Dec. 27th, 2022 – Belle II Data Analysis, Yonsei

Belle II Data Analysis

 $B^0 \rightarrow \tau^+ \tau^-$ Decay Mode as an Example

Cheolhun Kim (PhD. Student) Hanyang University, Korea

hun4341@hanyang.ac.kr

Belle II

Contents

- Purpose of This Talk
- Part I: What We Want to Know from the Belle II Analysis
 - Physics with "Parameter Perspective"
 - History of Number of Elements
 - How many Parameters are in the Standard Model?
 - $B^0 \rightarrow \tau^+ \tau^-$ Example: Motivation
 - $B^0 \rightarrow \tau^+ \tau^-$ Example: SM / BSM Theories with "Parameter Perspective"
- Part II: Analysis Procedure
 - What / How have I studied so far?
 - Analysis Procedure
 - Think the Final Stage of the Analysis, first

Contents

- Part III: $B^0 \rightarrow \tau^+ \tau^-$ with hadronic FEI Analysis Details
 - Basic Strategy
 - Analysis Status Summary
 - Belle II "FEI" Algorithm
 - Best candidate Selection with FEI
 - Sub-decay Modes
 - Final State Particle Selection
 - Rest of Event (ROE)
 - Pre-Selection for BDT input
 - MVA Test
- Summary / Plan

- Share my current Understanding
 - Validation
 - Get Advice

Part I: What we want to know from Belle II Analysis

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

Physics with "Parameter Perspective"

Number of Parameters ⇔ Theory / Experiment

WARNING: My Personal Opinion!

Theory: "Number of Parameters" Perspective

(X Note: Not always true. Other types also exist.)

- Rationalization of Increasing / Decreasing Parameters
 - Rationalization by Logic (Mathematics) ⇒ Theorist
 - Rationalization by Reality ⇒ Experimentalist

Outsourcing...

- What do theorists do?
 - Logical (mathematical) Rationalization
 - Interpretation of the Parameters ⇒ Physics Meaning

- Parameter
 - Keyword: "Fixed"
 - Example) Factor, Coefficient, Constant, etc.
 (※ This also can be variable, depending on purposes.)
 - ex) Form Factor, Wilson Coefficient
 - ex) Physical Constant: c, h, ...
- Variable
 - Keyword: "Varying," literally able to vary

Extract Parameters from Variables

Example: New Theory – Parameter Perspective

Planck's formula

experiment

- Discovery of Plank Constant (Blackbody Radiation)
 - Rayleigh-Jeans Dist.: Single Parameter in the Standard theory (1 parameter: c)
 - $\frac{8\pi\nu^2}{c^3}kT$ ($\nu \to 0$ limit of Plank Dist.)
 - Wein's Dist. (Approx.): Add One more Parameter to a New Theory (2 parameters: c and h)
 - $\frac{8\pi\nu^2}{c^3}h\nu \ e^{-\frac{h\nu}{kT}}$ (Experimental Formula) ($\nu \to \infty$ limit of Plank Dist.)
 - Plank's Dist.: Add One more Parameter to a New Theory (2 parameters: c and h)
 - $\frac{8\pi\nu^2}{c^3} \frac{h\nu}{e^{\frac{h\nu}{kT}}-1}$ (More suitable (generalized) Formula)
 - Rationalization
 - Interpretation, Physical Meaning ⇒ Energy is Quantized... etc.

```
\% Let the Boltzmann constant k = 1 \ \% Variables: \nu, T
```


Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

New Particle

- New particle invariant mass
- Interaction constant/factor/coefficient of this new particle
- New Interaction
 - coupling constants
 - new factor
 - new coefficient, etc.
- Method
 - Energy Frontier (Mainly focus on discoveries of new particles)
 - Intensity Frontier (Mainly focus on the new couplings)
 - X Note: Not always true.

History of the Number of Elements

History of Number of Elements

"Reductionism"

% <u>https://maxmakukov.wordpress.com/2014/12/17/history-of-elementary-particles/</u> % <u>https://arxiv.org/abs/1311.1769</u>

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

How Many Parameters in the Standard Model?

% [Wikipedia, Elementary Particles] https://en.wikipedia.org/wiki/Elementary_particle

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

Standard Model Lagrangian

 $-\frac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu} - g_s f^{abc}\partial_{\mu}g^a_{\nu}g^b_{\mu}g^c_{\nu} - \frac{1}{4}g^2_s f^{abc}f^{ade}g^b_{\mu}g^c_{\nu}g^d_{\mu}g^e_{\nu} +$ $\frac{1}{2}ig_s^2(\bar{q}_i^{\sigma}\gamma^{\mu}\bar{q}_j^{\sigma})g_{\mu}^{a} + \bar{G}^a\partial^2 G^a + g_sf^{abc}\partial_{\mu}\bar{G}^aG^bg_{\mu}^c - \partial_{\nu}W_{\mu}^+\partial_{\nu}W_{\mu}^- 2 M^2 W^+_{\mu} W^-_{\mu} - \frac{1}{2} \partial_{\nu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2c_w^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} \partial_{\mu} H$ $\frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{*}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{a^{2}} + \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{*}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{a^{2}} + \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2}\partial_{\mu}\phi^{0} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_$ $\frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{a^2}\alpha_h - igc_w[\partial_\nu Z^0_\mu(W^+_\mu W^-_\nu \begin{array}{l} W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{-}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{-}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{-}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{-}W_{\mu}^{-})$ $W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} +$ $\frac{1}{2}g^2W^+_{\mu}W^-_{\nu}W^+_{\mu}W^-_{\nu} + g^2c^2_w(Z^0_{\mu}W^+_{\mu}Z^0_{\nu}W^-_{\nu} - Z^0_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}) +$ $g^{2} \tilde{s}_{w}^{2} (A_{\mu} W_{\mu}^{+} A_{\nu} W_{\nu}^{-} - A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-}) + g^{2} s_{w} c_{w} [A_{\mu} Z_{\nu}^{0} (W_{\mu}^{+} W_{\nu}^{-} - A_{\mu} A_{\mu} W_{\nu}^{+} W_{\nu}^{-})]$ $W^+_{\nu}W^-_{\mu}) - 2A_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}] - g\alpha[H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^-] - g\alpha[H^3 + H\phi^0\phi^-] - g\alpha[H^3$ $\frac{1}{8}g^2\alpha_h[H^4+(\phi^0)^4+4(\phi^+\phi^-)^2+4(\phi^0)^2\phi^+\phi^-+4H^2\phi^+\phi^-+2(\phi^0)^2H^2]$ $gMW^+_{\mu}W^-_{\mu}H - \frac{1}{2}g\frac{M}{c^2}Z^0_{\mu}Z^0_{\mu}H - \frac{1}{2}ig[W^+_{\mu}(\phi^0\partial_{\mu}\phi^- - \phi^-\partial_{\mu}\phi^0) W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{-}\partial_{\mu}H)]$ $\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{m}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) - ig\frac{s^{2}_{w}}{c_{m}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) +$ $igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-}-W_{\mu}^{-}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+}) +$ $igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \frac{1}{4} g^2 W^+_\mu W^-_\mu [H^2 + (\phi^0)^2 + 2\phi^+ \phi^-] - \psi^+ \phi^-]$ $\frac{1}{4}g^2 \frac{1}{r^2} Z^0_{\mu} Z^0_{\mu} [H^2 + (\phi^0)^2 + 2(2s^2_w - 1)^2 \phi^+ \phi^-] - \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2_w}{c_w} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- + g^2) + \frac{1}{2}g^2 \frac{s^2$ $W_{\mu}^{o}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+}))$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}i\tilde{g}^{2}s_{w}\tilde{A}_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z_{\mu}^{0}\tilde{A}_{\mu}\phi^{+}\phi^{-} - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z_{\mu}\phi^{+}\phi^{-} - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^$ $g^{1}s_{w}^{2}A_{\mu}\tilde{A}_{\mu}\phi^{+}\phi^{-}[-\bar{e}^{\lambda}(\gamma\partial+m_{e}^{\lambda})e^{\lambda}-\bar{\nu}^{\lambda}\gamma\partial\nu^{\lambda}-\bar{u}_{i}^{\lambda}(\gamma\partial+m_{u}^{\lambda})u_{i}^{\lambda} = \overline{d_i^{\lambda}(\gamma \partial + m_d^{\lambda})d_i^{\lambda} + igs_w A_{\mu}[-(\overline{e^{\lambda}}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\overline{u}_i^{\lambda}\gamma^{\mu}u_i^{\lambda}) - \frac{1}{3}(\overline{d}_i^{\lambda}\gamma^{\mu}d_i^{\lambda})] + }$ $\frac{ig}{4c_w}Z^0_\mu[(\bar{\nu}^\lambda\gamma^\mu(1+\gamma^5)\nu^\lambda) + (\bar{e}^\lambda\gamma^\mu(4s_w^2 - 1 - \gamma^5)e^\lambda) + (\bar{u}_i^\lambda\gamma^\mu(\frac{4}{3}s_w^2 - 1 - \gamma^5)e^\lambda)]$ $1 - \gamma^{5} u_{j}^{\lambda} + (\bar{d}_{j}^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_{w}^{2} - \gamma^{5}) d_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}} W_{\mu}^{+} [(\bar{\nu}^{\lambda} \gamma^{\mu} (1 + \gamma^{5}) e^{\lambda}) + (\bar{d}_{j}^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_{w}^{2} - \gamma^{5}) d_{j}^{\lambda})] + (\bar{d}_{j}^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_{w}^{2} - \gamma^{5}) d_{j}^{\lambda})] + (\bar{d}_{j}^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_{w}^{2} - \gamma^{5}) d_{j}^{\lambda})] + (\bar{d}_{j}^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_{w}^{2} - \gamma^{5}) d_{j}^{\lambda})] + (\bar{d}_{j}^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_{w}^{2} - \gamma^{5}) d_{j}^{\lambda})] + (\bar{d}_{j}^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_{w}^{2} - \gamma^{5}) d_{j}^{\lambda})] + (\bar{d}_{j}^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_{w}^{2} - \gamma^{5}) d_{j}^{\lambda})] + (\bar{d}_{j}^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_{w}^{2} - \gamma^{5}) d_{j}^{\lambda})] + (\bar{d}_{j}^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_{w}^{2} - \gamma^{5}) d_{j}^{\lambda})] + (\bar{d}_{j}^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_{w}^{2} - \gamma^{5}) d_{j}^{\lambda})] + (\bar{d}_{j}^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_{w}^{2} - \gamma^{5}) d_{j}^{\lambda})] + (\bar{d}_{j}^{\lambda} \gamma^{\mu} (1 - \frac{8}{3} s_{w}^{2} - \gamma^{5}) d_{j}^{\lambda})]$ $(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})]$ $(\gamma^5)u_j^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_e^{\lambda}}{M}[-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda}) + \phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda}) + \phi^-(\bar{e}^{\lambda}(1-\gamma^5)\nu^{\lambda})] - \phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda}) + \phi^-(\bar{e}^{\lambda}(1-\gamma^5)\nu^{\lambda})]$ $\frac{g}{2}\frac{m_e^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + i\phi^0(\bar{e}^{\lambda}\gamma^5 e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^+[-m_d^{\kappa}(\bar{u}_i^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_i^{\kappa}) +$ $m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1+\gamma^5)d_j^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})] + m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) + m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) - m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa}) + m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\prime}(1+\gamma^5)u_j^{\kappa}) + m_u^{\kappa}(\bar{d}_j^{\kappa}) + m_u^{\kappa}(\bar{d}_j^{\kappa}) + m_u^{\kappa}(\bar{d}_j^{\kappa}) + m_u^{\kappa}(\bar{d}_j^{\kappa}) + m_u^{\kappa}(\bar{d}_j^{\kappa}) + m_u^{\kappa}(\bar{d}_j^{\kappa}) + m_u^{\kappa}(\bar{$ $\gamma^{5} u_{i}^{\kappa} - \frac{g}{2} \frac{m_{u}^{\lambda}}{M} H(\bar{u}_{i}^{\lambda} u_{i}^{\lambda}) - \frac{g}{2} \frac{m_{d}^{\lambda}}{M} H(\bar{d}_{i}^{\lambda} d_{i}^{\lambda}) + \frac{ig}{2} \frac{m_{u}^{\lambda}}{M} \phi^{0}(\bar{u}_{i}^{\lambda} \gamma^{5} u_{i}^{\lambda}) \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_i^{\lambda}\gamma^5 d_i^{\lambda}) + \bar{X}^+(\partial^2 - M^2)X^+ + \bar{X}^-(\partial^2 - M^2)X^- + \bar{X}^0(\partial^2 - M^2$ $\frac{M^2}{c^2}X^0 + \bar{Y}\partial^2 Y + igc_w W^+_\mu (\partial_\mu \bar{X}^0 X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{Y} X^- - \partial_\mu \bar{X}^+ X^0) + igs_w W^+_\mu (\partial_\mu \bar{X}^- X^0) + igs_w W^+$ ${}^{\omega}\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{X}^{0}X^{+}))$ $\partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+}) + igs_{w}A_{\mu}(\partial_{\mu}\bar{$ $\partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] +$ $\begin{array}{l} \frac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+-\bar{X}^-X^0\phi^-] + \frac{1}{2c_w}igM[\bar{X}^0X^-\phi^+-\bar{X}^0X^+\phi^-] + \\ igMs_w[\bar{X}^0X^-\phi^+-\bar{X}^0X^+\phi^-] + \frac{1}{2}igM[\bar{X}^+X^+\phi^0-\bar{X}^-X^-\phi^0] \end{array}$

