22.12.11. 27 1:06 Geant4 Tutorial Hands On 3

Hands on 3: Build detector, retrieve simulation results

Introduction
Building_the geometry:
o Exercise 1 Step 1
o Exercise 1 Step 2
o Exercise 1 Step 3
o Exercise 1 Step 4
o Exercise 1 Step 5
o Exercise 1 Step 6 (Optional)
Sensitive Detectors and Hits
o Exercise 2 Step 1
o Exercise 2 Step 2
o Exercise 2 Step 3
User Actions |
o Exercise 3

Introduction

In this third hands-on you will learn how to:

e Create a semi-realistic geometry
e Collect simulation output from sensitive detectors in hits
e Use the event user-action to dump event information from hits on screen

The code for this hands-on session is here (for your reference, the complete solution is also availavble here). Copy the the
tar ball to your local area.

Follow the instructions of Hands On 1 to configure with cmake the code and build it. Try out the application:

$ cd <tutorial>

$ tar xzf HandsOn3.tar.gz
$ cd HandsOn3

$ cmake .

$ make -j 2 —f Makefile

$./G4tut

Note: Ignore compiler warning messages. They disappear once you complete the exercise.

This geometry should be displayed:

https://userweb.jlab.org/~asai/KISTI2022/HandsOn3/ 110

https://userweb.jlab.org/~asai/KISTI2022/HandsOn3/HandsOn3.tar.gz
https://userweb.jlab.org/~asai/KISTI2022/HandsOn3/HandsOn3-solution.tar.gz
https://userweb.jlab.org/~asai/KISTI2022/HandsOn1/index.html

22.12.11. 27 1:06 Geant4 Tutorial Hands On 3

The geometry is same as Hands On 2, as we will start from here to build a two-arm spectrometer. The first arm is already
defined, and in the first exercise you will build the second arm completed with a calorimeter:

e Each arm includes 5 drift-chamber planes to measure the position of the passing particles (in green).

e Each arm includes a hodoscope made of scintillator plates to measure the time-of-flight of the incoming particles (in
red).

e A central magnetic system to deflect the charged particles (white cylinder).

e Exercise: An electromagnetic calorimeter composed of Csl crystals (yellow in the picture).

e Exercise: An hadronic sampling calorimeter composed of Lead as absorber and Scintillator as active material (blue).

The second arm can be rotated between runs. The magnetic-field value can also be changed. User defined Ul commands
allow to change arm rotation and magnetic field value at run time.
At the end of this hands on the complete geometry will look like:

Building the geometry

There are 6 steps involved in this exercise to build the geometry.

The application will compile and work correctly only when the first 5 steps are completed (however it is a good idea to try
to compile at each step to fix early trivial errors).

The last step is optional because it has the goal to change visualization attributes (colors of geometry elements) and has
no effect on simulation results.

Reminder on different ways to create a geometry setup:

e After creating solids and logical volumes you can place physical volumes via G4PvPlacement (these have been already
covered in Hands On 2).

e You you can place multiple copies of the same logical volumes via multiple placements.

e Or you can use of G4PVParametrised to place multiple copies of the same volume with dimensions/position
parametrised by the copy number.

e You can also use replicas to slice a larger volume in smaller pieces.

Check the DetectorConstruction.hh file, since many variables you will need are already defined there.
Exercise 1 Step 1

Implement the second hodoscope.

The second hodoscope is composed of 25 planes of dimensions: 10x40x1 cm. The hodoscopes tiles are composed of
scintillator material. Instantiate a single shape and a single logical volume. Place 25 physical volume placements in the
second arm mother volume (this mother volume is already created). Each tile is positioned at Y=Z=0 with respect to the
mother volume, while the X coordinates depends on the tile numnber.

Hint: Check what is done for the hodoscope of the first arm. Remember dimensions passed to Geant4 solid classes are
half dimensions.

