

# Introduction



2

Emperor penguin (コウテイペンギン/황제펭귄)

# Flavor Changing Neutral Current

3

s/d

**Electro-Weak** 

Penguin (EWP)



In the SM, this occurs only via loop

Flavor changing neutral current (FCNC) is possible only via loop diagrams in the SM.

<u>e.g.  $B \rightarrow K^* \gamma$ </u>

- Sensitive to NP appearing in the loop.

Such a loop diagram tends to be a small branching fraction (D, K mesons).

➢ FCNC of B meson is relatively large thanks to V<sub>tb</sub>~1.

S. Watanuki @EWP meeting

### **Effective theory**

> In effective theory, B decay can be written as:

$$H_{eff} = -\frac{4G_f}{\sqrt{2}} \left[ \lambda_q^t \sum_{i=1}^{10} C_i O_i + \lambda_q^u \sum_{i=1}^{2} C_i (O_i - O_i^u) \right]$$

 $\rightarrow$  10 operators ( $O_i$ ) and corresponding Wilson coefficients ( $C_i$ )



### **Effective theory**

> In effective theory, B decay can be written as:



### Long distance effects

S. Watanuki

Non-perturbative effects on  $b \rightarrow s\gamma$ 



Effects which cannot be treated only by C<sub>7</sub> (**long distance effect**)

6

It cannot be calculated by perturbative. = Major sources of theoretical uncertainty

For example, the <u>resolved photon</u> is one of the annoying sources of theoretical error for the radiative study.

e of b s/dfor q q  $\gamma$ The hard gluon from  $O_8$ knocked the spectator quark which emit the hard photon.

### **Motivation of radiative**

EWP is dominated; compared to QCD penguin (i.e. charmless decays), the theoretical uncertainty is small

#### > BR measurements of inclusive $B \rightarrow X_{s(d)}\gamma$

- Constraint on  $|C_7|^2 + |C_7'|^2$
- Very strong to constrain charged Higgs (2HDM)

#### > CP asymmetry

- Constraint on  $Im(C_7)$ 

#### > Isospin asymmetry

- NP appearing in weak annihilation

#### Right handed photon process

- Constraint on  $C_7'$
- Left right symmetric model (LRSM)

# Reviews of analyses

#### Southern rockhopper penguin (イワトビペンギン/남부바위뛰기펭귄)

### **Exclusive vs Inclusive**



# **Fully inclusive analyses**

#### Hadronic-tag

- $\succ$  *B*<sub>tag</sub> → *hadronic* is **fully reconstructed**
- Low BG, low signal efficiency
- Charged/neutral can be separated

### Leptonic-tag

- → **High momentum lepton** is required for  $B_{tag} \rightarrow D^{(*)} \ell \nu$  to reduce continuum BG
- B-flavor can be determined by lepton charge
- Kinematic constraint is not possible for neutrino in tag side

#### Untagged

- > Nothing is reconstructed other than  $\gamma$
- No efficiency loss, but a huge BG

#### [Note]

Had-tag and Lep-tag are independent, so one can merge the results.

2020/11

S. Watanuki @Flavor Workshop



|        | Had.      | Lep.     | Untagged  |
|--------|-----------|----------|-----------|
| Eff.   | Very low  | Moderate | Very good |
| Purity | Very good | Good     | Very low  |



# Branching fraction of inclusive $B \rightarrow X_s \gamma$ 11



### **Direct CP asymmetry**

- B radiative decays are dominated by EWP, thus ACP is expected to be tiny
  - Interference of other diagram is small
  - For  $b \rightarrow s\gamma$ ,  $V_{tb} \sim 1$  and  $V_{ts}$  has small weak-phase  $\rightarrow$  Interference term should be small
- In fact, experimental results are all consistent with 0 (both exclusive and inclusive)
- Exclusive  $A_{CP}$  can be used to constraint  $Im(C_7)$ 
  - depending on strong-phase
- > On the other hand,  $b \rightarrow d\gamma$  can have a sizable  $A_{CP}$  for the large weak-phase of  $V_{td}$





 $A_{CP}$ 

-1.0

### **CP** asymmetry of inclusive

- Inclusive A<sub>CP</sub> is suffered from the large theoretical error due to the resolved photon
  - Poor sensitivity to NP, especially in case of  $X_d\gamma$ ...



## **CP** asymmetry of inclusive

Inclusive A<sub>CP</sub> is suffered from the large theoretical error due to the resolved photon

– Poor sensitivity to NP, especially in case of  $X_d\gamma$ ...