(1) Gluon

- Gluon: Boson that carries the strong force
- 8 Types, Color Charge

(2) W and Z bosons

• Interactions between W and Z bosons

(3) Elementary Matter Particles

- Elementary Matter Particles interact with Weak
 Force
- 3 generations of elementary matter particles
- Neutrino mass is assumed to be zero

(4) Ghosts

- To clean up redundancies in the mathematical formulation, these terms are introduced
- Virtual Particles
- (5) Faddeev-Popov ghosts (Additional Ghosts)
 - Cancel out redundancies that occur in interactions through the weak force

% [SM Lagrangian organized by T.D. Gutierrez] <u>http://nuclear.ucdavis.edu/~tgutierr/files/stmL1.html</u>
 % [Image] <u>https://www.symmetrymagazine.org/article/the-deconstructed-standard-model-equation</u>

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

How Many Parameters in SM?

2.2 Standard Model of Particle Physics

The main features of the current version of the SM of Particle Physics are now given. A more thorough review can be found for example in [40]. The Standard Model is a non abelian gauge field theory based on the symmetry group $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$. $SU(3)_C$ denotes the color (C) group of Quantum Chromo Dynamics (QCD). $SU(2)_L \otimes U(1)_Y$ describes the electroweak (EW) interactions where the weak hypercharge Y is the U(1) generator and can be linked to the electric charge (Q) and the Weak Isospin (T₃) by the formula $Y = 2(Q - T_3)$. In total, the SM counts <u>58 objects</u>, <u>118 degrees of freedom</u> and <u>28 free parameters</u>, that will be detailed in this section.

Overall most of the <u>28 fundamental SM parame-</u> ters ³ are a consequence of the presence of the Higgs field. Before 2012, all these parameters have been measured by experiments, except 7 (m_H , $\Theta_{\rm QCD}$, the two Majorana phases of the PMNS matrix and the 3 neutrino masses) which are only constrained. However these constraints are generally weak. Therefore final values could have dramatic consequences on cosmology: m_H will be discussed extensively in the following, while $\Theta_{\rm QCD}$ and neutrino parameters are discussed in Section 3.4 and 3.5. respectively.

		Parameters of the Stand	ard Model	[hide]
#	Symbol	Description	Renormalization scheme (point)	Value
1	m _e	Electron mass		0.511 MeV
2	m _μ	Muon mass		105.7 MeV
3	m _τ	Tau mass		1.78 GeV
4	m _u	Up quark mass	$\mu_{\overline{\text{MS}}}$ = 2 GeV	1.9 MeV
5	m _d	Down quark mass	$\mu_{\overline{\text{MS}}}$ = 2 GeV	4.4 MeV
6	ms	Strange quark mass	$\mu_{\overline{\text{MS}}}$ = 2 GeV	87 MeV
7	m _c	Charm quark mass	$\mu_{\overline{MS}} = m_c$	1.32 GeV
8	m _b	Bottom quark mass	$\mu_{\overline{MS}} = m_{b}$	4.24 GeV
9	m _t	Top quark mass	On shell scheme	173.5 GeV
10	θ ₁₂	CKM 12-mixing angle		13.1°
11	θ ₂₃	CKM 23-mixing angle		2.4°
12	θ ₁₃	CKM 13-mixing angle		0.2°
13	δ	CKM CP violation Phase		0.995
14	<i>g</i> ₁ or <i>g</i> '	U(1) gauge coupling	$\mu_{\overline{MS}} = m_Z$	0.357
15	g ₂ or g	SU(2) gauge coupling	$\mu_{\overline{MS}} = m_Z$	0.652
16	g ₃ or g _s	SU(3) gauge coupling	$\mu_{\overline{MS}} = m_Z$	1.221
17	$\theta_{\rm QCD}$	QCD vacuum angle		~0
18	v	Higgs vacuum expectation value		246 GeV
19	m _H	Higgs mass		125.09 ± 0.24 GeV

<u>https://arxiv.org/abs/1311.1769</u>

% [Wikipedia] https://en.wikipedia.org/wiki/Standard_Model

³Originally, the neutrinos were assumed massless and the PMNS matrix diagonal, hence the <u>19 parameters</u> mentioned in Section 2.1.

$B^0 \rightarrow \tau^+ \tau^-$ example: Motivation

Rare Decay?

- Two cases
 - Measure Enhancement
 - Higher value than SM prediction
 - It could be a clue about New Physics...
 - However, in most cases, mistakes...
 - No Enhancement
 - Give better precision to SM
 - SM will have better expectation ability
 - Probably upper limit setting analysis

Motivation

Previous studies on $B^0 o au^+ au^-$ topic

- Belle
 - No publication, stopped.
 - Belle note exist (BN-1390 v0.8, Michael Ziegler, October 11, 2016)
 - Dr. Seokhee Park (with Belle data)
- BABAR
 - B. Aubert et al, "Search for the Rare Decay $B^0 \rightarrow \tau^+ \tau^-$ at BABAR", BABAR collaboration, PRL (2006)
- LHCb
 - R. Aaij et al, "Search for the Decays $B_s^0 \rightarrow \tau^+ \tau^-$ and $B^0 \rightarrow \tau^+ \tau^-$ ", LHCb collaboration, PRL (2017)

Belle Analysis List: EWP

※ 2021.11.04 capture

On-going Analyses

If you would have the referee team, please prepare the Belle note and contact the convener so that the convener can ask Tom to form the referee team.

bn#	mode	Торіс	contact	referees	status
V	B→tau+ tau-	search	Seokhee Park (KEK)		analysis started
	B→(rho,omega)gamma	BF, A_CP	Shun Watanuki (Yonsei)		analysis started
	B→K*I+I-	angular analysis	Daniel Ferlewicz, Phill Urquijo (Melbourne)		analysis started
	B→Lambda0 p gamma	angular analysis	Valentina Zhukova, Simon Eidelman (Lebedev)		analysis started
	B0→Lambda0 DM	search	Christos Hadjivasiliou (PNNL)		review finished, open the box (202105)
	B→K*tautau	search	Thanh Dong (Fudan)		review finished, open the box (202105)
	B0→KsKsgamma	tensor resonances	Hyebin Jeon, Hwanbae Park (KNU)		review on-going (202105)

※ 2021.07.16 capture

Uncovered Topics

One cannot take two modes. If these are similar modes, it might be OK but please let convener know so that convener can make the decision.

	mode	Торіс	previous publication	lumi	comments
	B→(rho,omega) gamma	BF, Delta_0-, ACP	605		Taniguchi 🔇 paper
	B→(a1,b1) gamma	search			
	B→K I+ I-	Angular analysis			Sensitive to scalar and tensor couplings. LHCb did with 3/fb.
ν	B→tau+ tau-	Search			LHCb gave the most stringent upper limit with 3 prong tau decays
	$B \rightarrow nu nu$ (gamma) with semileptonic tagging	Search			Babar gave the most stringent upper limit with SL tagging
	B→K pi gamma (not from K*)	BF, AI, ACP, Delta ACP	BF	30	
	B→K pi pi gamma	ACP, Delta ACP	BF, K1(1270)	30, 140	
	$B \rightarrow K^*$ gamma, gamma converted to e+e-	photon polarization	none		
	B→K* e+e-	very low q2 analysis (A_T_2, A_T_im)	none		LHCb published
	B→K omega gamma	Search	none		BN1199 analysis stalled

WG2 EWP list

X Sep. 10. 2021. Belle II EWP WG Convener Elisa Manoni agreed.

X Sep. 11. 2021. Belle II EWP WG Convener Saurabh Sandilya agreed.

X Sep. 12. 2021. assigned.

B → Kττ using feiHadronicB0, feiHadronicBplus (+ new "semi-inclusive" method)	@ Gaetano de Marino @ Trabelsi Karim			
Β→Κ*ττ	(@ Simon Wehle) @ Rahul Tiwary	INACTIVE	✔ BIIANA-78 - Search for the decay B→K*ττ 열림	
Β→ττ	@ Cheolhun Kim	Assigend		
B→ Λ + invisible	@ Bryan Fulsom @ Christos Hadjivasiliou @ 알 수 없는 사용자 (mschran @ Jan Strube	ACTIVE B2GM: June 25, 2020 (slides)	<mark> </mark>	
B→ Λ_c + X	@Leonardo Benjamin Rizzuto < >	Lubjana	<mark>✓ BIIANA 119</mark> - B→ Λ_c + invisible 닫힘	

B2: EWP analysis (<u>https://confluence.desy.de/display/BI/EWP+Analyses</u>)

WG1 SLMissing: Leptonic subgroup list

Sub-groups: Leptonic sub-group

Florian Bernlochner posted on 06. 1월. 2018 08:44h - last edited by Bruce Yabsley on 06. 4월. 2021 02:44h

Conveners: Steve Robertson (McGill) & Bruce Yabsley (Sydney); outgoing: Mario Merola (Napoli)

Topics

Members

- B → I nu gamma
- B → tau nu
- B → mu nu
- B → e nu
- B0 → nu nubar
- B0 → tau+ tau-
- LFV B0 → tau+ I-
- ma Feel free to add your contribution and/or modify the info reported if uncorrect.