Solution

“DetectorConstruction.cc File: H

https://userweb.jlab.org/~asai/KISTI2022/HandsOn3/ 2/10

https://userweb.jlab.org/~asai/KISTI2022/HandsOn2/index.html
https://userweb.jlab.org/~asai/KISTI2022/HandsOn2/index.html

22.12.11. 27 1:06 Geant4 Tutorial Hands On 3

//
// Exercise 1
// Complete the full geometry.
// Note that second arm, by default is rotated of
// 30 deg.
// Step 1: Add an hodoscope with dimensions (X,Y,Z):
// (10,40,1)cm made of scintillator.
// There are 25 planes placed at Y=7=0 (w.r.t. mother volume)
// hodoscopes in second arm
G4VSol id* hodoscope2Solid = new G4Box("hodoscope2Box",5.*cm,20.%cm,0.5%cm);
fHodoscope2Logical = new G4LogicalVolume(hodoscope2Solid,scintillator, "hodoscope2logical"):
for (G4int i=0;i<25;i++)
{
G4double x2 = (i-12)*10.*cm;
new
G4PVPlacement (0,G4ThreeVector (x2,0.,0.), fHodoscope2Logical, "hodoscope?Physical", secondArmLogical,false,i,checkOver laps):

Exercise 1 Step 2

Build the drift chambers.

The second arm contains 5 drift chambers made of argon gas with dimensions 300x60x2 cm. These are equally spaced
inside the second arm starting from -2.5 m to -0.5 m along the Z coordinate.
Hint: Use same methods used for step 1.

Solution

DetectorConstruction.cc File:

// Step 2: Add 5 drift chambers made of argon, with dimensions (X,Y,Z):

// (300,60,2)cm

// These are placed equidistant inside the second arm at distances from -2.5m

// to -0.5m

// drift chambers in second arm

G4VSol idx chamber2Solid = new G4Box("chamber2Box",1.5%m,30.*cm,1.*cm);

G4LogicalVolumex chamber2Logical = new G4LogicalVolume(chamber2Solid,argonGas, "chamber2Logical");
for (G4int i=0;i<5;i++)

{

G4double z2 = (i-2)*0.5*m — 1.5*m;
new G4PVPlacement (0,G4ThreeVector(0.,0.,z2),chamber2Logical, "chamber2Physical",secondArmLogical, false,i,checkOverlaps);

}

Exercise 1 Step 3

Add a virtual wire plane in the drift chambers.

Add a plane of wires in the drift chambers of step 2. To simplify our problem we do not describe the single wires, instead
we add a new argon-filled volume of dimensions 300x60x0.02 cm in the center of each of the five drift chambers.

This exercise is technically simple (a single placement), however it shows a very useful concept: we create a single instance
of this volume and we place it once inside the mother logical volume (the drift chamber logical volume), since the mother
volume is repeated five times, each chamber gets its own wire plane. We are reducing the number of class instances
needed for the description of our geometry (and thus reducing the memory footprint of our application, beside making
the code more compact and readable).

Solution

DetectorConstruction.cc File:

// Step 3: Add a virtual wire plane of (300,60,0.02)cm

// at (0,0,0) in the drift chamber

// virtual wire plane

G4VSolidx wirePlane2Solid = new G4Box("wirePlane2Box",1.5+m,30.xcm,0. 1*mm);

fWirePlane2Logical = new G4lLogicalVolume(wirePlane2Solid,argonGas, "wirePlane2logical");

new G4PVPlacement (0,G4ThreeVector (0.,0.,0.),fWirePlane2lLogical, "wirePlane2Physical",chamber2Logical, false,0,checkOverlaps);

Exercise 1 Step 4

Build an electromagnetic calorimeter.

An electromagnetic calorimeter has the goal to measure the energy of absorbed particles. Its dimensions are such that an
electron or gamma of the typical beam energy is fully absorbed, while hadrons (such as protons), only leave a fraction of
their energy in an electromagnetic calorimeter (because it is too shorf). In our example we implement a homogeneous
calorimeter made of a matrix of Csl crystals (a charged particles emits light when interacting with this material, the quantity

https://userweb.jlab.org/~asai/KISTI2022/HandsOn3/ 3/10

22.12.11. 27 1:06 Geant4 Tutorial Hands On 3

of light produced is proportional to the energy lost by the particle).

Build a 300x60x30 cm Csl calorimeter. The calorimeter is made of a matrix of 15x15x30 cm crystals. Instead of using
placements we show how to use parametrised solids. The idea is that the position of the placement is a function of the
crystal number. The parametrization class is already available for you in Cel[Parametrisation. Check the method
CellParameterisation::ComputeTransformation(...) to understand how the calorimeter cells are implemented.

The calorimeter should be placed at 2 m downstream along Z in the second arm mother volume.