#### What we can do:

1. Take the difference b/w  $A_{CP}^+$  and  $A_{CP}^0$  to **cancel the long-distance effects**;  $\Delta A_{CP} \equiv A_{CP}(B^+ \rightarrow X_s^+ \gamma) - A_{CP}(B^0 \rightarrow X_s^0 \gamma)$  $\approx 4\pi^2 \alpha_s \frac{\overline{\Lambda_{78}}}{m_b} Im \left(\frac{C_8}{C_7}\right) = 0$  (SM)





### **CP** asymmetry of inclusive

Inclusive A<sub>CP</sub> is suffered from the large theoretical error due to the resolved photon

– Poor sensitivity to NP, especially in case of  $X_d\gamma$ ...

#### What we can do:

1. Take the difference b/w  $A_{CP}^+$  and  $A_{CP}^0$  to **cancel the long-distance effects**;  $\Delta A_{CP} \equiv A_{CP}(B^+ \rightarrow X_s^+ \gamma) - A_{CP}(B^0 \rightarrow X_s^0 \gamma)$  $\approx 4\pi^2 \alpha_s \frac{\overline{A_{78}}}{m_b} Im \left(\frac{C_8}{C_7}\right) = 0$  (SM)

2. Fully inclusive study will include  $b \rightarrow (s + d)\gamma$ , which **cancels b/w**  $X_s$  and  $X_d$  uncertainties;  $A_{CP}(b \rightarrow (s + d)\gamma) \approx 0$  (*SM*)

![](_page_14_Figure_6.jpeg)

![](_page_14_Figure_7.jpeg)

# Search for right-handed y process

![](_page_15_Picture_1.jpeg)

16

- SM EWP occurs via qq-W coupling.
  - Only left (right) handed (anti-)fermion can couple
  - In the  $\gamma_R$  process, the lighter quark in the final states must take over the helicity flip  $\rightarrow$  helicity suppressed in SM
- The process will enhance if there is a contribution from new mediator particle (W') which couples with only right (left) handed (anti-)fermions
  - Left right symmetric model  $(SU(3)_c xSU(2)_L xSU(2)_R xU(1)_Y)$

#### ► <u>How to measure</u>

- Time dependent CP study for  $B^0 \to f_{CP}\gamma$  (e.g.  $B^0 \to K_S\pi^0\gamma$ ,  $B^0 \to \rho^0\gamma$ , etc.)
- $-\gamma \rightarrow e^+e^-$  conversion using  $B^0 \rightarrow K^-\pi^+\gamma$
- Up-down asymmetry using  $B \rightarrow K\pi\pi\gamma$

### **Time dependent CPV (TCPV)**

![](_page_16_Figure_1.jpeg)

# **Belle II prospects**

#### Branching ratio of $B \to X_s \gamma$

- Systematics dominant:
  - Fake photon (fully-inclusive)  $\rightarrow$  Further study for ECL cluster
  - X<sub>s</sub> hadronization model (semi-inclusive)
     → Additional modes to be reconstructed
- > Theory uncertainty should be updated

![](_page_17_Figure_6.jpeg)

#### Time dependent CPV

- Statistical uncertainty dominant
  - Expected the significant improvement
- Other modes than B<sup>0</sup> → K<sup>\*0</sup>γ are also possible (K<sub>S</sub>ρ<sup>0</sup>γ, ρ<sup>0</sup>γ, etc.)
  2020/11 S. Watanuki @Flavor Work

![](_page_17_Figure_11.jpeg)

Semi-inc.
 Full-inc.
 (had-tag)
 Fully inclusive is also possible by Hadronic-tag

![](_page_17_Figure_13.jpeg)

# My current study; $B \rightarrow \rho \gamma$ with Belle + Belle II

![](_page_18_Picture_1.jpeg)

Royal penguin (ロイヤルペンギン/로열펭귄)

S. Watanuki @EWP meeting

# Introduction

https://docs.belle2.org/record/2992/files/BELLE2-NOTE-PH-2022-020\_v3.pdf

- Rediscovery of  $B \rightarrow \rho \gamma$  is a first step of FCNC  $b \rightarrow d\gamma$  process in Belle II.
  - BR is one order of magnitude less than  $K^*\gamma$ .
  - Independent NP search with  $K^*\gamma$ .
- > Currently  $A_1$  of  $B \rightarrow \rho \gamma$  shows a slight tension with SM prediction.