Name	Institution	Analysis	Expertise / Role / Task / Notes
Steve Robertson	McGill University, Staff		Sub-group convener
Mario Merola	University of Napoli, Staff	$B \to tau\ nu\ with\ FEI\ (hadronic\ tag)$	Sub-group convener and SL&L group data production liaison
Guglielmo de Nardo	University of Napoli, Staff	$B \to tau\ nu\ with\ FEI\ (hadronic\ tag)$	
Bruce Yabsley	University of Sydney, Staff	B → tau I	Also doing long-term E _{extra} R&D
Andrea Fodor	McGill University, Student	$B \rightarrow mu nu untagged$	
Yen-Ting Chin	National Taiwan University	$B \rightarrow mu nu untagged$	
Robert Seddon	McGill University, PhD	$B \to Lambda$ pbar nu nubar with FEI	Presented in Physics General Meeting 2019-12-06 (link)
Trevor Shillington	McGill University, Student	$B \to K tau I$	
Moritz Gelb	KIT, PhD	$B \to I$ nu gamma with FEI and B2BII	
Markus Prim	KIT, PhD	$B \to mu\ nu\ with\ inclusive\ tagging\ and\ B2BII$	
Chanseok Park	Yonsei Univ., Student	$B \to nu$ nubar with FEI and B2BII	
Thomas Keck	KIT, PhD	${\rm B} \rightarrow$ tau nu with FEI on Belle data (using B2BII converter)	Main developer of the Full Event Interpretation
William Sutcliffe	KIT		Takes over the FEI maintenance from Thomas Keck, Vxb sub-group convener
Shanette De La Motte	University of Adelaide	$B \rightarrow mu$ nu with FEI (SL tag)	WG1 Skim Liasion, experience with hadronic/SL FEI
Priyanka Cheema	University of Sydney	B → tau l	Taking over beam-background suppression for $\mathrm{E}_{\mathrm{extra}}$ from Kyle
Nathalie Eberlein	LMU	$B \rightarrow tau I$ with B2Bii	
Cheolhun Kim	Hanyang University, Ph.D. student	$B \rightarrow tau \ tau \ with \ FEI$	

<u>* https://confluence.desy.de/display/BI/Sub-groups%3A+Leptonic+sub-group</u>

Motivation

au sub-decay mode (Belle-BN1390 vs. BABAR vs. LHCb)

Belle

6 modes

after study

Simulation

UL of BR: $(0.16 \pm 0.30) \times 10^{-3}$

Data

Final state	$N_{\rm sig}$	$\mathcal{B}(B^0 \to \tau^+ \tau^-)$ (in 10 ⁻³)
e^+e^-	33 ± 21	$3.33^{+2.23}_{-2.08}$
$e^{\pm}\mu^{\mp}$	73 ± 27	$5.52^{+2.09}_{-1.97}$
$e^{\pm}\pi^{\mp}$	70 ± 34	$3.05^{+1.53}_{-1.47}$
$\mu^+\mu^-$	40 ± 18	$7.87^{+3.68}_{-3.40}$
$\mu^{\pm}\pi^{\mp}$	63 ± 26	$4.76_{-1.88}^{+2.03}$
$\pi^+\pi^-$	44 ± 18	$4.56^{+1.96}_{-1.84}$
Combined	325 ± 27	$4.39\substack{+0.80\\-0.83}$

BABAR

Selection mode	$\mathcal{B}(\%)$ [12]	$N_e + N_\mu$	N_{π^0}	$m_{\pi\pi^0}$	
$\tau^+ \tau^- \to \ell \nu \bar{\nu} / \ell' \nu \bar{\nu}$	12.4	2	0		
$ au^+ au^- o \ell u ar u / \pi u$	7.8	1	0		
$\tau^+\tau^- \rightarrow \ell \nu \bar{\nu} / \rho \nu$	17.7	1	1	[0.6, 1.0] GeV	
$ au^+ au^- o \pi u/\pi u$	1.2	0	0		
$\tau^+ \tau^- \rightarrow \pi \nu / \rho \nu$	5.6	0	1	[0.6, 1.0] GeV	
$ au^+ au^- o ho u / ho u$	6.3	0	2	[0.6, 1.0] GeV	
10 modes after study					
Selection mode	$\epsilon_{ m sig}(\%$	$N_{\rm e}$	expected	$N_{\rm obs}$	
$\tau^+ \tau^- \to \ell \nu \bar{\nu} / \ell' \nu \bar{\nu}$	0.9 ± 0.0).2 4	6 ± 4	54 ± 7	
$ au^+ au^- o \ell u ar u / \pi u$	1.5 ± 0).3 12	$2\pm \epsilon$	$5 105 \pm 11$	
$ au^+ au^- o \pi u/\pi u$	1.5 ± 0).3 8	89 ± 6	$5 80 \pm 11$	
$ au^+ au^- o ho u / ho u$	0.3 ± 0.1).1 2	21 ± 3	15 ± 6	

$$\stackrel{\scriptstyle \scriptstyle \times}{\scriptstyle \times} \rho(770)^{\pm} \rightarrow \pi^{\pm}\pi^{0}$$

% I think the reason why the BABAR collaboration used ρ sub-decay mode is that the branching fraction of this mode is **relatively larger** than other modes, so in order to increase yield.

 $symp \pi^0/\eta$ separation uncertainty (trade-off)

LHCb

 $\tau^- \rightarrow \pi^- \pi^+ \pi^- v_\tau$

BN 1390 v0.8

au sub-decay mode (Belle-BN1390 vs. BABAR vs. LHCb)

		Mode	Fraction ($\Gamma_i \ / \Gamma$)	Scale Factor/ Conf. Level	P(MeV	//c)
	• Mod	es with one charged particle				
	Γ_1	particle $^-\geq$ 0 neutrals $\ \geq 0 K^0 \ u_{ au}$ (``1-prong'')	$(85.24\pm 0.06)\%$			\sim
	Γ_2	particle $^-\geq$ 0 neutrals $\geq 0 K^0_L u_ au$	$(84.58\pm 0.06)\%$			\sim
۷	Γ_3	$\mu^-\overline{ u}_\mu u_ au$	$(17.39 \pm 0.04)\%$		885	\sim
	Γ_4	$\mu^-\overline{ u}_\mu u_ au \gamma$	$(3.67\pm0.08) imes10^-$	-3	885	\sim
۷	Γ_5	$e^-\overline{ u}_e u_ au$	$(17.82 \pm 0.04)\%$		888	\sim
	Γ_6	$e^-\overline{ u}_e u_ au\gamma$	$(1.83 \pm 0.05)\%$		888	\sim
	Γ_7	$h^- \geq 0 K^0_L \; u_ au$	$(12.03\pm 0.05)\%$		883	\sim
	Γ_8	$h^- u_ au$	$(11.51\pm 0.05)\%$		883	\sim
V	Γ_9	$\pi^- u_ au$	$(10.82\pm0.05)\%$		883	\sim
	Γ_{10}	$K^- u_ au$	$(6.96\pm0.10) imes10^-$	-3	820	\sim
	Γ_{11}	$h^- \geq$ 1 neutrals $ u_ au$	$(37.01 \pm 0.09)\%$			\sim
	Γ_{12}	$h^- \geq$ 1 $\pi^0 u_ au$ (ex. K^0)	$(36.51\pm 0.09)\%$			\sim
	Γ_{13}	$h^-\pi^0 u_ au$	$(25.93 \pm 0.09)\%$		878	\sim
۷	Γ_{14}	$\pi^-\pi^0 u_ au$	$(25.49\pm 0.09)\%$		878	\sim
	Γ_{15}	$\pi^-\pi^0$ non- $ ho$ (770) $ u_ au$	$(3.0\pm 3.2) imes 10^{-3}$		878	\sim

BN 1390 v0.8

au sub-decay mode (Belle-BN1390 vs. BABAR vs. LHCb)

$\Gamma(\ au^- o \pi^- \pi^0 t)$	$(r_{ au})/\Gamma_{ m total}$						Γ14/Γ –
VALUE (%)		EVTS	DOCUMEN	T ID	TECN	COMMENT	
$\textbf{25.49} \pm \textbf{0.09}$	OUR FIT						
$\textbf{25.46} \pm \textbf{0.12}$	OUR AVERAGE						
$25.471\ {\pm}0.097$	± 0.085	81k	¹ SCHAEL	2005C	ALEP	1991-1995 LEP runs	
		• • • We use the follo	owing data for av	erages b	ut not for fit	s. • • •	
$25.36 \ {\pm}0.44$			² ARTUSO	1994	CLEO	$E^{ee}_{ m cm}$ = $10.6~{ m GeV}$	
		 We do not use the 	following data fo	r average	es, fits, limits	s, etc. • •	
$25.30 \pm 0.15 \pm 0.00$	0.13		³ BUSKULIC	1996	ALEP	Repl. by SCHAEL 2005C	
$21.5 \pm 0.4 \pm 1.9$		4400	4, 5 ALBRECHT	1988L	ARG	$E_{ m cm}^{ee}$ = 10 GeV	
$23.0 \pm 1.3 \pm 1.7$,	582	ADLER	1987B	MRK3	$E_{ m cm}^{ee}$ = 3.77 GeV	
$25.8 \pm 1.7 \pm 2.5$			⁶ BURCHAT	1987	MRK2	$E_{ m cm}^{ee}$ = 29 GeV	
$22.3 \pm 0.6 \pm 1.4$		629	⁵ YELTON	1986	MRK2	$E_{ m cm}^{ee}$ = 29 GeV	
¹ See footnote	to SCHAEL 2005C $\Gamma(au^-$	$ ightarrow e^- \overline{m{ u}}_{ m e} m{ u}_{ au}) / \Gamma_{ m total}$ measurement for cor	relations with oth	er measu	irements.		
² Not independ	dent of ARTUSO 1994 B($h^-\pi^0 u_ au$) and BATTLE 1994 B($K^-\pi^0 u_ au$)	values.				
³ Not independ	lent of BUSKULIC 1996 B	($h^-\pi^0 u_ au$) and B($K^-\pi^0 u_ au$) values.					
⁴ The authors of	divide by ($\gamma(3)$ + $\gamma(5)$ +	$\gamma(9)$ + $\gamma(10)$)/ Γ = 0.467 to obtain thi	s result.				
⁵ Experiment h	ad no hadron identificatio	on. Kaon corrections were made, but ins	ufficient informati	on is aiv	en to permit	t their removal.	
6 BURCHAT 19	87 value is not independe	ent of VELTON 1986 value. Nonresonant	decays included	J			
bonterin in ho	in raide is not independe		accuys meladear				
References:							
SCHAEL	2005C PRPL 421 191	Branching Ratios and Spectral Function	ons of $ au$ Decays: F	inal ALE	PH Measurer	ments and Physics Implications	
BUSKULIC	1996 ZPHY C70 579	Tau Hadronic Branching Ratios					
ARTUSO	1994 PRL 72 3762	A Measurement of the Branching Frac	ction B($ au^- o h^-$	$\pi^0 u_{ au}$)			
ALBRECHT	1988L ZPHY C41 1	Measurement of the Decays $ au^- o k$	$K^{*-} oldsymbol{ u}_{ au}$ and $oldsymbol{ au}^- o$	$\rho^- \nu_\tau \mathbf{V}$			
ADLER	1987B PRL 59 1527	Measurement of the Decay $ au o ho u$	V				
BURCHAT	1987 PR D35 27	Measurement of the Branching Fraction	ons of the $ au$ Lept	on using	a Tagged Sa	ample of $ au$ Decays	
		,		· ·			

YELTON 1986 PRL 56 812 Measurement of the Branching Fractions $\tau^- \to \rho^- \nu_\tau V$ nd $\tau^- \to K^{*-} \nu_\tau$

BN 1390 v0.8

au Decay Modes

v

au sub-decay mode (Belle-BN1390 vs. BABAR vs. LHCb)

$ au^+$ modes are charge conjugates of the modes below. `` h^\pm '' strain stands for γ 's and/or π^0 's.
ModeModes with one charged particle
• Modes with K^0 's
 Modes with three charged particles