Solution

DetectorConstruction.cc File:

// Step 4: Build Csl| EM-calorimeter of (300,60,30)cm
// placed at (0,0,2)m in the second arm.
// The calorimeter is made of 80 cells,
// parametrised according to Cel |Parametrisation
// G4VPVParameterisation concrete instance.
// This class parametrize the position of each cell depending
// on its copy number .
// The cells have dimensions 15x15x30 cm.
// (you could use placements or replicas, but here
// we show how to use parametrisations to build geometry)
// Csl calorimeter
G4VSolidx emCalorimeterSolid = new G4Box("EMcalorimeterBox",1.5%m,30.*cm, 15.%cm);
G4LogicalVolumex emCalorimeterLogical = new G4lLogicalVolume(emCalorimeterSolid,cs!,"EMcalorimeterlLogical");
new
G4PVPlacement (0,G4ThreeVector (0.,0.,2.*m),emCalorimeterLogical, "EMcalorimeterPhysical",secondArmLogical,false,0,checkOver laps):

// EMcalorimeter cells

G4VSolidx cellSolid = new G4Box("celIBox",7.5%cm,7.5%cm, 15.%cm);

fCelllLogical = new G4lLogicalVolume(cellSolid,csl,"celllLogical"):

G4VPVParameterisation* cellParam = new Cel |Parameterisation();

new G4PVParameterised('cellPhysical",fCelllLogical,emCalorimeterLogical,kXAxis,80,cellParam);

Exercise 1 Step 5

Implement the hadronic calorimeter

This is a sampling calorimeter made of lead as absorber material (used for its high density) interleaved with plates of
scintillator (the active material). It is called sampling because only a fraction of the energy lost by the particles is measured
(the one lost in the active material), this is proportional to the total energy loss and hence to the impinging particle energy
(you may be aware of the problem of non-compensation, but we will not discuss it here).

Implement the calorimeter using replicas to slice a larger volume into smaller units. Each cell has 20 layers of 4 cm thick
lead plate and 1 c¢cm thick scintillator plate. The size of the plate is 30 cm square. The calorimeter has 10 towers of 2 cells
each. Here is a schematic drawing of the calorimeter. From left to right: the full calorimeter with a single tower; a single
tower is divided in two cells; the third picture shows a single cell with a single layer; finally a single layer with the active
scintillator tile. Beam is perpendicular to the screen.

ray

e The whole Hadronic calorimeter box is made of lead. The size is 3 m in width, 60 cm in height, and 1 m in depth. It
should be placed 3 m downstream inside the second arm.

e Replica is defined along one Cartesian axis, define a tower of 30 cm width. It is also made of lead. The height and
depth of this column are equal to the full calorimeter dimensions.

e A cell made of lead has half height of a tower.

e Each layer in a cell is 5 cm thick. It is made of lead as well.

e Finally a scintillator tile should be placed inside each layer.

You can now test the setup, use Ul commands /tutorial/detector/armAngle, /tutorial/field/value to move the second arm
and set the magnetic field. Note that geometry can be changed only between runs. The methods Def ineCommands gives an
example on how to define application specific commands (this is an advanced topic not discussed in this Hands-On's). Use
the help Ul command to get help on commands.

https://userweb.jlab.org/~asai/KISTI2022/HandsOn3/ 4/10

22.12.11. 27 1:06 Geant4 Tutorial Hands On 3

Solution

DetectorConstruction.cc File:

// Step 5: Add a "sandwich" hadronic calorimeter of dimensions:

// (300,60,100)cm.

// The calorimeter absorber is made of lead. It is divided in

// towers of (30,60,100)cm. Use replica along X-axis

// for towers.

// A tower is composed of cells, "stacked" along Y-axis

// Each cell has dimension (30,30,100)cm.

// A cells has "layers" along Z-axis. Each layer has dimensions

// (30,30,5)cm. Also in this case use replicas.

// Finally in each layer there is a tile of scintillator material

// of dimensions (30,30,1)cm

// hadron calorimeter

G4VSolidx hadCalorimeterSolid = new G4Box("HadCalorimeterBox",1.5+m,30.*cm,50.*cm);
G4LogicalVolumex hadCalorimeterlLogical = new G4lLogicalVolume(hadCalorimeterSolid, lead, "HadCalorimeterLogical"):
new

// hadron calorimeter column

G4VSol idx HadCalColumnSolid = new G4Box("HadCalColumnBox", 15.*cm,30.*cm,50.*cm);

G4LogicalVolumex HadCalColumnLogical = new G4LogicalVolume(HadCalColumnSolid, lead, "HadCalColumnLogical");
new G4PVRep!lica("HadCalColumnPhysical", HadCalColumnLogical,hadCalorimeterlLogical, kXAxis, 10,30.*cm);

