collisions (Ncoll). This goes very well as shown below for the photon yields.

29

Jets in p+p (primordial hard scattering)

Jets in QGP

- Hard scattered partons lose their energies in the QGP via gluon radiation or parton collisions.
- Jets that are fragment of the partons accordingly reduce their energies.

Jets in QGP

- Hard scattered partons lose their energies in the QGP via gluon radiation or parton collisions.
- Jets that are fragment of the partons accordingly reduce their energies.

However, extreme difficulties in jet reconstruction in heavy-ion collisions!!

- High P_T hadrons (π ⁰ etc.) are leading particles from jets and a large fraction of jet momentum are carried by them.
- Energy loss of the partons at RHIC are initially observed by high-p $\tau \pi^0$.

- Hard scattering probability is so large at LHC that the observation of reconstructed jets and their energy loss became possible.
- Back-to-back jets are observed. Energy of sub-leading jets is significantly lower than that of leading jets.

• ATLAS has successfully measured asymmetry of energies of back-to-back jets.

$$
A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}, \qquad \Delta \phi > \frac{\pi}{2},
$$

- Central Pb+Pb points deviate from p+p and estimated Pb+Pb distribution without energy loss.
	- \rightarrow The deviation corresponds to 30-40% loss of jet energy.

³⁶
QGP property: Collective flow of particles YSWS 18th
T. Fusayasu @ Saga U

(楕円)

YSWS 18th

- In non-central collisions, the collision are is not isotropic but almond-like shape.
	- \rightarrow Different pressure gradient produces momentum anisotropy of emitted particles.
- Measure the angular distribution of the particles with respect to the reaction plane.
	- \rightarrow 2nd order Fourier coefficient show the elliptic flow.

 d^3N $p_{\overline{T}}dp_{\overline{T}}dyd\varphi$ \propto $[1 + 2v_2(p_T)\cos(2(\varphi - \phi_{RP})) + ...]$

Mom. Asymmetry
elliptic flow $\mathbf{v}_2 = \frac{\langle p_y^2 \rangle - \langle p_x^2 \rangle}{\langle p_y^2 \rangle + \langle p_x^2 \rangle}$

The flow is not completely elliptic $\gamma_{\text{SWS 18th}}^{37}$

- Fluctuation of nucleon position yields higher order anisotropy of particles.
	- \rightarrow higher order flow v₃, v₄, …, v_n

$$
\frac{dN}{d(\phi - \Psi_n)} = N_0[1 + 2\sum_{n=1}^{\infty} v_n \cos\{n(\phi - \Phi_n)\}]
$$

$$
\Psi_n \text{ : Event Plane}
$$

$$
\nu_n = \langle \cos\{n(\phi - \Phi_n)\} \rangle
$$

• Higher order flows are sensitive to the properties of the matter. \rightarrow comparison to the hydrodynamics model gives state equation E=E(P) and shear viscosity (η) to entropy density (s) ratio (η/s) . (流体model)

- \cdot PHENIX (RHIC) and ATLAS (LHC) v_n analysis results are compared with a hydrodynamics model \rightarrow QGP is modeled as fluid consisting of partons.
- The model reproduces the higher order flow at RHIC and LHC very well.
- **Almost perfect fluid** is realized at RHIC (η /s from quantum limit ~ 1/4 π ~ 0.08)

- Thermal photons are emitted from all the stages after collisions.
- Penetrate the system unscattered after emission, because "no strong interaction". \rightarrow carry out QGP information such as temperature.
- Photons are produced by Compton scattering or q-qbar annihilation at LO.

 Π_{em} : photon self energy

$$
\mathrm{Im}\Pi_{em}(\omega,k) \approx \ln\left(\frac{\omega T}{\left(m_{th}(\approx gT)\right)^2}\right)
$$

- Thermal photon distribution will be expressed by the product of
	- Bose distribution, and
	- transition probability of QGP
- Fitting the model to the experiment data gives QGP temperature.

YSWS 18th T. Fusayasu @ Saga U

40

In this way, the obtained temperatures are:

- \cdot RHIC, Au+Au 200GeV: T_{ave} = ~220 MeV = 2.5 trillion K
- \cdot LHC, Pb+Pb 2.76TeV: $T_{ave} = -304$ MeV = 3.5 trillion K

- Quark gluon plasma (QGP), which is the state of very early universe (10us after bigbang), can be investigated by heavy-ion collider experiments.
- As a sign of QGP, jet quench study was introduced.
- From particle flow study, QGP was found to be almost complete fluid.
- These studies were first performed in RHIC experiments and more precisely performed in LHC experiment.
- QGP temperature was measured from thermal photons and the results are consistent with expected QGP temperature.
- (Future: A very forward detector, FoCal, will help extension of the study, though not included in today's lecture)