 Modes with three charged particles 										
Γ_{62}	$h^-h^-h^+ \geq 0$ neutrals $\geq 0 K^0_L \ u_ au$		$(15.20\pm 0.06)\%$		861	\sim				
Γ_{63}	$h^-h^-h^+ \geq 0$ neutrals $ u_ au$ (ex. $K^0_S o \pi^+\pi^-$)(``3-prong'')		$(14.55\pm 0.06)\%$		861	\sim				
Γ_{64}	$h^-h^-h^+ u_ au$		$(9.80 \pm 0.05)\%$		861	\sim				
Γ_{65}	$h^-h^-h^+ u_ au$ (ex. K^0)		$(9.46 \pm 0.05)\%$		861	\sim				
Γ_{66}	$h^-h^-h^+ u_ au$ (ex. K^0,ω)		$(9.43 \pm 0.05)\%$		861	\sim				
Γ_{67}	$\pi^-\pi^+\pi^- u_ au$		$(9.31 \pm 0.05)\%$		861	\sim				
Γ_{68}	$\pi^-\pi^+\pi^- u_ au$ (ex. K^0)		$(9.02\pm 0.05)\%$		861	\sim				
Γ_{69}	$\pi^-\pi^+\pi^- u_ au$ (ex. K^0), non-axial vector		< 2.4%	CL=95%	861	\sim				
Γ_{70}	$\pi^-\pi^+\pi^- u_ au$ (ex. K^0,ω)	[1]	$(8.99 \pm 0.05)\%$		861	\sim				
Γ_{71}	$h^-h^-h^+ \geq 1$ neutrals $ u_ au$		$(5.29 \pm 0.05)\%$			\sim				
Γ_{72}	$h^-h^-h^+ \geq 1 \; \pi^0 u_ au$ (ex. K^0)		$(5.09 \pm 0.05)\%$			\sim				

ands for π^\pm or K^\pm . `` ℓ '' stands for e or μ . ``Neutrals''

Fraction (Γ_i / Γ)

Expand all decays

P(MeV/c)

Scale Factor/ Conf. Level

Amount of data

	Cross section (nb)	Integrated lum. (ab^{-1})	$B\overline{B}$ data
BABAR	1.1	0.210 [2]	$232 \pm 3 \times 10^{6}$ [2]
LHCb	~500000*	0.003 [4]	~1500×10 ⁶
Belle	0.81	0.953	772×10^{6}
Belle II LS	1.1	427.79	471×10 ⁶
Belle II 5 ab^{-1}	1.1	5.0	5500×10 ⁶
Belle II 50 ab^{-1}	1.1	50.0	55000×10 ⁶

Table 1. Cross section, Integrated luminosity, and $B\overline{B}$ data (black: given, blue: rough calculation) \times LS: Long Shutdown

[References]

[1] Andrzej J. Buras, "Weak Hamiltonian, CP Violation and Rare Decays", Lecture note (1998)

[2] B. Aubert et al, "Search for the Rare Decay $B^0 \rightarrow \tau^+ \tau^-$ at BABAR", BABAR collaboration, PRL (2006)

[3] Christoph Bobeth et al, " $B_{s,d} \rightarrow l^+ l^-$ in the Standard Model with Reduced Theoretical Uncertainty", PRL (2014)

[4] R. Aaij et al, "Search for the Decays $B_s^0 \to \tau^+ \tau^-$ and $B^0 \to \tau^+ \tau^-$ ", LHCb collaboration, PRL (2017)

[5] E. Kou et al, "The Belle II Physics Book (B2TIP)" Belle II collaboration (2019)

* LHCb $b\bar{b}$ cross section: <u>https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08005</u>

Motivation

Only Belle II data

- Plan to use only Belle II data
 - Since, we already have comparable amount of data with BaBar (~200 fb⁻¹).
 - promising (~500 fb⁻¹) data on around next summer.
 - ~880 (or ~600) fb⁻¹ data before the planned long shutdown.
 - **---~**460 fb⁻¹ data (?)
 - ~427.79 fb⁻¹ data (long shutdown data)
 - The amount of data seems competitive with BaBar.
 - However, efficiencies of detector differ ...

Motivation

Theoretical calculation with the Effective Field Theory (SM prediction)

Beyond the Standard Model (BSM)

Theory		Branching fraction	Free parameters (for Enhancement)
SM prediction		$(2.22 \pm 0.19) \times 10^{-8}$ (2014)	-
BSM	2HDM	It can be several orders of	$tan\beta, M_{H^+}$
	Leptoquark	magnitude higher	$\frac{ \lambda^{33}\lambda^{13^*} }{M_S^2}$

 Free parameters of BSM models make it possible to expect enhancement in the rare decay modes.

- The study of $B^0 \rightarrow \tau^+ \tau^-$ can help to constraint free parameters of BSM models
- Better Theory!

Utilizing FEI

% FEI: Full Event Interpretation

$B^0 \rightarrow ll$ Branching fraction: SM prediction and measurement

	SM prodiction	Measurement		
Sivi prediction		Detector	Upper Limit	Measurement
$B^0 \rightarrow e^+ e^-$	$(2.48 \pm 0.21) \times 10^{-15}$ [1] (2014)	LHCb	2.5×10 ⁻⁹ [2] (2020) (90 % CL) 3.0×10 ⁻⁹ [2] (2020) (95 % CL)	-
$B^0 \to \mu^+ \mu^- \qquad (1.1)$	$(1.06 \pm 0.09) \times 10^{-10}$ [1] (2014)	ATLAS	2.1×10 ⁻¹⁰ [3] (2019) (95 % CL)	$(-0.19 \pm 0.16) \times 10^{-9}$ [3] (2019)
		LHCb	3.4×10 ⁻¹⁰ [4] (2017) (95 % CL)	$(0.15^{+0.12}_{-0.10}{}^{+0.02}_{-0.01}) \times 10^{-9}$ [4] (2017)
$B^0 o au^+ au^-$?!!	LHCb	1.6×10 ⁻³ [5] (2017) (90 % CL) 2.1×10 ⁻³ [5] (2017) (95 % CL)	- 211
	$(2.22 \pm 0.19) \times 10^{-8}$ [1] (2014)	Belle	-	$(4.39^{+0.80}_{083} \pm 0.45) \times 10^{-3}$ [6] (2016)
		BABAR	4.1×10 ⁻³ [7] (2006) (90 % CL)	-

Table. Recent & Best values of Branching fraction $B^0 \rightarrow \ell \ell$

X Not published, Not official

- [1] Christoph Bobeth et al., " $B_{s,d} \rightarrow l^+ l^-$ in the Standard Model with Reduced Theoretical Uncertainty", PRL (2014)
- [2] R. Aaij et al., "Search for Rare Decay $B_s^0 \rightarrow e^+e^-$ and $B^0 \rightarrow e^+e^-$ ", LHCb Collaboration, PRL (2020)

[3] M. Aaboud et al., "Study of the rare decays of B_s^0 and B^0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector", ATLAS collaboration, JHEP (2019)

- [4] R. Aaij et al., "Measurement of the $B_s^0 \rightarrow \mu^+ \mu^-$ Branching Fraction and Effective Lifetime and Search for $B^0 \rightarrow \mu^+ \mu^-$ Decays", LHCb Collaboration (2017)
- [5] R. Aaij et al, "Search for the Decays $B_s^0 \rightarrow \tau^+ \tau^-$ and $B^0 \rightarrow \tau^+ \tau^-$ ", LHCb collaboration, PRL (2017)
- [6] M. Ziegler, "Search for the rare decay $B^0 \rightarrow \tau^+ \tau^-$ with Belle", Belle collaboration, Belle Note (BN-1390) (2016)
- [7] B. Aubert et al, "Search for the Rare Decay $B^0 \rightarrow \tau^+ \tau^-$ at BABAR", BABAR collaboration, PRL (2006)

[8] A.M. Sirunyan et al., "Measurement of properties of $B_s^0 \rightarrow \mu^+\mu^-$ decays and search for $B^0 \rightarrow \mu^+\mu^-$ with the CMS experiment", CMS collaboration, JHEP (2020)

$B_s^0 \rightarrow ll$ Branching fraction: SM prediction and measurement

	SM prodiction	Measurement		
	Sivi prediction	Detector	Upper Limit	Measurement
$B_s^0 \to e^+ e^-$	$(8.54 \pm 0.55) \times 10^{-14}$ [1] (2014)	LHCb	9.4×10 ⁻⁹ [2] (2020) (90 % CL) 11.2×10 ⁻⁹ [2] (2020) (95 % CL)	- V
$B_s^0 \to \mu^+ \mu^- \qquad (3)$	√ (3.65 ± 0.23)×10 ⁻⁹ [1] (2014)	CMS	-	$(2.9 \pm 0.6 \pm 0.4) \times 10^{-9}$ [8] (2020)
		ATLAS	-	$(2.8^{+0.8}_{-0.7}) \times 10^{-9}$ [3] (2019)
		LHCb	-	$(3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$ [4] (2017)
$B^0_s \to \tau^+ \tau^-$	$(7.73 \pm 0.49) \times 10^{-7}$ [1] (2014)	LHCb	5.2×10 ⁻³ [5] (2017) (90 % CL) 6.8×10 ⁻³ [5] (2017) (95 % CL)	-

Table. Recent & Best values of Branching fraction $B_s^0 \rightarrow \ell \ell$

[1] Christoph Bobeth et al., " $B_{s,d} \rightarrow l^+ l^-$ in the Standard Model with Reduced Theoretical Uncertainty", PRL (2014)

[2] R. Aaij et al., "Search for Rare Decay $B_s^0 \rightarrow e^+e^-$ and $B^0 \rightarrow e^+e^-$ ", LHCb Collaboration, PRL (2020)

[3] M. Aaboud et al., "Study of the rare decays of B_s^0 and B^0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector", ATLAS collaboration, JHEP (2019)

[4] R. Aaij et al., "Measurement of the $B_s^0 \rightarrow \mu^+\mu^-$ Branching Fraction and Effective Lifetime and Search for $B^0 \rightarrow \mu^+\mu^-$ Decays", LHCb Collaboration (2017)

[5] R. Aaij et al, "Search for the Decays $B_s^0 \rightarrow \tau^+ \tau^-$ and $B^0 \rightarrow \tau^+ \tau^-$ ", LHCb collaboration, PRL (2017)

[6] M. Ziegler, "Search for the rare decay $B^0 \rightarrow \tau^+ \tau^-$ with Belle", Belle collaboration, Belle Note (BN-1390) (2016)

[7] B. Aubert et al, "Search for the Rare Decay $B^0 \rightarrow \tau^+ \tau^-$ at BABAR", BABAR collaboration, PRL (2006)

[8] A.M. Sirunyan et al., "Measurement of properties of $B_s^0 \rightarrow \mu^+\mu^-$ decays and search for $B^0 \rightarrow \mu^+\mu^-$ with the CMS experiment", CMS collaboration, JHEP (2020)

$B^0 \rightarrow \tau^+ \tau^-$ example: SM / BSM Theories with "Parameter Perspective"

Standard Model

Effective Hamiltonian (Effective Field Theory)

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \frac{\alpha}{\sin^2 \theta_W} V_{tb}^* V_{td} C_A(\mu) (\bar{b} \gamma^\mu P_L d) (\bar{\ell} \gamma_\mu \gamma_5 \ell)$$

After a complex, but a straight-forward calculation

$$\mathcal{B}(B^{0} \to \ell^{+}\ell^{-}) = \frac{G_{F}^{4}M_{W}^{4}M_{B}^{3}}{8\pi^{5}\Gamma_{B}} \cdot f_{B}^{2} \cdot |V_{tb}^{*}V_{td}|^{2} \cdot \frac{4m_{\ell}^{2}}{M_{B}^{2}} \cdot \sqrt{1 - \frac{4m_{\ell}^{2}}{M_{B}^{2}}} \cdot |C_{A}(\mu)|^{2}$$

$$\underbrace{\mathcal{B}(B^{0} \to \ell^{+}\ell^{-})}_{\text{Decay} \text{ constant}} \cdot \underbrace{\mathcal{C}KM}_{\text{elements}} \cdot \underbrace{\mathcal{C}KM}_{\text{suppression}} \cdot \underbrace{\mathcal{A}(1 - \frac{4m_{\ell}^{2}}{M_{B}^{2}})}_{\text{Phase} \text{ space factor}} \cdot |C_{A}(\mu)|^{2}$$

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

Ж

Beyond Standard Model (BSM): Higgs Doublet (HDM)

Effective Hamiltonian (Effective Field Theory)

After a complex, but a straight-forward calculation

$$\mathcal{B}(B^{0} \to \ell^{+} \ell^{-})_{2\text{HDM}} = \frac{G_{F}^{4} M_{W}^{4}}{8\pi^{5}} \frac{M_{B}^{3}}{\Gamma_{B}} f_{B}^{2} |V_{tb}^{*} V_{td}|^{2} \sqrt{1 - \frac{4m_{\ell}^{2}}{M_{B}^{2}}} \times \left[\left(M_{B} C_{P}(\mu) - \frac{2m_{\ell}}{M_{B}} C_{A}(\mu) \right)^{2} + \left(1 - \frac{4m_{\ell}^{2}}{M_{B}^{2}} \right) M_{B} C_{S}(\mu) \right]$$

X References: [H2010], [BN1390]

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

BSM: Higgs Doublet (HDM)

• $C_S, C_P \Rightarrow M_{H^+}, tan\beta$ **TWO MORE PARAMETERS!**

From Ref. [H2000] (2000)

From [BN1390] (2016)
- Decide Leptoquark Model Couplings based on branching fractions of $B_{s,d} \rightarrow \ell \ell$
- Better Leptoquark model parameters ⇒ ex) Better LFV process prediction precision

TABLE I. Constraints obtained from the leptoquark couplings from various leptonic $B_{s,d} \rightarrow l^+ l^-$ decays.