// hadron calorimeter cell

G4VSol idx HadCalCellSolid = new G4Box("HadCalCel IBox",15.%cm,15.%cm,50.*cm);

G4LogicalVolume* HadCalCellLogical = new G4LogicalVolume(HadCalCellSolid, lead, "HadCalCel ILogical");
new G4PVReplica("HadCalCel|Physical",HadCalCellLogical,HadCalColumnLogical ,kYAxis,2,30.%cm);

// hadron calorimeter layers

G4VSol idx HadCallayerSolid = new G4Box("HadCallayerBox",15.*cm,15.%cm,2.5%cm);

G4LogicalVolumex HadCallayerLogical = new G4lLogicalVolume(HadCallayerSolid, |lead, "HadCallLayerlLogical");
new G4PVReplica("HadCallayerPhysical",HadCallayerlogical,HadCalCelllLogical,kZAxis,20,5.*cm);

// scintillator plates

G4VSol idx HadCalScintiSolid = new G4Box("HadCalScintiBox",15.xcm, 15.%cm,0.5%cm);
fHadCalScintilogical = new G4LogicalVolume(HadCalScintiSolid,scintillator,"HadCalScintilogical")
new

G4PVP lacement (0,G4ThreeVector (0.,0.,3.*m),hadCalor imeterLogical, "HadCalorimeterPhysical",secondArmLogical, false,0,checkOverlaps);

GAPVP|acement (0,G4ThreeVector (0.,0.,2.+cm), fHadCalScintilogical, "HadCalScintiPhysical",HadCallayerlLogical,false,0,checkOverlaps);

Exercise 1 Step 6 (Optional)

Provide visualization attributes for the second arm volumes.

Note that hadronic calorimeter sub-structure is by default made invisible to reduce visual clutter. This is helpful to hide the

geometry details less important to the simulation.

Solution

DetectorConstruction File:

// visualization attributes
// Step 6: uncomment visualization attributes of the newly created volumes
G4VisAttributesx visAttributes = new G4VisAttributes(G4Colour(1.0,1.0,1.0));
visAttributes—>SetVisibility(false);

wor IdLogical->SetVisAttributes(visAttributes);
fVisAttributes.push_back(visAttributes);

visAttributes = new G4VisAttributes(G4Colour(0.9,0.9,0.9)); // LightGray
fMagneticlLogical->SetVisAttributes(visAttributes);
fVisAttributes.push_back(visAttributes);

visAttributes = new G4VisAttributes(G4Colour(1.0,1.0,1.0));
visAttributes—>SetVisibility(false);
firstArmLogical->SetVisAttributes(visAttributes);
secondArmLogical->SetVisAttributes(visAttributes):
fVisAttributes.push_back(visAttributes);

visAttributes = new G4VisAttributes(G4Colour(0.8888,0.0,0.0)):
fHodoscopellogical->SetVisAttributes(visAttributes);
fHodoscope2Logical->SetVisAttributes(visAttributes);
fVisAttributes.push_back(visAttributes);

visAttributes = new G4VisAttributes(G4Colour(0.0,1.0,0.0));
chamber 1Logical->SetVisAttributes(visAttributes);
chamber2Logical->SetVisAttributes(visAttributes);
fVisAttributes.push_back(visAttributes);

visAttributes = new G4VisAttributes(G4Colour(0.0,0.8888,0.0));
visAttributes—>SetVisibility(false);
fWirePlanellogical->SetVisAttributes(visAttributes);
fWirePlane2Logical->SetVisAttributes(visAttributes):

https://userweb.jlab.org/~asai/KISTI2022/HandsOn3/

5/10

22.12.11. 27 1:06 Geant4 Tutorial Hands On 3
fVisAttributes.push_back(visAttributes);

visAttributes = new G4VisAttributes(G4Colour(0.8888,0.8888,0.0));
visAttributes—>SetVisibility(false);
emCalorimeterLogical->SetVisAttributes(visAttributes):
fVisAttributes.push_back(visAttributes);

visAttributes = new G4VisAttributes(G4Colour(0.9,0.9,0.0));
fCellLogical—>SetVisAttributes(visAttributes):
fVisAttributes.push_back(visAttributes);

visAttributes = new G4VisAttributes(G4Colour (0.0, 0.0, 0.9));
hadCalorimeterLogical->SetVisAttributes(visAttributes):
fVisAttributes.push_back(visAttributes);

visAttributes = new G4VisAttributes(G4Colour (0.0, 0.0, 0.9));
visAttributes—>SetVisibility(false);
HadCalColumnLogical->SetVisAttributes(visAttributes);
HadCalCel ILogical->SetVisAttributes(visAttributes);
HadCallLayerLogical->SetVisAttributes(visAttributes);
fHadCalScintilogical->SetVisAttributes(visAttributes);
fVisAttributes.push_back(visAttributes);

