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LHC

Attends two experiments 

・The ALICE collaboration @ LHC. Joined in 2021. 
　Study of quark-gluon plasma. 

・International Linear Collider (ILC). 
　Higgs factory for precise Higgs measurements.

ILC
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Proton, neutron, other hadrons
Quarks are bound by gluons, 

which mediate strong interactions 

~1fm (1x10-15 m)

Mass ~ 1 GeV

Inside hadrons

V ∝
A
r
+ Br

Energy in a flux tube of volume v:
V = ρv = ρar = Br

Large r%

Small r%

q q
V ∝

A
r

Huge force if large r. 
Cannot extract a quark.

gluon

quark
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Protons, neutrons Quark-Gluon Plasma (QGP)

High T, high P
No boundary between p, n. 
Quarks and gluons are free.
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Protons, neutrons Quark-Gluon Plasma (QGP)

High T, high P
No boundary between p, n. 
Quarks and gluons are free.

Quarks carry only 1% of p, n mass. 
Other 99% is thought to be 
because of the mechanism “chiral 
symmetry breaking.”

Chiral symmetry is restored. 
Important knowledge for the origin 
of p, n mass, i.e. nuclear mass.
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Water phase diagram. 
It’s based on electromagnetic interactions, i.e. QED.
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Hadrons

Nuclear Neutron star

Color 
supercon- 
ductivity

LHC

Compared to water phase diagram. 
This is the QCD phase diagram.

~Pressure
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Time = 10µs after big bang 
Temperature = 2 x 1012 K 
Energy density = 1GeV/fm3

Inflation
QGP phase transition 

(QGP→p, n)
Light atom 

Nucleosynthesis
Clear up of the universe

Protogalaxy generation

QGP 
Quark-gluon plasma

Now, 137x108 years old
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Time = 10µs after big bang 
Temperature = 2 x 1012 K 
Energy density = 1GeV/fm3

Inflation
QGP phase transition 

(QGP→p, n)
Light atom 

Nucleosynthesis
Clear up of the universe

Protogalaxy generation

QGP 
Quark-gluon plasma

Now, 137x108 years old

Acc
eler

ator

After collision
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Big Bang Little Bang

Time scale 10-5 sec 10-23 sec

Expansion rate 105~6 /sec 1022~23 /sec

Spectrum Red shift (CMB) Blue shift (hadrons)
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√sNN = 200 GeV √sNN = 5.02 TeV
5.02 TeV per nucleon collision corresponds to ~1000 TeV per Pb-Pb !! 

< Just a very simple question > 
√s of pp collision at LHC before the previous shutdown 
(2018-2022) was 13 TeV. 
Why does it decrease to 5.02 TeV for heavy ion collisions?
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Basics of Heavy Ion Collisions

(Helped by Prof. T. Sakaguchi’s slides at YSJW 2020)
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Low energy（Landau picture）

Stopping
High T,  High µB

High energy（Bjorken picture）

Passing through

High T, Low µB

Expansion in beam and 
transverse direction

Rather different collision profile at low and high energies. 
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AGS

SPS

RHIC 62

RHIC 200

LHC 5500

(beam direction)

y=0 : stay near collision point 
Large |y| : go forward/backward

Large loss of beam energy, 
25TeV
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System development after collisions 23
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Time and Temperature profile after collisions
24
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Transverse momentum (pT) 
- Momentum component normal to the beam 
  direction in centre-of-mass frame 

Number of participant nucleons (Npart) 
- Calculable from impact parameters 
- A measure of energy density 

Number of nucleon collisions (Ncoll) 
- Number of nucleon collisions in an event 
- Nucleons are considered to collide individually 
  in high energy collisions. 

Centrality 
- Proportional to impact parameters 
- 0%: b=0, central collisions 
- 100%: b=bmax, peripheral collisions



Results from RHIC/LHC

(Helped by Prof. T. Sakaguchi’s slides at YSJW 2020)
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• In 2005, RHIC experiments discovered 
generation of the QGP state, which is high-T, 
high-density material. 

• QGP had been expected to be a gas-like state, 
but the discovered QGP was almost perfect fluid, 
i.e. fluid with very low viscosity. 

• LHC (2009~) measurements follow the RHIC 
results.
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pQCD predicts photons and jets precisely
28

• Yields of jets and photons are well-reproduced by perturbative QCD 
(pQCD) calculation. 