Decay Process	Couplings involved	Upper bound of the couplings (GeV ⁻²)
$B_s o \mu^{\pm} \mu^{\mp}$	$rac{ \lambda^{23}\lambda^{22*} }{M_S^2}$	$\leq 5 \times 10^{-9}$
$B_s \to e^\pm e^\mp$	$\frac{ \lambda^{13}\lambda^{12*} }{M_S^2}$	$<2.54 \times 10^{-5}$
$B_s o au^\pm au^\mp$	$\frac{ \lambda^{33}\lambda^{32*} }{M_s^2}$	$< 1.2 \times 10^{-8}$
$B_d \to \mu^{\pm} \mu^{\mp}$	$\frac{ \lambda^{23}\lambda^{21*} }{M_{S}^{2}}$	$(1.5 - 3.9) \times 10^{-9}$
$B_d \to e^\pm e^\mp$	$\frac{ \lambda^{13}\lambda^{11*} }{M_s^2}$	$< 1.73 \times 10^{-5}$
$B_d o au^\pm au^\mp$	$\frac{ \lambda^{33}\lambda^{31*} }{M_S^2}$	$< 1.28 \times 10^{-6}$

From Ref. [S2016] (2016)

※ References: [S2016], [S2015], [R2014]

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

Beyond Standard Model: Leptoquark Model I

Effective Hamiltonian (Effective Field Theory)

$$\mathcal{H}_{ ext{eff}} = rac{G_{ ext{F}}}{\sqrt{2}} \sum_{i} V^{i}_{ ext{CKM}} C_{i}(\mu) Q_{i}$$

:

$$\mathcal{H}_{eff} \sim \underline{\left[C_S^{NP}Q_S + C_P^{NP}Q_P + C_AQ_A\right]}$$

b, tau tau, d M_S : leptoquark mass

1 MORE PARAMETERS!

※ Ref. [R2014] **A.** Model I: *X* = (3, 2, 7/6)

In this model the interaction Lagrangian for the coupling of scalar leptoquark X = (3, 2, 7/6) to the fermion bilinears is given as [11]

$$\mathcal{L} = -\lambda_u^{ij} \bar{u}_R^i X^T \epsilon L_L^j - \lambda_e^{ij} \bar{e}_R^i X^{\dagger} Q_L^j + \text{H.c.}, \qquad (4)$$

where *i*, *j* are the generation indices, Q_L and L_L are the left-handed quark and lepton doublets, u_R and e_R are the right-handed up-type quark and charged lepton singlets and $\epsilon = i\sigma_2$ is a 2 × 2 matrix. More explicitly these multiplets can be represented as

$$X = \begin{pmatrix} V_{\alpha} \\ Y_{\alpha} \end{pmatrix}, \quad L_{L} = \begin{pmatrix} \nu_{L} \\ e_{L} \end{pmatrix}, \text{ and } \epsilon = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$
 (5)

After expanding the SU(2) indices the interaction Lagrangian becomes

$$\mathcal{L} = -\lambda_{u}^{ij}\bar{u}_{aR}^{i}(V_{a}e_{L}^{j} - Y_{a}\nu_{L}^{j}) - \lambda_{e}^{ij}\bar{e}_{R}^{i}(V_{L}^{\dagger}u_{aL}^{j} + Y_{a}^{\dagger}d_{aL}^{j}) + \text{H.c.}$$
(6)

Thus, from Eq. (6), one can obtain the contribution to the interaction Hamiltonian for the $b \rightarrow s\mu^+\mu^-$ process after Fierz rearrangement as

$$\begin{aligned} \mathcal{H}_{LQ} &= \frac{\lambda_{\mu}^{23} \lambda_{\mu}^{22*}}{8 M_Y^2} [\bar{s} \gamma^{\mu} (1 - \gamma_5) b] [\bar{\mu} \gamma_{\mu} (1 + \gamma_5) \mu] \\ &\equiv \frac{\lambda_{\mu}^{23} \lambda_{\mu}^{22*}}{4 M_Y^2} (O_9 + O_{10}), \end{aligned}$$
(7)

which can be written analogous to the SM effective Hamiltonian (1) as

$$\mathcal{H}_{LQ} = -\frac{G_F \alpha}{\sqrt{2\pi}} V_{tb} V_{ts}^* (C_9^{NP} O_9 + C_{10}^{NP} O_{10})$$
(8)

with the new Wilson coefficients

$$C_9^{\rm NP} = C_{10}^{\rm NP} = -\frac{\pi}{2\sqrt{2}G_F \alpha V_{tb} V_{ts}^*} \frac{\lambda_\mu^{23} \lambda_\mu^{22*}}{M_Y^2}.$$
 (9)

Beyond Standard Model: Leptoquark Model II

Effective Hamiltonian (Effective Field Theory)

$$\mathcal{H}_{ ext{eff}} = rac{G_{ ext{F}}}{\sqrt{2}} \sum_{i} V^{i}_{ ext{CKM}} C_{i}(\mu) Q_{i}$$

:

$$\mathcal{H}_{eff} \sim \underline{\left[C_{S}^{\prime NP}Q_{S}^{\prime}+C_{P}^{\prime NP}Q_{P}^{\prime}+C_{A}Q_{A}\right]}$$

b, tau tau, d M_S : leptoquark mass

1 MORE PARAMETERS!

※ Ref. [R2014] **B. Model II:** *X* = (3, 2, 1/6)

Analogous to the previous subsection the interaction Lagrangian for the coupling of X = (3, 2, 1/6) leptoquark to the fermion bilinear can be given as

$$\mathcal{L} = -\lambda_d^{ij} \bar{d}_R^i X^T \epsilon L_L^j + \text{H.c.}, \qquad (10)$$

where the notations used are the same as the previous case. Expanding the SU(2) indices one can obtain the interaction Lagrangian as

$$\mathcal{L} = -\lambda_d^{ij} \bar{d}_{\alpha R} (V_{\alpha} e_L^j - Y_{\alpha} \nu_L^j) + \text{H.c.}$$
(11)

After performing the Fierz transformation the interaction Hamiltonian describing the process $b \rightarrow s\mu^+\mu^-$ is given as

$$\begin{aligned} \mathcal{H}_{LQ} &= \frac{\lambda_s^{22} \lambda_b^{32*}}{4M_V^2} [\bar{s} \gamma^{\mu} P_R b] [\bar{\mu} \gamma_{\mu} (1 - \gamma_5) \mu] \\ &= \frac{\lambda_s^{22} \lambda_b^{32*}}{4M_V^2} (O_9^{\prime \text{NP}} - O_{10}^{\prime \text{NP}}), \end{aligned} \tag{12}$$

where O'_9 and O'_{10} are the four-fermion current-current operators obtained from $O_{9,10}$ by making the replacement $P_L \leftrightarrow P_R$. Thus, the exchange of the leptoquark X = (3, 2, 1/6) gives new operators with the corresponding Wilson coefficients as

$$C_9^{\prime \rm NP} = -C_{10}^{\prime \rm NP} = \frac{\pi}{2\sqrt{2}G_F \alpha V_{tb} V_{ts}^*} \frac{\lambda_s^{22} \lambda_b^{32*}}{M_V^2}.$$
 (13)

After obtaining the new physics contributions to the process $b \to s\mu^+\mu^-$, we will proceed the constrain the new physics parameter space using the recent measurement of $B_s \to \mu^+\mu^-$.

Part II: Analysis Procedure

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

What / How have I studied so far?

Analysis Phases: What/How have I studied so far?

- [Done] Phase I: Learn by doing phase
 - Belle II Beginner's tutorial (Sphinx)
 - Belle II StarterKit
 - Other's talks, Belle II ongoing works ...
 - Collecting information!

- [Done] Phase II: Systemization phase, Human learning phase
 - Strategy setting, Skill acquisition, etc.
 - "Human learning". (A human is a machine. A human is a system.)
 - Revisit Belle II ongoing works
 - motivation / introduction studying related theories (not too deep)
 - Belle II ongoing works!
 - Read almost all Belle II notes of WG1 and WG2 analysis topic

[Ongoing] Phase III: Actual analysis phase

- Make it real! Realization stage.
- To enjoy phase III,
 - Phase I and II are required.
- Please help!

Required knowledge for Belle II analysis

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

Required knowledge for Belle II analysis (Result of the phase I)

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

Human Learning Stage

Phase II: HUMAN LEARNING

- [Done] Statistics (Probability) + Statistical Inference
 - **[Done]** Harvard Statistics 110 (OCW)
 - [Done] IIT Statistical Inference (OCW)

[Done] Machine Learning

- [Done] Signal Processing & Computer Science Perspective
 - [Done] Signals & System
 - [Done] Deep Learning
 - [Done] Reinforcement Learning
 - [Done] Optimization
- [To do] Mathematics / Applied Mathematics Perspective (Optional)

[Done] Knowledge for the Belle II analysis

- [Done] Physics books
 - [Done] Physics of the B factories (Belle & BaBar)
 - [Done] Part A. The facilities
 - [Done] Part B. Tools and methods
 - [Done] Belle II Physics book (Belle II, B2TIP)
 - [Done] chapter 1 to 7, WG1 (chapter 8) & WG2 (chapter 9) Part

The Belle II Physics Book

E. Kon¹, P. Uragijo¹¹, H. Altaramobolet¹¹, F. Bealgam¹¹, G. Bell¹¹, M. Bocket¹¹, H. Biots, P. K. Bolka, P. K. B. Barket, P. K. B. Barket, P. K. Barket, K.