Sensitive Detectors and Hits

In this exercise we will cover basic aspects of retrieving physics quantities from the simulation kernel. The basic simulation
output is called hit (a user-defined class inheriting from G4vHit): an energy deposit in space and time. Typically we are not
interested in hits in all detector elements, but instead we want to retrieve information only for the relevant detector
components, to simulate the detector read-out (e.g. the scintillator tiles in the hadronic calorimeter, and not the lead
absorber).

In Geant4 this is achieved with the concepts of hits and sensitive detectors (SD): you can attach a SD (a user class
inheriting from G4vSensitiveDetector) to a logical volume, in this way Geant4 will call your user-code when a particle is
tracked in this specific volume. Information can be retrieved from the G4Step (e.g. energy deposited along the step) and a
new hit is created (or an existing hit is updated). Geant4 will keep track of all hits created in the application. These can be
retrieved at the end of the event for further post-processing and writing to output.

We will show how to measure a quantity, for each event, from the hodoscopes. The goal is to measure at what time and in
which hodoscope tile there was a hit.

The exercise is divided in three parts, and you will have to modify four files:

e HodoscopeHit.hh and HodoscopeHit.cc files implement the hit class for the hodoscope.
® HodoscopeSD.cc implements the hodoscope sensitive detector.
e DetectorConstruction.cc instantiates the sensitive detector and attaches it to the correct logical volume.

Exercise 2 Step 1

Create a hit class.

This concrete Hit class represents a data container for only two quantities: an integer value, representing the index of the
hodoscope tile that fired; and a double value, representing the time in which the hodoscope tile fired. Reminder: a
hodoscope is a simple set of scintillators that measure the time in which a charged particle passes through it. It can be
used to performed time-of-flight measurement and coarse-granularity position measurements.

You will need to modify the HodoscopeHit class. The class skeleton is already prepared, you should add two data members
that identify which hodoscope tile has fired and register the time of the hit.

Note, that empty Constructor, the operators new and delete have been already implemented. You should remove the
empty implementation and implement the correct methods. Implement/modify the pPrint method to dump the hit content.
Important note on operator new and operator delete: hits can put some pressure on CPU, because, for each event, many
hits may be created and deleted at the end of the event. Allocating on the heap is a (relatively) CPU-intensive operation,
thus the handling of hits may cause some performance degradation in a complex application.

To mitigate this we use an allocator that allows for an efficient re-use memory and avoid many calls to new/delete.

The first time a hit is created a memory pool is created that can hold (like in an array) many hits. Each time a hit is created
with new operator we first look in this pool for an available pre-allocated memory location. If an empty slot is available, we
re-use it, otherwise we grow the pool to contain more hits.

With this technique we reduce substantially the new/delete cycles needed for the simulation.

An additional complication is that in multi-threading environments special attention is needed for the use of allocators.
We recognize this is an advanced topic that requires some more advanced knowledge of C++. If you do not feel
comfortable with this discussion, you can remove from the HodoscopeHit.hh file the lines defining the new and delete
operators, the application will work perfectly and since the hits are very simple and the simulation program is not too
complex you will not see any CPU penalty.

https://userweb.jlab.org/~asai/KISTI2022/HandsOn3/ 6/10

22.12.11. 27 1:06 Geant4 Tutorial Hands On 3

This exercise implements a single sensitive detector and one hit type. In Hands On 4 additional sensitive detectors are used
with hits in the drift chambers and in the calorimeters. You can study that code to see additional types of hits (calorimeter
hits are of some interest since accumulate energy from several steps instead of creating a new hit at each step).