#### **Targets**

- $\blacktriangleright$  BR(+), BR(0), A<sub>I</sub> and A<sub>CP</sub> by Belle (711/fb) + Belle II (364/fb)
- > Aims to publish paper

### 1. Rediscovery (BR)

![](_page_19_Figure_10.jpeg)

![](_page_19_Picture_11.jpeg)

$$A_{I}^{\rho\gamma} \equiv \frac{c_{\rho}^{2}\Gamma(\rho^{0}\gamma) - \Gamma(\rho^{+}\gamma)}{c_{\rho}^{2}\Gamma(\rho^{0}\gamma) + \Gamma(\rho^{+}\gamma)'}, \quad c_{\rho} = \sqrt{2}$$

S. Watanuki @EWP meeting

# **Selections**

#### BELLE

#### **BELLE II**

- Event level
  - foxWolframR2 < 0.7 BtoXgamma</p> skim adopted
  - nTracks >= 3
- Primary Photon
  - $1.8 < E^* < 2.8 \text{ GeV}$
  - Cluster region == 2
  - E9oE21>=0.95
  - Cluster second moment <= 1.5</li>
  - Cluster # Hits  $\geq 8$
- > Charged particles
  - $PID_{\pi/K} > 0.6$  for  $\pi^+$
  - $PID_{K/\pi} > 0.6$  for K<sup>+</sup>
  - dr < 0.5 cm
  - |dz| < 2cm
- > Neutral  $\pi^0$  (for  $\rho^+ \rightarrow \pi^+ \pi^0$  channel)
  - $M_{\pi^0} \in (120, 145) \text{ MeV/c}^2$

S. Watanuki @EWP meeting $E_{\gamma} > 50 MeV$ 

#### Primary Photon

- $-1.8 < E^* < 2.8 \text{ GeV}$
- Cluster region == 2
- E9oE25>=0.95
- Cluster second moment  $\leq 1.5$
- Cluster # Hits  $\geq 8$

#### Charged particles

- $PID_{\pi/K} > 0.6$  for  $\pi^+$
- $PID_{K/\pi} > 0.6$  for K<sup>+</sup>
- dr < 0.5 cm
- |dz| < 2cm
- > Neutral  $\pi^0$  (for  $\rho^+ \rightarrow \pi^+ \pi^0$  channel)
  - $M_{\pi^0} \in (119, 151) \text{ MeV/c}^2$
- $_{2023/1/10}$  E<sub>y</sub> > 50MeV

# qq suppression

 $\geq$ 

| $\operatorname{Rank}$ | $B^+$ mode (Belle) | $B^0$ mode (Belle) | $B^+$ mode (Belle II) | $B^0$ mode (Belle II) |
|-----------------------|--------------------|--------------------|-----------------------|-----------------------|
| 1                     | $\cos TBTO$        | $\cos TBTO$        | $\cos TBTO$           | $\cos TBTO$           |
| 2                     | sphericity         | hso12              | hso12                 | hso12                 |
| 3                     | hso12              | sphericity         | hso14                 | hso02                 |
| 4                     | $\cos 	heta$       | hso02              | hso02                 | hso14                 |
| 5                     | hoo0               | hso14              | sphericity            | $\cos 	heta$          |
| 6                     | hso20              | hso20              | $\cos 	heta$          | hso10                 |
| 7                     | thrustOm           | $\cos 	heta$       | R2                    | hso20                 |
| 8                     | $\cos 	heta_{hel}$ | hso10              | hoo0                  | R2                    |
| 9                     | hso04              | hoo2               | $\cos 	heta_{hel}$    | sphericity            |
| 10                    | $\cos TBz$         | ${\rm thrustBm}$   | hso 20                | $\cos 	heta_{hel}$    |

Optimized for

(charged, mixed) x (Belle, Belle II) independently.

- Belle II adopted R2<0.5 cut for training samples while Belle did not.</li>
- This would lead an issue in  $B \rightarrow D\pi$  control sample study... (later)

**cosTBTO** is the largest contribution.

![](_page_21_Figure_7.jpeg)

## qq suppression

![](_page_22_Figure_1.jpeg)

S. Watanuki @EWP meeting 2022 May

### **Control samples**

74

![](_page_23_Figure_1.jpeg)

# Fitting

- Simultaneous 3D fitting with 3x2=6 samples to determine target observables.
  - $(M_{bc}, \Delta E, M_{k\pi})$  for  $(B^+, B^-, B^0) \times (Belle, Belle II)$
  - Floating parameters:

![](_page_24_Figure_4.jpeg)

![](_page_24_Figure_5.jpeg)

### **Systematics summary**

|                   | BR(+)    |          | BR(0)    |          | AI    |       | ACP   |       |
|-------------------|----------|----------|----------|----------|-------|-------|-------|-------|
| recon eff (B1)    | 1.67E-08 | 1.67E-08 | 1.74E-08 | 1.70E-08 | 0.52% | 0.49% | 0.21% | 0.21% |
| recon eff (B2)    | 1.76E-08 | 1.81E-08 | 4.30E-09 | 4.08E-09 | 0.79% | 0.75% | 0.40% | 0.40% |
| cut eff (B1)      | 7.19E-08 | 6.68E-08 | 3.98E-08 | 3.77E-08 | 3.64% | 3.71% | 0.66% | 0.66% |
| cut eff (B2)      | 3.19E-08 | 3.25E-08 | 1.32E-08 | 1.33E-08 | 1.61% | 1.56% | 0.54% | 0.54% |
| PDF para (B1)     | 1.46E-08 | 1.53E-08 | 3.11E-08 | 5.66E-08 | 1.70% | 3.09% | 1.04% | 1.03% |
| PDF para (B2)     | 1.15E-08 | 5.16E-09 | 4.92E-09 | 3.20E-09 | 0.36% | 0.55% | 0.32% | 0.28% |
| Signal calib (B1) | 4.55E-09 | 2.37E-08 | 2.86E-09 | 7.97E-09 | 1.08% | 0.45% | 0.56% | 0.56% |
| Signal calib (B2) | 1.72E-09 | 1.31E-08 | 5.58E-10 | 3.84E-09 | 0.59% | 0.20% | 0.36% | 0.34% |
| Histogram PDF     | 1.43E-08 | 3.93E-09 | 2.34E-08 | 9.89E-10 | 1.22% | 0.65% | 0.61% | 0.51% |
| K* yields         | 2.73E-08 | 2.61E-08 | 4.34E-08 | 4.12E-08 | 1.89% | 1.87% | 0.55% | 0.55% |
| BB peak yields    | 5.15E-09 | 5.38E-09 | 2.78E-09 | 2.68E-09 | 0.28% | 0.25% | 0.21% | 0.20% |
| Peaking ACP       | 8.13E-10 | 1.08E-09 | 2.28E-10 | 2.69E-10 | 0.05% | 0.04% | 0.94% | 0.89% |
| Number of BB      | 1.67E-08 | 1.62E-08 | 1.71E-08 | 1.69E-08 | 0.23% | 0.25% | 0.22% | 0.22% |
| Others            | 1.43E-08 | 1.39E-08 | 1.59E-08 | 1.58E-08 | 2.39% | 2.47% | 0.07% | 0.07% |
| Total             | 9.28E-08 | 9.11E-08 | 7.79E-08 | 8.62E-08 | 5.68% | 6.10% | 2.06% | 1.99% |

- All systematics are reasonably smaller than stat.
- The dominant source comes from <u>Belle cut efficiency calibration</u>

due to statistics of control sample. • A<sub>CP</sub> 2022/12/13 • Control sample. • A<sub>CP</sub>

#### Toy-MC results (711/fb + 364/fb)

 $BR(B^+ \to \rho^+ \gamma) = (9.81 \pm 2.31^{+0.93}_{-0.91}) \times 10^{-7}$ 

• 
$$BR(B^0 \to \rho^0 \gamma) = (8.63 \pm 1.38^{+0.78}_{-0.86}) \times 10^{-7}$$

• 
$$A_I = (33.5 \pm 12.9^{+5.7}_{-6.1})\%$$

• 
$$A_{CP} = (0.3 \pm 23.6^{+2.1}_{-2.0})\%$$

# Thank you

![](_page_26_Picture_1.jpeg)

#### Electroweak Penguin (電弱ペンギン/전기-약 펭귄)

27

Yonsei HEP group seminar

# **Analysis setup**

| Signal MC               | Belle             | Belle II                   |                                                      |
|-------------------------|-------------------|----------------------------|------------------------------------------------------|
| $B^+ \to \rho^+ \gamma$ | 520K<br>(~700str) | 5M<br>(MC15)               |                                                      |
| $B^0 \to \rho^0 \gamma$ | 520K<br>(~700str) | 20M<br>(MC15)              | ← Belle II neutral is<br>accidentally 4 times larger |
| Data                    | 711/fb            | 364/fb<br>(Proc13+Buckets) |                                                      |