B2TIP

Phys. J. C (2014) 74:3026 I 10.1140/epjc/s10052-014-3026-9 The European Physical Journal C

The Physics of the ${\cal B}$ Factories

eccived: 29 July 2014 / Accepted: 29 July 2014 / Published online: 19 November 2014 The Author(s) 2014. This article is published with open access at Springerlink.com

B physics book

Human Learning Stage

[Done] Theory

- [Done] Theoretical minimum by Leonard Susskind (※ <u>https://theoreticalminimum.com/</u>)
 - [Done] Particle physics lecture I: Basic concepts (10/10)
 - [Done] Particle physics lecture II: Standard model (10/10)
 - [Done] Particle physics lecture III: Supersymmetry and Grand Unification (10/10)
- [Done] Lecture note: Weak Hamiltonian, CP violation and Rare Decays (1998) by A. J. Buras
- [Done] Theory Papers
- [To do] Effective Field Theory (MIT) (Optional)
 - (<u>https://www.youtube.com/playlist?list=PLUl4u3cNGP60TvpbO5toEWC8y8w51dtvm</u>)
- [Done] Reading Belle II notes (for benchmarking)
 - [Done] WG1 analysis topics
 - [Done] WG2 analysis topics

Analysis Strategies

Similar Analyses

Target	Year	Author	Exp.	Paper	Note	Method	MVA (amount of signal MC)	Signal Extracting Variables (#)
$B^0 o au^+ au^-$	2016	M. Ziegler	Belle	-	BN-1390	Hadronic FR, BDT-based	BDT for Continuum BG (1) BDT for each signal channel (6) 10 M (training) / 5 M (testing) Each channel: 15 M, 90 M in total	<i>E_{ECL}</i> (1)
$B^0 \rightarrow \tau^+ \tau^-$	2006	BaBar Collaboration	BaBar	PRL	-	Hadronic full recon., Cut-based	-	m_{ES} (1) (M_{bc}^{tag} in Belle language)
$B^+ \to K^+ \tau^\pm \ell^\mp$	2022	S. Watanuki	Belle (B1-635)	Submitted to PRL	BN-1576	Hadronic FEI, BDT-based	FBDT for $B\overline{B}$ (4 channels) (4) FBDT for $q\overline{q}$ (4 channels) (4) 5 times 5.2 M, total 26 M	M_{recoil} (1) (= $m_{ au}$)
$B \to X \tau \nu$	2022	H. Junkerkalefeld	Belle II	-	B2N-PH- 2021-042	Hadronic FEI, BDT-based	BDT for $qar q$ vs. $Bar B$ (1)	M^2_{miss} , p^*_ℓ (2)
$B \to X_{\mathcal{S}} \nu \bar{\nu}$	2022	Junewoo Park	Belle II	-	B2N-PH- 2022-028	Hadronic FEI, BDT-based	FBDT for Sig. vs Bkg. (1) Total 140 M	FBDT output (1)
$B^+ \to K^+ \nu \bar{\nu}$	2020	F. Dattola	Belle II (B2-004)	PRL	B2N-PH- 2020-057	Inclusive tagging, BDT-based	Special BDTs for Inclusive tagging: BDT_1 and BDT_2 (2)	kaon p_T , BDT_2 output (2)
$B \to X_c \ell \nu_\ell$	2021	M. Welsch	Belle II (B2-006)	Submitted to PRD	B2N-PH- 2021-002	Hadronic FEI, Cut-based	-	$ \begin{array}{c} q^2 \ (1) \\ (= (p_\ell + p_\nu)^2 \\ = (p_B - p_X)^2) \end{array} $
$B^0 \to \ell^{\pm} \tau^{\mp}$	2020	Kyungho Kim	Belle	PhD. Thesis	BN-1531	SL FEI, TMVA MLP	MLP for each signal channel (4) 2 M (training) / 18 M (Testing) Each channel: 20 M, 80 M in total	p_ℓ^* (1)
This Analysis VS.								
$B^0 \rightarrow \tau^+ \tau^-$	-	Cheolhun Kim	Belle II	-	-	Hadronic FEI, BDT-based	BDT for Continuum BG (1) ? BDT for signal channels (< 6) ?	<i>E_{ECL}</i> (1) ?

D

Analysis Procedure

Analysis Procedure

Physics Parameter

Theories – Hypothesis Test

Suppress as many BG as possible with minimum loss of Signal

Analysis Procedure: $B^0 \rightarrow \tau^+ \tau^-$ example

Think the Final Stage of the Analysis, first

Think the Final Stage of the Analysis, first

- One of the famous problem-solving (understanding) strategies!
- Simple Example
 - Hypothesis test
 - Signal and its significance

※ [210924 Lab Meeting]

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

- 1. *Fluctuation probability*: Under the assumption that there is only background with constant density:
 - a) Estimate the average number of background events per mass bin (note: the histogram contains 43 entries in 50 bins);
 - b) Define a $\pm 2\sigma$ mass window around the peak (note: the resolution σ is approximately 12 MeV, the histogram bin width);
 - c) Count the total number of candidates $N_{\text{cand,s}}$ in the $\pm 2\sigma$ region around the peak;
 - d) Estimate the number of expected background events μ_{b} in this region;
 - e) Estimate the probability for the Poisson distribution to fluctuate from μ_b to $N_{\text{cand,s}}$ or larger values.
- 2. *Signal significance:* Under the signal-plus-background hypothesis try to estimate the signal and its significance:
 - a) Estimate the number of background events per bin from the average density of events in the regions outside the peak. Estimate from this density the number of expected background events μ_b in the $\pm 2\sigma$ region around the peak;

b) Obtain the number $N_{\rm s} = N_{\rm cand,s} - \mu_{\rm b}$, estimate an error $\sigma_{N_{\rm s}}$ and determine the signal significance $N_{\rm s}/\sigma_{N_{\rm s}}$.

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

- H_0:1.Fluctuatinull hypothesiswith con(background only)
 - 1. *Fluctuation probability*: Under the assumption that there is only background with constant density:
 - a) Estimate the average number of background events per mass bin (note: the histogram contains 43 entries in 50 bins);
 - b) Define a $\pm 2\sigma$ mass window around the peak (note: the resolution σ is approximately 12 MeV, the histogram bin width);
 - c) Count the total number of candidates $N_{\text{cand,s}}$ in the $\pm 2\sigma$ region around the peak;
 - d) Estimate the number of expected background events μ_{b} in this region;
 - e) Estimate the probability for the Poisson distribution to fluctuate from μ_b to $N_{\text{cand,s}}$ or larger values.

H₁: alternative hypothesis (signal + background)

- 2. *Signal significance*: Under the signal-plus-background hypothesis try to estimate the signal and its significance:
 - a) Estimate the number of background events per bin from the average density of events in the regions outside the peak. Estimate from this density the number of expected background events $\mu_{\rm b}$ in the $\pm 2\sigma$ region around the peak;
 - b) Obtain the number $N_{\rm s} = N_{\rm cand,s} \mu_{\rm b}$, estimate an error $\sigma_{N_{\rm s}}$ and determine the signal significance $N_{\rm s}/\sigma_{N_{\rm s}}$.

Figure 3.9 The invariant-mass spectrum used in Exercise 3.2.

Fig. 4. Invariant $(\Xi^-K^-\pi^+\pi^+)$ mass spectrum, after applying additional cuts on kaon likelihood and multiplicity (see text). The full curve shows the result of the fit.

Figure 3.9 The invariant-mass spectrum used in Exercise 3.2.

Fig. 4. Invariant $(\Xi^-K^-\pi^+\pi^+)$ mass spectrum, after applying additional cuts on kaon likelihood and multiplicity (see text). The full curve shows the result of the fit.

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

1. *Fluctuation probability*: Under the assumption that there is only background with constant density:

a) Estimate the average number of background events per mass bin (note: the histogram contains 43 entries in 50 bins);

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

1. *Fluctuation probability*: Under the assumption that there is only background with constant density:

a) Estimate the average number of background events per mass bin (note: the histogram contains 43 entries in 50 bins);

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

1. *Fluctuation probability*: Under the assumption that there is only background with constant density:

b) Define a $\pm 2\sigma$ mass window around the peak (note: the resolution σ is approximately 12 MeV, the histogram bin width);

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

1. *Fluctuation probability*: Under the assumption that there is only background with constant density:

b) Define a $\pm 2\sigma$ mass window around the peak (note: the resolution σ is approximately 12 MeV, the histogram bin width);

Figure 3.9 The invariant-mass spectrum used in Exercise 3.2.

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

1. *Fluctuation probability*: Under the assumption that there is only background with constant density:

c) Count the total number of candidates $N_{\text{cand,s}}$ in the $\pm 2\sigma$ region around the peak;

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

1. *Fluctuation probability*: Under the assumption that there is only background with constant density:

c) Count the total number of candidates $N_{\text{cand,s}}$ in the $\pm 2\sigma$ region around the peak;

Figure 3.9 The invariant-mass spectrum used in Exercise 3.2.

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

1. *Fluctuation probability*: Under the assumption that there is only background with constant density:

d) Estimate the number of expected background events $\mu_{\rm b}$ in this region;

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

1. *Fluctuation probability*: Under the assumption that there is only background with constant density:

null hypothesis (background only)

 H_0 :

d) Estimate the number of expected background events μ_{b} in this region;

Result of a) $\frac{43 \ [bg.evt.]}{50 \ [bin]} = 0.83 \ [bg.evt./bin]$

 $4 [bins] \times 0.83 [bg. evt./bin] = 3.44 [bg. evt.]$

 $\therefore \mu_b = 3.44$

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

1. *Fluctuation probability:* Under the assumption that there is only background with constant density:

e) Estimate the probability for the Poisson distribution to fluctuate from μ_b to $N_{\text{cand,s}}$ or larger values.

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

1. *Fluctuation probability*: Under the assumption that there is only background with constant density:

e) Estimate the probability for the Poisson distribution to fluctuate from μ_b to $N_{\text{cand,s}}$ or larger values.

$$p = \sum_{n=N_{cands}}^{\infty} \frac{\mu_b^n}{n!} e^{-\mu_b} = \sum_{n=12}^{\infty} \frac{(3.44)^n}{n!} e^{-(3.44)} \sim 2.48 \times 10^{-4}$$
$$\mu_b = 3.44$$
$$N_{cands} = 12$$

 \therefore Significance Z \sim 3.5 (or 3.5 σ_b , $\sigma_b=\mu_b=\sqrt{3.44}$)

[Meaning] How Strange (if we assume all are BG)? N_{cands} (> 12) are far from average μ_b (3.44) !

Ω_c peak at ARGUS

WolframAlpha[®] computational intelligence.

poisson distribution probability			
	SUAGE $\int_{\Sigma^0}^{\pi}$ math input	🌐 EXTENDED KEYBOARD : EXAMPLES 술 UPLO	AD 🔀 RANDOM
Computation	al Inputs:		
» mean:	3.44		
» endpoint:	11		
Compute			
Accuming and point I lies left and point and right and point instead			
Assuming endpoint use left endpoint and right endpoint instead			

Input information

probabilitie	robabilities for the Poisson distribution		
mean	3.44		
endpoint	11		

Probabilities

x < 11	0.999111
x = 11	0.00064123
x > 11	0.00024789

Ω_c peak at ARGUS

WolframAlpha computational intelligence.

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

- 2. *Signal significance:* Under the signal-plus-background hypothesis try to estimate the signal and its significance:
 - a) Estimate the number of background events per bin from the average density of events in the regions outside the peak. Estimate from this density the number of expected background events $\mu_{\rm b}$ in the $\pm 2\sigma$ region around the peak;

H₁: alternative hypothesis (signal + background)

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

- H₁: alternative hypothesis (signal + background)
- 2. *Signal significance:* Under the signal-plus-background hypothesis try to estimate the signal and its significance:
 - a) Estimate the number of background events per bin from the average density of events in the regions outside the peak. Estimate from this density the number of expected background events $\mu_{\rm b}$ in ARGUS Ω_c signal peak peak;

$$\frac{43 - 12 [bg. evt.]}{50 - 4 [bin]} = 0.67 [bg. evt./bin]$$
(outside of the mass window)

 $4 [bins] \times 0.67 [bg.evt./bin] = 2.7 [bg.evt.]$

$$\therefore \mu_b = 2.7$$

Figure 3.9 The invariant-mass spectrum used in Exercise 3.2.

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

- H₁: alternative hypothesis (signal + background)
- 2. *Signal significance:* Under the signal-plus-background hypothesis try to estimate the signal and its significance:

b)Obtain the number $N_{\rm s} = N_{\rm cand,s} - \mu_{\rm b}$, estimate an error $\sigma_{N_{\rm s}}$ and determine the signal significance $N_{\rm s}/\sigma_{N_{\rm s}}$.