Solution

HodoscopeHit.hh file:
class HodoscopeHit : public G4VHit
{

public:
HodoscopeHit(G4int i,G4double t);
virtual ~HodoscopeHit() {}

inline void *operator new(size_t);
inline void operator delete(void*aHit);

void Print();
G4int GetID() const { return fld; }

void SetTime(G4double val) { fTime = val; }
Gddouble GetTime() const { return fTime; }

private:
G4int fld;
G4double fTime;
typedef G4THitsCol lection<HodoscopeHit> HodoscopeHitsCollection;
extern G4ThreadlLocal G4Allocator<HodoscopeHit>* HodoscopeHitAl locator:
inline void* HodoscopeHit::operator new(size_t)

if (!HodoscopeHitAllocator)

HodoscopeHitAl locator = new G4Allocator<HodoscopeHit>;
return (voidx)HodoscopeHitAl locator->MallocSingle();

inline void HodoscopeHit::operator delete(void*aHit)

{

HodoscopeHitAllocator->FreeSingle((HodoscopeHit*) aHit);

HodoscopeHit.cc file:

G4ThreadLocal G4Allocator<HodoscopeHit>* HodoscopeHitAllocator;
HodoscopeHit: :HodoscopeHit(G4int i,G4double t)

DG4VHIt(), fld(i), fTime(t)

{}

void HodoscopeHit::Print()

{

G4cout << " Hodoscope[" << fld << "] " << fTime/ns << " (nsec)" << Gdend|

¥

Exercise 2 Step 2

Create and manipulate hodoscope hits.

For this exercise you will modify HodoscopeSD. cc file. Some part of the code is already implemented, in particular the
initialization of the hits collection, use this code as a reference for your future applications: it is important to understand
the details of how the registering of hits with the Geant4 kernel works.

What you need to do for this exercise is to modify the method ProcessHits and implement the logic to extract time and
position. This is the method that Genat4 kernel will call every time a particle passes through the volume associated with
this SD. The G4step object encodes the information regarding the simulation step in the geometry volume.

Hint 1: Given a G4Step two points are defined (G4StepPoint) that delimit the step itself (pre- and post-). From each point you
can retrieve which volume the step belongs to via the touchable history:

G4TouchableHistory* touchable = static_cast<G4TouchableHistory*>(stepPoint->GetTouchable());
G4int copyNumber = touchable—>GetVolume()—>GetCopyNo();

These two lines allows you to get the copy number of the volume touched by the step (in our case the copy number for
the hodoscope is the tile number, see file detectorConstruction.cc).
Hint 2: There are two G4StepPoint defining a G4Step, which one of the two should you use, pre- or post- step point? Why?

https://userweb.jlab.org/~asai/KISTI2022/HandsOn3/ 7110

https://userweb.jlab.org/~asai/KISTI2022/HandsOn4/index.html

22.12.11. 27 1:06 Geant4 Tutorial Hands On 3

The answer to this question is one of the most trickiest part of Geant4 for a new user, be sure to understand the reason
why the two points are not equivalent!

Hint 3: We are simulating a scintillator detector that will trigger only if some energy has been deposited (i.e. via
ionization), for example if a neutron passes through the detector (without making interactions) its passage should not be
recorded. Check the energy deposited in the step, if zero do not do anything.

Hint 4: More than one step can be done by the same particle in a single volume (why?), in addition secondaries produced
in the volume will also make steps in the SD. This mean that for a given primary particle we can have more than one call
to the ProcessHits. A realistic detector electronics will responds with a single measurement: to simulate this behavior every
time a new step is processed we check if the hit for the hodoscope tile that fired already exists, if so we update the time
information if the new hit happens earlier than the already recorded one.

Solution
HodoscopeSD.cc file:
G4boo| HodoscopeSD: :ProcessHits(G4Step* step, G4TouchableHistoryx)
{
G4double edep = step—>GetTotalEnergyDeposit();
if (edep==0.) return true:
G4StepPoint* preStepPoint = step—>GetPreStepPoint();
G4TouchableHistory* touchable = (G4TouchableHistory*)(preStepPoint->GetTouchable());
G4int copyNo = touchable—>GetVolume()->GetCopyNo():
G4double hitTime = preStepPoint—>GetGlobalTime();
// check if this finger already has a hit
Gdint ix = -1;
for (size_t i=0;i<fHitsCollection—>entries():i++)
{
if ((xfHitsCollection)[i]->Get!ID()==copyNo)
ix =i
break;
3
}
if (ix>=0) // if it has, then take the earlier time
{
if ((xfHitsCollection)[ix]->GetTime()>hitTime)
{ (*fHitsCollection)[ix]->SetTime(hitTime);: }
else // if not, create a new hit and set it to the collection
HodoscopeHit* hit = new HodoscopeHit (copyNo,hitTime);
fHitsCol lection->insert(hit);
}
return true;
}

Exercise 2 Step 3

Construct the SD and attach it to the correct logical volume.