Release: light-2207-bengal

#### ➤ Skim:

- radb\_b skim for Belle
- BtoXgamma for Belle II

#### > Background samples:

- 2 streams (1 for qq sup. training)
   50 streams rare B for Belle
- 1/ab generic MC for Belle II (MC15ri\_b)

| $rad_b skim for Belle$               | BtoX<br>gamma skim for Belle ${\rm I\!I}$ |
|--------------------------------------|-------------------------------------------|
| $1.4 < E_{\gamma}^* < 3.4~{\rm GeV}$ | foxWolframR2 $< 0.7$                      |
| E9/E25 > 0.9                         | $n_{ m tracks} \geq 3$                    |
|                                      | cluster E9/E21 > 0.9                      |
|                                      | $1.4 < E_\gamma^* < 3.4~{\rm GeV}$        |

# **Selections**

29

#### BELLE

#### **BELLE II**

- Event level
  - foxWolframR2 < 0.7 BtoXgamma</p> skim adopted
  - nTracks >= 3
- Primary Photon
  - $1.8 < E^* < 2.8 \text{ GeV}$
  - Cluster region == 2
  - E9oE21>=0.95
  - Cluster second moment <= 1.5</li>
  - Cluster # Hits  $\geq 8$
- > Charged particles
  - $PID_{\pi/K} > 0.6$  for  $\pi^+$
  - $PID_{K/\pi} > 0.6$  for K<sup>+</sup>
  - dr < 0.5 cm
  - |dz| < 2cm
- > Neutral  $\pi^0$  (for  $\rho^+ \rightarrow \pi^+ \pi^0$  channel)
  - $M_{\pi^0} \in (120, 145) \text{ MeV/c}^2$

S. Watanuki @EWP meeting  $E_{\gamma} > 50 MeV$ 

#### Primary Photon

- $-1.8 < E^* < 2.8 \text{ GeV}$
- Cluster region == 2
- E9oE25>=0.95
- Cluster second moment  $\leq 1.5$
- Cluster # Hits  $\geq 8$

#### Charged particles

- $PID_{\pi/K} > 0.6$  for  $\pi^+$
- $PID_{K/\pi} > 0.6$  for K<sup>+</sup>
- dr < 0.5 cm
- |dz| < 2cm
- > Neutral  $\pi^0$  (for  $\rho^+ \rightarrow \pi^+ \pi^0$  channel)
  - $M_{\pi^0} \in (119, 151) \text{ MeV/c}^2$

 $_{2022/12/13}E_{\gamma} > 50 MeV$ 

## **Cut tables**

#### Charged

#### Neutral

| Cut                  | Signal | $K^{*+}\gamma$ | $B\overline{B}$ | $q\overline{q}$ | Significance |
|----------------------|--------|----------------|-----------------|-----------------|--------------|
| No cut               | 145    | 380            | 2241            | 299656          | 0.26         |
| Window               | 114    | 75             | 248             | 22670           | 0.75         |
| $\pi^0$ veto         | 95     | 61             | 143             | 6785            | 1.13         |
| $\eta$ veto          | 93     | 59             | 139             | 5710            | 1.20         |
| $q\overline{q}$ sup. | 54     | 26             | 51              | 215             | 2.90         |

| $\operatorname{Cut}$ | Signal | $K^{*0}\gamma$ | $B\overline{B}$ | $q\overline{q}$ | Significance |
|----------------------|--------|----------------|-----------------|-----------------|--------------|
| No cut               | 188    | 721            | 1243            | 218666          | 0.40         |
| Window               | 150    | 208            | 145             | 15782           | 1.18         |
| $\pi^0$ veto         | 124    | 170            | 95              | 4597            | 1.76         |
| $\eta$ veto          | 121    | 166            | 89              | 3734            | 1.89         |
| $q\overline{q}$ sup. | 69     | 87             | $\overline{34}$ | 124             | 3.89         |

| Cut      | Signal | $K^{*+}\gamma$ | $B\overline{B}$ | $q\overline{q}$ | Significance |
|----------|--------|----------------|-----------------|-----------------|--------------|
| No cut   | 91     | 188            | 1062            | 702370          | 0.11         |
| Window   | 72     | 41             | 162             | 51163           | 0.32         |
| pi0 veto | 63     | 35             | <b>98</b>       | 10640           | 0.61         |
| eta veto | 60     | 33             | <b>96</b>       | 7695            | 0.68         |
| qq sup.  | 36     | 15             | 38              | 221             | 2.06         |

| Cut      | Signal | $K^{*0}\gamma$ | $B\overline{B}$ | $q\overline{q}$ | Significance |
|----------|--------|----------------|-----------------|-----------------|--------------|
| No cut   | 84     | 235            | 447             | 356802          | 0.14         |
| Window   | 69     | 71             | 55              | 26167           | 0.43         |
| pi0 veto | 60     | 61             | 37              | 5132            | 0.83         |
| eta veto | 56     | 58             | 34              | 3655            | 0.92         |
| qq sup.  | 40     | 36             | 19              | 244             | 2.20         |