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

2. Signal significance: Under the signal-plus-background hypothesis try to estimate the signal and its significance:

b)Obtain the number $N_{\rm s} = N_{\rm cand,s} - \mu_{\rm b}$, estimate an error $\sigma_{N_{\rm s}}$ and determine the signal significance $N_{\rm s}/\sigma_{N_{\rm s}}$.

$$N_s = N_{cands} - \mu_b = 12 - 2.7 = 9.3$$

$$\sigma_{N_s} = \sqrt{N_{cands}} = \sqrt{N_s + \mu_b} = \sqrt{12} = 3.5$$

Significance (approx.):
$$\frac{N_s}{\sigma_{N_s}} = \frac{N_s}{\sqrt{N_s + \mu_b}} = 2.7$$

[Meaning] Under assumption: Signal + BG How Strange, if we regard Signal as BG?

H₁: alternative hypothesis (signal + background)

Exercise 3.2 $\boldsymbol{\varOmega}_{\mathrm{c}}$ peak at ARGUS

In 1992, the ARGUS e^+e^- experiment reported the observation of the charmed and doubly strange baryon Ω_c through its decay channel $\Xi^-K^-\pi^+\pi^+$ [26]. The obtained mass spectrum is shown in Figure 3.9. Try to make your own assessment of the signal and its significance.

2. Signal significance: Under the signal-plus-background hypothesis try to estimate the signal and its significance:

b)Obtain the number $N_{\rm s} = N_{\rm cand,s} - \mu_{\rm b}$, estimate an error $\sigma_{N_{\rm s}}$ and determine the signal significance $N_{\rm s}/\sigma_{N_{\rm s}}$.

$$p = \sum_{n=N_{cands}}^{\infty} \frac{\mu_b^n}{n!} e^{-\mu_b} = \sum_{n=9}^{\infty} \frac{(2.7)^n}{n!} e^{-(2.7)} \sim 1.91 \times 10^{-3}$$
$$\mu_b = 2.7$$
$$N_{cands} = 9 (\sim 9.3)$$

 \therefore Significance Z ~ 2.89 (or 2.89 σ_b , $\sigma_b=\mu_b=\sqrt{2.7}$)

H₁: alternative hypothesis (signal + background)

WolframAlpha computational intelligence.

poisson distribution probability								
NATURAL LA	NGUAGE 5	π 20 MATH INPUT		EXTEN	DED KEYBOARD	EXAMPLES	1 UPLOAD	🗙 RANDOM
Computatio	onal Inputs:							
» mean:								
2.7								
» endpoint:								
8								
Compute Assuming e	endpoint U	lse left endpoi	t and right er	ndpoint instead				
Compute Assuming e	endpoint U tion	lse left endpoir	at and right er	ndpoint instead				
Compute Assuming e Input informat	endpoint U tion ies for the H	lse left endpoir Poisson distrit	ution	ndpoint instead				
Compute Assuming e Input informat probabiliti mean	tion 2.7	lse left endpoir Poisson distrit	ution	ndpoint instead				

Probabilities

x < 8	0.993379
<i>x</i> = 8	0.00470755
<i>x</i> > 8	0.00191363

WolframAlpha computational intelligence.

- [1] Olaf Behneke et al, "Data Analysis in High Energy Physics, A Practical Guide to Statistical Methods", WILEY-VCH, 2013
- [2] H. Albrecht et al, "Evidence for the production of the charmed, doubly strange baryon Ω_c in e^+e^- annihilation (ARGUS collaboration)", Physics Letter B, 1992
- Manual Link: <u>https://www.terascale.de/statisticsbook/index_eng.html#e149984</u>

Part III: $B^0 ightarrow au^+ au^-$ with hadronic FEI – Analysis Detail

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

- Follow the way of the **unpublished** Belle note by M. Ziegler (**BN-1390**)
 - Why is this note not published? (my guess)
 - Too big Branching Fraction?!
 - $(4.39^{+0.80}_{-.083} \pm 0.45) \times 10^{-3}$ (cf. SM prediction: $(2.22 \pm 0.19) \times 10^{-8}$ *)
- Add other (better) method based on Belle / Belle II differences

Analysis Status Summary

Workflow

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

MC Sample Information

- Signal
 - $B^0 \rightarrow \tau \tau$, 20 M generated
 - BGx0: 4 M (0.2)
 - BGx1: 16 M (0.8)
 - Only BGx1 sample is used
 - skimmed with hadronic FEI
- Background: MC14ri_a, Y(4S) => SkimM14ri_ax1 (Skimmed with hadronic FEI)
 - Generic
 - B⁰B⁰ (mixed): ~ 900 fb⁻¹ *
 - B⁺B⁻ (charged): ~ 900 fb⁻¹ *
 - Continuum
 - u,d,s,c (each): ~ 1000 fb⁻¹ *
 - Others are added later ($BD\ell v_{\ell}$, Rare, and $u\ell v_{\ell}$)

X Should be updated to MC15

Belle II "FEI" Algorithm

Tagging *metrics* and *objectives*:

- **High** *efficiency*: fraction of events with a "good" tag
- High purity: fraction of identified tags that are "good"
- Good kinematic information (minimize missing/fake)

A schematic view of an event with 4 tag candidates

The FEI is an algorithm specifically designed to maximize these things, with two flavors...

% [Belle II Physics Week 2022, Spain, 2022.Dec.01: FEI Lecture] https://indico.belle2.org/event/7825/contributions/49619/attachments/19751/29288/FEI.pdf

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

86/142

Best tag selection (BTS)

Can be helpful to select the "best" tag candidate in each event

Typically: highest \mathscr{P}_{tag} in an event...

...*after* other selections.

※ [Belle II Physics Week 2022, Spain, 2022.Dec.01: FEI Lecture] https://indico.belle2.org/event/7825/contributions/49619/attachments/19751/29288/FEI.pdf

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

14

FEI Channels

In basf2	$ \begin{array}{ccc} 0: & B^0 \rightarrow D^- \pi^+ \\ 1: & B^0 \rightarrow D^- \pi^+ \pi^0 \end{array} $	$\begin{array}{ccc} 0: & B^+ \to \overline{D^0} \pi^+ \\ 1: & B^+ \to \overline{D^0} \pi^+ \pi^0 \\ 2: & D^+ \to \overline{D^0} \pi^+ \pi^0 \end{array}$
	$2: B^0 \to D^- \pi^+ \pi^0 \pi^0$ $3: B^0 \to D^- \pi^+ \pi^+ \pi^-$	$\begin{array}{lll} 2: & B^+ \to D^0 \pi^+ \pi^0 \pi^0 \\ 3: & B^+ \to \overline{D}{}^0 \pi^+ \pi^+ \pi^- \end{array}$
	$4: B^0 \to D^- \pi^+ \pi^- \pi^0$	$4: B^+ \to \overline{D^0} \pi^+ \pi^+ \pi^- \pi^0$ 5: $B^+ \to \overline{D^0} D^+$
Load the FEI	$5: B^0 \to \overline{D^0} \pi^+ \pi^-$	$6: B^+ \to D^+ \overline{D^0} K^0_S$
	$\begin{array}{ccc} 6: & B^0 \to D^- D^0 K^+ \\ 7: & B^0 \to D^- D^{*0} K^+ \end{array}$	$\begin{array}{rcl} 7: & B^+ \to D^+ D^{*0} K^0_S \\ 8: & B^+ \to D^{*+} \overline{D^0} K^0_S \end{array}$
	8: $B^0 \rightarrow D^{*-}D^0K^+$	9: $B^+ \rightarrow D^{*+}D^{*0}K_S^0$
Get the tag list you want:	9: $B^0 \rightarrow D^{*-}D^{*0}K^+$	$10: B^+ \to D^0 D^0 K^+$ 11: $B^+ \to \overline{D^{*0}} D^0 K^+$
B+:generic Understand and ideter	$\begin{bmatrix} 10: & B^0 \to D^- D^+ K_S^0 \\ 11 & D^0 \to D^{*-} D^+ K_S^0 \end{bmatrix}$	$12: B^+ \to \overline{D^0} D^{*0} K^+$
B0 · generic	$\begin{array}{ccc} 11: & B^{\circ} \rightarrow D^{+} D^{+} K^{\circ}_{S} \\ 12: & B^{0} \rightarrow D^{-} D^{*+} K^{0}_{S} \end{array}$	$13: B^+ \to \overline{D^{*0}} D^{*0} K^+$
Buigemeilertonia	13: $B^0 \to D^{*-}D^{*+}K_S^0$	14. $D \rightarrow D_s D$ 15: $B^+ \rightarrow \overline{D^{*0}}\pi^+$
Semileptonic tag candidates	$14: B^0 \to D_s^+ D^-$	16: $B^+ \to \overline{D^{*0}}\pi^+\pi^0$ 17: $B^+ \to \overline{D^{*0}}\pi^+\pi^0\pi^0$
BU:semileptonic	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$17: B \to D^{-1}\pi^+\pi^-$ $18: B^+ \to \overline{D^{*0}}\pi^+\pi^+\pi^-$
	17: $B^0 \to D^{*-} \pi^+ \pi^0 \pi^0$	$19: B^+ \to \overline{D^{*0}}\pi^+\pi^+\pi^-\pi^0$
Get the variables you want:	$18: B^0 \to D^{*-}\pi^+\pi^+\pi^-$	$20: D \to D_s \ D^+$ $21: B^+ \to D_s^+ \overline{D^{*0}}$
$Mbc \rightarrow M$	$19: B^0 \to D^{*-}\pi^+\pi^-\pi^0$ $20: B^0 \to D^{*+}D^-$	$22: B^+ \to \overline{D^0} K^+$ $22: B^+ \to D^- \sigma^+ \sigma^+$
	$21: B^0 \to D_s^+ D^{*-}$	23. $B \rightarrow D \pi \pi$ 24: $B^+ \rightarrow D^- \pi^+ \pi^+ \pi^0$
deltaE $\rightarrow \Delta E$	$22: B^0 \to D_s^{*+} D^{*-}$	25: $B^+ \rightarrow J/\psi K^+$
extraInfo(SignalProbability) $\rightarrow \mathscr{P}_{i}$	$23: B^0 \to J/\psi K_S^0$	20: $B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$ 27: $B^+ \rightarrow J/\psi K^+ \pi^0$
extraInfo(decayModeID) tag	$24: D \to J/\psi K^{0}\pi^{+}\pi^{-}$ $25: B^{0} \to J/\psi K^{0}_{S}\pi^{+}\pi^{-}$	28: $B^+ \rightarrow J/\psi K_S^0 \pi^+$
	$26: B^0 \to \overline{\Lambda_c^-} p^+ \pi^+ \pi^-$	$30: B^+ \to \overline{\Lambda_c} p^+ \pi^+ \pi^- \pi^+$
cosThetaBetweenParticleAndNominalB $\rightarrow COSO_{BY}$	$27: B^0 \to \overline{D^0} p^+ \overline{p^-}$	$31: B^+ \to \overline{\overline{D^0}} p^+ \overline{p^-} \pi^+$
	$28: B^0 \to D^- p^+ p^- \pi^+$ $29: B^0 \to D^{*-} p^+ \overline{p^-} \pi^+$	$\begin{array}{ll} 32: & B^+ \to D^{*0} p^+ p^- \pi^+ \\ 33: & B^+ \to D^0 p^+ \overline{p^-} \pi^+ \pi^- \end{array}$
[TIP: Particle List Name]	$30: B^0 \to \overline{D^0} p^+ \overline{p^-} \pi^+ \pi^-$	$34: B^+ \to D^{*0} p^+ \overline{p^-} \pi^+ \pi^-$
\times Signal MC \Rightarrow $B_{tag} =$ B0:generic	$31: B^0 \to \overline{D^{*0}}p^+\overline{p^-}\pi^+\pi^-$	35: $B^+ \to \Lambda_c^- p^+ \pi^+$ 36: No B^+ FEI decay

 \rtimes Background MC (Continuum / Generic) \Rightarrow $B_{tag} =$ B0:feiHadronic

% [Belle II Physics Week 2022, Spain, 2022.Dec.01: FEI Lecture] https://indico.belle2.org/event/7825/contributions/49619/attachments/19751/29288/FEI.pdf 36 : No B^+ FEI decay

32 : No B^0 FEI decay

Utilizing FEI

In analysis

So you have your tags... what do you do now?