• Yields in Au-Au and Pb+Pb scale with number of binary-nucleon 
collisions (Ncoll). This goes very well as shown below for the photon 
yields. 
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Jets in p+p (primordial hard scattering)
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Jets in QGP 
• Hard scattered partons lose their energies in the QGP via gluon radiation or 

parton collisions. 
• Jets that are fragment of the partons accordingly reduce their energies.
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Jets in QGP 
• Hard scattered partons lose their energies in the QGP via gluon radiation or 

parton collisions. 
• Jets that are fragment of the partons accordingly reduce their energies.

However, extreme difficulties in jet 
reconstruction in heavy-ion collisions!!
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Instead, observe leading particles from jets
32

• High PT hadrons (π0 etc.) are leading particles from jets 
and a large fraction of jet momentum are carried by them. 

• Energy loss of the partons at RHIC are initially observed by high-pT π0.
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QGP sign: Yield suppression of leading particles
33
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・Nuclear Modification Factor (RAA) 
　 - (Yield in A+A collision)/(Yield in p+p collision × Ncoll) 
　 - RAA =1: No nuclear effect 
　 - RAA <1: Suppression due to energy loss, etc. 
　 - RAA >1: multiple scattering, etc. 
・RAA <1 for RHIC and LHC, >1 for SPS (√sNN=17GeV)   

Sign of hot and dense matter, i.e. QGP!!
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Jet reconstruction became possible at LHC
34

• Hard scattering probability is so large at LHC that the observation of 
reconstructed jets and their energy loss became possible. 

• Back-to-back jets are observed. Energy of sub-leading jets is significantly 
lower than that of leading jets.
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Jet reconstruction became possible at LHC
35

• ATLAS has successfully measured asymmetry of energies of back-to-back jets.

• Central Pb+Pb points deviate from p+p and estimated Pb+Pb distribution 
without energy loss. 
→ The deviation corresponds to 30-40% loss of jet energy.

p+p data Pb+Pb data Estimated Pb+Pb distribution without energy loss

Peripheral Central



YSWS 18th 
T. Fusayasu @ Saga U

QGP property: Collective flow of particles
36

d 3N
pTdpTdydϕ

∝ [1+ 2v2 (pT )cos2(ϕ −φRP ) + ...]

• In non-central collisions, the collision are is not 
isotropic but almond-like shape. 
→ Different pressure gradient produces 
　 momentum anisotropy of emitted particles. 

• Measure the angular distribution of the particles 
with respect to the reaction plane. 
→ 2nd order Fourier coefficient show the elliptic flow.

(楕円)
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• Fluctuation of nucleon position yields higher 
order anisotropy of particles. 
→ higher order flow v3, v4, …, vn

dN

d(�� n)
= N0[1 + 2

1X

n=1

vncos{n(�� �n)}]

⌫n =< cos{n(�� �n)} >

• Higher order flows are sensitive to the 
properties of the matter. 
→ comparison to the hydrodynamics model 
　 gives state equation E=E(P) and 
　 shear viscosity (η) to entropy density (s) 
　 ratio (η/s).

(流体model)
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vn results compared with hydrodynamics model
38

• PHENIX (RHIC) and ATLAS (LHC) vn analysis results are compared with a 
hydrodynamics model → QGP is modeled as fluid consisting of partons. 

• The model reproduces the higher order flow at RHIC and LHC very well. 

• Almost perfect fluid is realized at RHIC (η/s from quantum limit ~ 1/4π ~ 0.08)
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QGP measurement: temperature from thermal photons
39

• Thermal photons are emitted from all the 
stages after collisions. 

• Penetrate the system unscattered after 
emission, because “no strong interaction”. 
→ carry out QGP information such as 
　 temperature. 

• Photons are produced by Compton 
scattering or q-qbar annihilation at LO.

• Thermal photon distribution will be 
expressed by the product of 
 - Bose distribution, and 
 - transition probability of QGP 

• Fitting the model to the experiment 
data gives QGP temperature.
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QGP measurement: temperature from thermal photons
40

In this way, the obtained temperatures are: 
• RHIC, Au+Au 200GeV: Tave = ~220 MeV = 2.5 trillion K 
• LHC, Pb+Pb 2.76TeV: Tave = ~304 MeV = 3.5 trillion K



YSWS 18th 
T. Fusayasu @ Saga USummary 41

• Quark gluon plasma (QGP), which is the state of very early universe (10us after 
bigbang), can be investigated by heavy-ion collider experiments. 

• As a sign of QGP, jet quench study was introduced. 

• From particle flow study, QGP was found to be almost complete fluid. 

• These studies were first performed in RHIC experiments and more precisely 
performed in LHC experiment. 

• QGP temperature was measured from thermal photons and the results are 
consistent with expected QGP temperature.  

• (Future: A very forward detector, FoCal, will help extension of the study, though 
not included in today’s lecture)