We can now create an instance of the HodoscopeSD and attach it to the correct logical volume. Add a separate instance of
the SD to each arm hodoscope. Give the names "/hodoscopel” and "/hodoscope2" to these SDs. The same class is used
for two logical volumes, the two instances are recognized by Geant4 only via their names.

We are going to modify the method ConstructSDandField in the DetectorCostruction class. If you are already a user of older
version of Geant4 (up to version 9.6) this is one of the new main features introduced in version 10.0 to be compatible with
multi-threading. To reduce memory consumption geometry is shared among threads, but sensitive-detectors are not.

Solution

DetectorConstruction.cc file:
void DetectorConstruction::ConstructSDandField()

// sensitive detectors
G4SDManager = SDman = G4SDManager : :GetSDMpointer();
G4String SDname:

G4VSensitiveDetector* hodoscopel = new HodoscopeSD(SDname="/hodoscopel");
SDman—>AddNewDetector (hodoscopel);
fHodoscopellogical->SetSensitiveDetector (hodoscopel):;

G4VSensitiveDetector* hodoscope? = new HodoscopeSD(SDname="/hodoscope2");
SDman—->AddNewDetector (hodoscope?) ;

https://userweb.jlab.org/~asai/KISTI2022/HandsOn3/ 8/10

22.12.11. 27 1:06 Geant4 Tutorial Hands On 3

fHodoscope2Logical->SetSensitiveDetector (hodoscope?):

// magnetic field
fMagneticField = new MagneticField();

fFieldMgr = new G4FieldManager();
fFieldMgr—->SetDetectorField(fMagneticField);
fFieldMgr->CreateChordFinder (fMagneticField);

G4bool forceToAl IDaughters = true;
fMagneticlLogical->SetFieldManager (fFieldMgr, forceToAl|Daughters);

User Actions |

In this exercise we modify one of the user-actions to print on screen the information collected from hodoscopes at the end
of each event.

User actions allow to interact with the simulation to retrieve and control the simulation results at specific points during the
simulation of a run. Different user action provides specific interfaces to control the different aspects of the simulation. For
example, the G4UserEventAction class provides interfaces to interact with Geant4 at the beginning and at the end of each
event. G4UserRunAction allows for the creation of a user-custom G4Run object and it executes user-code at the beginning and
at the end of a run (this will be covered in the Hands On 4). G4vUserPrimaryGeneratorAction controls the creation of primaries,
G4UserSteppingAction allows to retrieve information at each step (indipendentely of sensitive detectors), G4UserTrackingAction
allows for interaction with each G4Track and finally G4UserStackingAction allows to control the urgency of each new G4Track
(advanced).

Note for users of older versions of Geant4: Multi-threading requires user actions to be thread-private (differently from
initialization classes that are shared among threads). A new user initialization class is available in version 10:
G4VUserActioninitialization this provides a method Build() in which all user actions are instantiated (this method is called by
each worker thread). A second method Bui IdForMaster is called by the master thread. Among all user actions the
G4UserRunAction is the only one that can also be instantiated for the master thread, this is to allow for reduction of results
from worker threads to master thread (e.g. sum the partial results of each thread into a global result). This will be covered
in the Hands On 4.

Exercise 3

Using a G4UserEventAction print on screen the number of hits and the time registered in the hodoscopes.

For this exercise you will need to modify in file EventAction.cc the method EndofEventAction, this method is called by Geant4
at the end of the simulation of each event. The pointer to the current G4event is passed to the user-code. From this object
you will retrieve the hits collections for the two hodoscopes and dump to screen the collected information.

Part of the EventAction code is already implemented.

In particular take a moment to study the method Begin0fEventAction: in this method we retrieve the IDs of the two
collections. Note the if statement that allows for an efficient search of the IDs, given the collection names, only once.
Searching with strings is a time consuming operation, this method allows for reducing the CPU time, if many collections
are created this is an important optimization to consider.

Important: The code assumes you have called the two SDs: "/hodoscopel” and "/hodoscope2" and that they create a hit
collection called "hodosopeColl". Change these if you have modified the names.

The EventAction is instantiated in the Actionlinitialization class. Take a look at it and see how the EventAction is created.
The solution shows how to introduce some run-time checks of the effective existence of the hits. While this is not
necessary in this simple code, this is a good code practice: in large applications the presence of hits collections may be
decided at run time depending on the job configuration.