B2

B1

### **Signal efficiency calibration**

![](_page_30_Figure_1.jpeg)

| Belle                        |                                                    | Cut                                         | Control                                                                                                                         | Eff ratio                                                                         |
|------------------------------|----------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Charged                      | pi0veto                                            | 0.50                                        | $B \rightarrow D\pi^+$                                                                                                          | <u>0.967+/-0.007</u>                                                              |
|                              | etaveto                                            | 0.96                                        | $D^+ \rightarrow U^{*+} u$                                                                                                      |                                                                                   |
|                              | qq sup                                             | 0.95                                        | $D \rightarrow V \gamma h$                                                                                                      | <u>0.015+/-0.002</u>                                                              |
| Mixed                        | pi0veto                                            | 0.50                                        | $B \rightarrow D\pi^+$                                                                                                          | <u>0.967+/-0.007</u>                                                              |
|                              | etaveto                                            | 0.95                                        | $D^0 \rightarrow U^{*0} \alpha$                                                                                                 | 1 000 / 0 027                                                                     |
|                              | qq sup                                             | 0.95                                        | $B^* \to K^- \gamma$                                                                                                            | 1.000+/-0.03/                                                                     |
|                              |                                                    |                                             |                                                                                                                                 |                                                                                   |
|                              |                                                    |                                             |                                                                                                                                 |                                                                                   |
| Belle II                     |                                                    | Cut                                         | Control                                                                                                                         | Eff ratio                                                                         |
| Belle II<br>Charged          | pi0veto                                            | Cut<br>0.60                                 | Control<br>$B \rightarrow D\pi^+$                                                                                               | Eff ratio<br><u>1.058+/-0.012</u>                                                 |
| Belle II<br>Charged          | pi0veto<br>etaveto                                 | Cut<br>0.60<br>0.50                         | Control<br>$B \rightarrow D\pi^+$                                                                                               | Eff ratio<br><u>1.058+/-0.012</u>                                                 |
| Belle II<br>Charged          | pi0veto<br>etaveto<br>qq sup                       | Cut<br>0.60<br>0.50<br>0.94                 | $Control$ $B \to D\pi^+$ $B^+ \to K^{*+}\gamma$                                                                                 | Eff ratio<br><u>1.058+/-0.012</u><br><u>0.984+/-0.074</u>                         |
| Belle II<br>Charged<br>Mixed | pi0veto<br>etaveto<br>qq sup<br>pi0veto            | Cut<br>0.60<br>0.50<br>0.94<br>0.53         | $Control$ $B \to D\pi^+$ $B^+ \to K^{*+}\gamma$ $B \to D\pi^+$                                                                  | Eff ratio<br><u>1.058+/-0.012</u><br><u>0.984+/-0.074</u><br><u>1.058+/-0.012</u> |
| Belle II<br>Charged<br>Mixed | pi0veto<br>etaveto<br>qq sup<br>pi0veto<br>etaveto | Cut<br>0.60<br>0.50<br>0.94<br>0.53<br>0.50 | Control<br>$B \rightarrow D\pi^+$<br>$B^+ \rightarrow K^{*+}\gamma$<br>$B \rightarrow D\pi^+$<br>$R^0 \rightarrow K^{*0}\omega$ | Eff ratio<br><u>1.058+/-0.012</u><br><u>0.984+/-0.074</u><br><u>1.058+/-0.012</u> |

- Control samples  $(B \to D\pi^+ \text{ and } B \to K^*\gamma)$  show good agreements of the cut variables with  $B \to \rho\gamma$ .
- $\blacktriangleright$  Efficiency ratio is calculated by fitting  $M_{bc}$  before and after the same cuts.
- For pi0veto, calibration depending on the 2D plane of  $(E^*, \theta^*)$  are obtained to take the 2022 kinematic difference into accounts. Watanuki @EWP meeting

# **Fitting models**

| Comp.  | M <sub>bc</sub>         | ΔE                                      | Μ <sub>Kπ</sub>           |
|--------|-------------------------|-----------------------------------------|---------------------------|
| Signal | Crystal Ball            | Crystal Ball                            | Novosibirsk x<br>Gaussian |
| Κ*γ    |                         | 3D Histogram                            |                           |
| BB     | Crystal Ball<br>+ ARGUS | Exponential                             | 1D<br>Histogram           |
| qq     | ARGUS                   | 2 <sup>nd</sup> Chebychev<br>polynomial | Novosibirsk x<br>Gaussian |

![](_page_31_Figure_2.jpeg)

➢ 3D product PDFs are obtained.

#### > Floating parameters:

- Signal ...  $A_{I\prime}$   $A_{CP}$  and  $\Gamma$
- qq ... Yields, curvature ( $M_{bc}$ ), c1, c2 ( $\Delta E$ ), mean, width of Novosibirsk ( $M_{K\pi}$ ) independent on datasets
- $\bigstar$  Note that  $B^+$  and  $B^-$  use common qq parameters

Totally 27 floating parameters are simultaneously decided.
Pulls are consistent with mean=0 & width=1 (1000 toys).

### **Systematics**

#### Reconstruction efficiency calibration

- Photon, tracking, PID,  $\pi^0$  (for charged)
- Official values for calibration (Belle, Belle II independently)

#### Cut efficiency calibration

- Calibration by  $B \rightarrow D\pi$  and  $B \rightarrow K^*\gamma$  control sample

#### Fixed PDF shape

- +/-1 $\sigma$  fluctuation for function PDF (Signal, BB, and M<sub>K $\pi$ </sub> tail of qq)
- For histogram PDF (K<sup>\*</sup> $\gamma$  and BB  $M_{K\pi}$ ); kernel estimation  $\rightarrow$  generate toy-MC for new histogram PDF

#### Peaking components

- For K<sup>\*</sup> $\gamma$ , fluctuated by  $\pi \rightarrow$ K fake rate uncertainty and measured BR uncertainty
- For other combinatorial, the BR uncertainty is taken for each components
- A<sub>CP</sub> of peaking components are also taken into account

#### > Others

- N(BB), f+-/f00, lifetime of  $B^+/B^0$ 

# **Yields of Peaking Components**

34

#### $\underline{K^*\gamma}$

- $\succ N_{rec}(K^*\gamma) = 2N_{BB} \times BR(B \to K^*\gamma) \times R_{fake}(K \to \pi) \times \epsilon$
- > The uncertainty of BR and R<sub>fake</sub> are taken as systematics.
- The uncertainty of ε had been already taken as well as calibration of signal (categorized as "cut eff.").

#### Other BB

- $\succ N_{peak}' = N_{peak} \left( F_{X_s \gamma} w_{X_s \gamma} + F_{X_d \gamma} w_{X_d \gamma} + F_{\pi^0} w_{\pi^0} + F_{\eta} w_{\eta} + F_{other} w_{other} \right)$
- Fluctuate each components:
  - BR(B $\rightarrow$ X<sub>s</sub> $\gamma$ )=(3.49+/-0.19)x10<sup>-4</sup>
  - BR(B $\rightarrow$ X<sub>d</sub> $\gamma$ )=(9.2+/-3.0)x10<sup>-6</sup>
  - For  $\pi^0$  origin,  $\eta$  origin  $\gamma$ , weighted average is taken assuming  $\sigma BR$  in breakdown.
  - For the "others", +/-50% is taken to estimate systematics conservatively.

### Signal shape calibration

data\_b2mix\_Mbc

![](_page_34_Figure_2.jpeg)

- Shapes of  $M_{bc}$  and  $\Delta E$  are calibrated by  $B \rightarrow K^* \gamma$ control sample.
- $\succ$  Treatment of BB:
  - For Mbc, it is fixed by MC
  - For deltaE, histogram PDF is adopted and yield is kept floating