Solution

EventAction.cc file:

void EventAction::EndOfEventAction(const G4Event* event)
{
/]
/] Exercise 3
// Print on screen the hits of the hodoscope
// Step 1: Get the hits collection of this event
G4HCofThisEvent* hce = event—>GetHCofThisEvent():
if (!hce)
{
G4ExceptionDescription msg;
msg << "No hits collection of this event found.#n";

https://userweb.jlab.org/~asai/KISTI2022/HandsOn3/ 9/10

https://userweb.jlab.org/~asai/KISTI2022/HandsOn4/index.html
http://software.intel.com/en-us/blogs/2009/07/23/parallel-pattern-7-reduce
https://userweb.jlab.org/~asai/KISTI2022/HandsOn4/index.html

22.12.11. 27 1:06 Geant4 Tutorial Hands On 3
G4Exception("EventAction::EndOfEventAction()","Code001", JustWarning, msg):
return;

if(
{

¥
//

/!
if (

<<
<<
<<

{

// Step 2: Using the memorised IDs get the collections
// corresponding to the two hodoscopes

// Get hits collections
HodoscopeHitsCol lection* hHC1
HodoscopeHitsCol lectionx hHC2

(ThHCT) 1 (!hHC2))

G4ExceptionDescription msg;

msg << "Some of hits collections of this event not found.#n";
G4Exception("EventAction: :EndOfEventAction()","Code001", JustWarning, msg);
return;

// Print diagnostics

G4int printModulo = G4RunManager : :GetRunManager ()—>GetPrintProgress():

printModulo==0 || event—->GetEventID() % printModulo != 0) return;

G4PrimaryParticlex primary = event—>GetPrimaryVertex(0)->GetPrimary(0);
G4cout << Gdendl

">>> Event " << event->GetEventID() << " >>> Simulation truth : "
primary->GetG4code()—>GetParticleName()
" " << primary->GetMomentum() << Gdend!;

// Step 3: Loop on the two collections and dump on screen hits
// Hodoscope 1

G4int n_hit = hHC1->entries():

G4cout << "Hodoscope 1 has " << n_hit << " hits." << G4endl;
for (G4int i=0;i<n_hit;i++)

{

HodoscopeHit* hit = (*hHC1)[i];
hit=>Print():

}

// Hodoscope 2

n_hit = hHC2->entries():

G4cout << "Hodoscope 2 has " << n_hit << " hits." << G4endl;
for (G4int i=0;i<n_hit;i++)

HodoscopeHit* hit = (*hHC2)[i];
hit=>Print();

static_cast<HodoscopeHitsCol lection*>(hce—>GetHC(fHHC11D));
static_cast<HodoscopeHitsCol lection*>(hce->GetHC(fHHC21D));

With successful execution (try, e.g., /run/beamOn 100), you should see printout like this (actual numbers should vary):

GAWTO>
GAWTO>
GAWTO>
GAWTO>
GAWTO>
GAWTO>
GAWTO>
GAWTO>
GAWTO>
GAWTO>
GAWTO>
GAWTO>
GAWTO>
GAWTO>
GAWTO>
GAWTO>
GAWTO>

Number

User=0.

>>> Event 96 >>> Simulation truth : proton (-16.232228069311,0,994.22834019976)

Hodoscope 1 has 1 hits.

Hodoscope[7] 6.8585277990143 (nsec)

Hodoscope 2 has 1 hits.

Hodoscope[8] 59.288664870039 (nsec)

-—> Event 97 starts with initial seeds (47098457,35307784).

>>> Event 97 >>> Simulation truth : proton (-5.5136395233946,0,990.67454918706)

Hodoscope 1 has 1 hits.

Hodoscope[7] 6.8697647503318 (nsec)

Hodoscope 2 has 1 hits.

Hodoscope[8] 59.535676954411 (nsec)

Thread-local run terminated.

Run Summary

Number of events processed : 49

User=0.360000s Real=0.184613s Sys=0.000000s [Cpu=195.0%]

Run terminated.
Run Summary

of events processed : 100
360000s Real=0.185584s Sys=0.010000s [Cpu=199.4%]

Created by: Andrea Dotti (adotti AT slac DOT stanford DOT edu) May 2018
Updated by: Makoto Asai (asai AT jlab DOT org) November 2022

https://userweb.jlab.org/~asai/KISTI2022/HandsOn3/

10/10