### Correlation

| B1chg                                   | Mbc vs deltaE                    | deltaE vs Mkpi                              | Mkpi vs Mbc                              | B1mix                                   | Mbc vs deltaE                             | deltaE vs Mkpi                             | Mkpi vs Mbc                             |
|-----------------------------------------|----------------------------------|---------------------------------------------|------------------------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------------|-----------------------------------------|
| Signal                                  | 0.121                            | 0.010                                       | 0.011                                    | Signal                                  | 0.093                                     | 0.018                                      | 0.018                                   |
| K*gamma                                 | -0.032                           | -0.181                                      | -0.194                                   | K*gamma                                 | 0.227                                     | -0.090                                     | -0.046                                  |
| BB                                      | -0.247                           | 0.004                                       | 0.056                                    | BB                                      | -0.312                                    | 0.098                                      | 0.082                                   |
| qq                                      | -0.006                           | 0.024                                       | 0.026                                    | qq                                      | -0.004                                    | 0.102                                      | 0.057                                   |
|                                         |                                  |                                             |                                          |                                         |                                           |                                            |                                         |
| B2chg                                   | Mbc vs deltaE                    | deltaE vs Mkpi                              | Mkpi vs Mbc                              | B2mix                                   | Mbc vs deltaE                             | deltaE vs Mkpi                             | Mkpi vs Mbc                             |
| <b>B2chg</b><br>Signal                  | Mbc vs deltaE<br>0.069           | deltaE vs Mkpi<br>-0.006                    | Mkpi vs Mbc<br>-0.015                    | <b>B2mix</b><br>Signal                  | Mbc vs deltaE<br>0.036                    | deltaE vs Mkpi<br>0.010                    | Mkpi vs Mbc<br>0.008                    |
| <b>B2chg</b><br>Signal<br>K*gamma       | Mbc vs deltaE<br>0.069<br>-0.019 | deltaE vs Mkpi<br>-0.006<br>-0.132          | Mkpi vs Mbc<br>-0.015<br>-0.197          | <b>B2mix</b><br>Signal<br>K*gamma       | Mbc vs deltaE<br>0.036<br>0.223           | deltaE vs Mkpi<br>0.010<br>-0.139          | Mkpi vs Mbc<br>0.008<br>-0.075          |
| <b>B2chg</b><br>Signal<br>K*gamma<br>BB | Mbc vs deltaE<br>0.069<br>-0.019 | deltaE vs Mkpi<br>-0.006<br>-0.132<br>0.040 | Mkpi vs Mbc<br>-0.015<br>-0.197<br>0.041 | <b>B2mix</b><br>Signal<br>K*gamma<br>BB | Mbc vs deltaE<br>0.036<br>0.223<br>-0.250 | deltaE vs Mkpi<br>0.010<br>-0.139<br>0.144 | Mkpi vs Mbc<br>0.008<br>-0.075<br>0.032 |

![](_page_35_Figure_3.jpeg)

![](_page_35_Figure_4.jpeg)

# **Availability of prod-PDF**

![](_page_36_Figure_1.jpeg)

Only K<sup>\*</sup>γ component is fitted by 3D histogram-PDF instead of production of functional PDFs.

> This is because prod-PDF is clearly not relevant for fitting (though  $\chi^2$  of above fit is not that bad, 1.63).

### **Fitting models**

![](_page_37_Figure_1.jpeg)

# **Histogram PDF**

- Histogram PDF in my fitter:
  - 3D histogram ( $M_{bc}$ ,  $\Delta E$ ,  $M_{k\pi}$ ) for  $K^*\gamma$ 
    - 1D histogram ( $M_{k\pi}$ ) for other BB background
- Procedure
  - 1. Make kernel estimation to get smooth line.
  - 2. Create toy-MC by same statistics of MC for each fitting trials (1000 times).
  - 3. Use the toy-MC histogram as new PDF.

![](_page_38_Figure_8.jpeg)

$$\sigma_{sys} = \mathcal{O}(GSIM) - \mathcal{O}(Toy)$$

Newly generated for each toy fitting trials

# Peaking due to $\pi^0$ origin $\gamma$ BG

40

![](_page_39_Figure_1.jpeg)

 $\succ \sigma_{BR}^{tot} = \sqrt{\Sigma_i f_i \sigma_{BR_i}^2}$  is used for fluctuation to estimate systematics.

- The "others" in the breakdown is a sum of:
  - 1. Tons of garbage
  - 2. Modes whose BR has not been measured yet
- $\succ$   $\sigma$ BR of "others" is assumed to be same as the largest  $\sigma$ BR(i) so far.
  - In case of Belle charged mode, the uncertainty of  $BR(B^+ \rightarrow a_1^+ \pi^0)$ .
  - Not sure if this criteria is enough conservative.
  - +/-50% (for example) should be adopted?

### **Toy-MC Sensitivity**

![](_page_40_Figure_1.jpeg)

2022/12/13