- 1. Build your *signal-side B* candidate
- 2. Combine *tag* and *signal Bs* to make $\Upsilon(4S)$ candidates

FEI efficiency $\epsilon_{\rm FEI}$ enters in one of two ways:

- *BF*(signal): $\epsilon_{total} = \epsilon_{FEI} * \epsilon_{sig}$
- *BF*(signal)/*BF*(normalization): FEI efficiency *cancels*

But FEI is trained on MC: ϵ_{FEI} needs a *calibration*...

※ [Belle II Physics Week 2022, Spain, 2022.Dec.01: FEI Lecture] <u>https://indico.belle2.org/event/7825/contributions/49619/attachments/19751/29288/FEI.pdf</u>

FEI Performance

- tagging efficiency = $N_{tag}/N_{\Upsilon(4S)}$
- tag-side efficiency = $N_{\text{correct}}/N_{\Upsilon(4S)}$

% [Belle II Physics Week 2022, Spain, 2022.Dec.01: FEI brainstorm] <u>https://indico.belle2.org/event/7825/contributions/49609/attachments/19763/29306/FEI-Brain-Storm-final.pdf</u>

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

FEI Performance metrics

- tagging efficiency = $N_{tag}/N_{\Upsilon(4S)}$
- tag-side efficiency = $N_{\text{correct}}/N_{\Upsilon(4S)}$
- purity = $N_{\text{correct}}/N_{\text{tag}}$

※ [Belle II Physics Week 2022, Spain, 2022.Dec.01: FEI brainstorm] <u>https://indico.belle2.org/event/7825/contributions/49609/attachments/19763/29306/FEI-Brain-Storm-final.pdf</u>

Full Event Interpretation (FEI)

Fig. 1 Schematic overview of a $\Upsilon(4S)$ decay: (Left) a common tagside decay ${}^{V}B^{-}_{tag} \rightarrow D^{0}(\rightarrow K^{0}_{s}(\rightarrow \pi^{-}\pi^{+})\pi^{-}\pi^{+})\pi^{-}$ and (right) a typical signal-side decay $B^{+}_{sig} \rightarrow \tau^{+}(\rightarrow \mu^{+}\nu_{\mu}\bar{\nu}_{\tau})\nu_{\tau}$. The two sides <u>overlap spa-</u> tially in the detector, therefore the assignment of a measured track to one of the sides is not known a priori

Full Event Interpretation (FEI)

Fig. 2 Schematic overview of the FEI. The algorithm operates on objects identified by the reconstruction software of the Belle II detectors: charged tracks, neutral clusters and displaced vertices. In six distinct stages, these basics objects are interpreted as final-state particles $(e^+, \mu^+, K^+, \pi^+, K^0_L, \gamma)$ combined to form intermediate particles $(J/\psi, \pi^0, K^0_s, D, D^*)$ and finally form the tag-side *B* mesons

Fig. 7.9 Hierarchical reconstruction applied by the FEI, which starting from tracks and EM clusters reconstructs initial state particles, intermediate particles in several stages and finally candidate B tags.

https://b2-master.belle2.org/software/development/sphinx/analysis/doc/FullEventInterpretation.html

cf. Belle II detector: detectable (identifiable) particles

	TOP & ARICH				ECL	KLM	
Charged	π^{\pm}	K±	p^{\pm}	d^{\pm}	e^{\pm}	μ^{\pm}	CDC
Neutral	-	-	-	-	γ	K_L^0	-

X Not that good table... Please see particle identification section in B2TIP for further information (5.5 and 5.6).

Full Event Interpretation (FEI)

- tagging efficiency
 - the fraction of Y(4S) events which can be tagged.
 - $\bullet \quad \frac{N_{tag}}{N}$
- tag-side efficiency
 - the fraction of Y(4S) events with a correct tag.
 - N_{correct}, tag
 - N
- tag-side purity
 - the fraction of the tagged Y(4S) events with a correct tag.
 - N_{correct}, tag

N_{tag}

- where
 - N : number of $\Upsilon(4S)$ events.

Full Event Interpretation (FEI)

Table 1 Summary of the maximum tag-side efficiency of the FullEvent Interpretation and for the previously used exclusive taggingalgorithms

	B± (%)	$B^{0}\left(\% ight)$
Hadronic		
FEI with FR channels	0.53	0.33
FEI	0.76	0.46
FR	0.28	0.18
SER	0.4	0.2
Semileptonic		
FEI	1.80	2.04
FR	0.31	0.34
SER	0.3	0.6

For the FEI simulated data from the last official Monte Carlo campaign of the Belle experiment were used. The maximum tag-side efficiency on recorded data is lower (see "Hadronic tag" section). The numbers for the older algorithms (see "Previous work" section), are not directly comparable due to different selection criteria, like best candidate selections and selections to suppress non- $\Upsilon(4S)$ events

- Belle II: FEI
 - Full Event Interpretation
- Belle: FR
 - Full Reconstruction
- BABAR: SER
 - Semi-Exclusive B reconstruction

Full Event Interpretation (FEI)

B ⁺ modes	B^0 modes	D^+, D^{*+}, D^+_s modes	D^0, D^{*0} modes	
$B^+ o \overline{D}{}^0 \pi^+$	$B^0 \rightarrow D^- \pi^+$	$D^+ \rightarrow K^- \pi^+ \pi^+$	$D^0 \rightarrow K^- \pi^+$	16 B^+ channels
$B^+ \rightarrow \overline{D}{}^0 \pi^+ \pi^0$	$B^0 \rightarrow D^- \pi^+ \pi^0$	$D^+ \rightarrow K^- \pi^+ \pi^+ \pi^0$	$D^0 \rightarrow K^- \pi^+ \pi^0$	$14 P^0$ channels
$B^+ \rightarrow \overline{D}{}^0 \pi^+ \pi^0 \pi^0$	$B^0 ightarrow D^- \pi^+ \pi^+ \pi^-$	$D^+ \rightarrow K^- K^+ \pi^+$	$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^-$	14 B Channels
$B^+ \rightarrow \overline{D}{}^0 \pi^+ \pi^+ \pi^-$	$B^0 \rightarrow D_s^+ D^-$	$D^+ \rightarrow K^- K^+ \pi^+ \pi^0$	$D^0 ightarrow \pi^- \pi^+$	
$B^+ \rightarrow D_s^+ \overline{D}{}^0$	$B^0 \rightarrow D^{*-} \pi^+$	$D^+ \rightarrow K_8^0 \pi^+$	$D^0 ightarrow \pi^- \pi^+ \pi^0$	
$B^+ \rightarrow \overline{D}^{*0} \pi^+$	$B^0 ightarrow D^{*-} \pi^+ \pi^0$	$D^+ \rightarrow K_8^0 \pi^+ \pi^0$	$D^0 \rightarrow K_S^0 \pi^0$	
$B^+ \rightarrow \overline{D}^{*0} \pi^+ \pi^0$	$B^0 ightarrow D^{*-} \pi^+ \pi^+ \pi^-$	$D^+ \rightarrow K_8^{0} \pi^+ \pi^+ \pi^-$	$D^0 \rightarrow K_8^{0} \pi^+ \pi^-$	
$B^+ \rightarrow \overline{D}^{*0} \pi^+ \pi^+ \pi^-$	$B^0 \rightarrow D^{*-}\pi^+\pi^+\pi^-\pi^0$	$D^{*+} \rightarrow D^0 \pi^+$	$D^0 \rightarrow K_{\rm S}^{0} \pi^+ \pi^- \pi^0$	
$B^+ \rightarrow \overline{D}^{*0} \pi^+ \pi^+ \pi^- \pi^0$	$B^0 \rightarrow D_s^{*+} D^-$	$D^{*+} ightarrow D^+ \pi^0$	$D^0 \rightarrow K^- K^+$	
$B^+ \rightarrow D_s^{*+} \overline{D}^0$	$B^0 \rightarrow D_s^+ D^{*-}$	$D_s^+ \rightarrow K^+ K_S^0$	$D^0 \rightarrow K^- K^+ K_{\rm S}^0$	
$B^+ \rightarrow D_s^+ \overline{D}^{*0}$	$B^0 \rightarrow D_s^{*+} D^{*-}$	$D_s^+ \rightarrow K^+ \pi^+ \pi^-$	$D^{*0} ightarrow D^0 \pi^0$	
$B^+ \to \overline{D}{}^0 K^+$	$B^0 \rightarrow J/\psi K_{\rm S}^0$	$D_s^+ \rightarrow K^+ K^- \pi^+$	$D^{*0} ightarrow D^0 \gamma$	
$B^+ \rightarrow D^- \pi^+ \pi^+$	$B^0 \rightarrow J/\psi K^+ \pi^+$	$D_s^+ \rightarrow K^+ K^- \pi^+ \pi^0$		
$B^+ \rightarrow J/\psi K^+$	$B^0 \rightarrow J/\psi K_{ m S}^0 \pi^+ \pi^-$	$D_s^+ \rightarrow K^+ K_{\rm S}^0 \pi^+ \pi^-$		
$B^+ \rightarrow J/\psi K^+ \pi^+ \pi^-$		$D_s^+ \rightarrow K^- K_{\rm S}^0 \pi^+ \pi^+$		
$B^+ \rightarrow J/\psi K^+ \pi^0$		$D_s^+ \rightarrow K^+ K^- \pi^+ \pi^+ \pi^-$		
		$D_s^+ \rightarrow \pi^+ \pi^+ \pi^-$		
		$D_s^{*+} \rightarrow D_s^+ \pi^0$		
$B^+ \rightarrow D^- \pi^+ \pi^+ \pi^0$	$B^0 \rightarrow D^- \pi^+ \pi^0 \pi^0$	$D^+ \rightarrow \pi^+ \pi^0$	$D^0 \rightarrow K^- \pi^+ \pi^0 \pi^0$	12 B^+ additional channels
$B^+ \rightarrow \overline{D}{}^0 \pi^+ \pi^+ \pi^- \pi^0$	$B^0 \rightarrow D^- \pi^+ \pi^+ \pi^- \pi^0$	$D^+ ightarrow \pi^+ \pi^+ \pi^-$	$D^0 \rightarrow K^- \pi^+ \pi^+ \pi^- \pi^0$	12 R ⁰ additional channels
$B^+ \to \overline{D}{}^0 D^+$	$B^0 ightarrow \overline{D}{}^0 \pi^+ \pi^-$	$D^+ \rightarrow \pi^+ \pi^+ \pi^- \pi^0$	$D^0 ightarrow \pi^- \pi^+ \pi^+ \pi^-$	
$B^+ \rightarrow \overline{D}{}^0 D^+ K_{\rm S}^0$	$B^0 \rightarrow D^- D^0 K^+$	$D^+ \rightarrow K^+ K^0_{\rm S} K^0_{\rm S}$	$D^0 ightarrow \pi^- \pi^+ \pi^0 \pi^0$	
$B^+ \rightarrow \overline{D}^{*0} D^+ K_{\rm S}^0$	$B^0 \rightarrow D^- D^{*0} K^+$	$D^{*+} \rightarrow D^+ \gamma$	$D^0 ightarrow K^- K^+ \pi^0$	
$B^+ \to \overline{D}{}^0 D^{*+} K_{\rm S}^{\overline{0}}$	$B^0 \rightarrow D^{*-} D^0 K^+$	$D_s^+ \rightarrow K_{\rm S}^0 \pi^+$		
$B^+ \rightarrow \overline{D}^{*0} D^{*+} K_{\rm S}^0$	$B^0 \rightarrow D^{*-}D^{*0}K^+$	$D_s^+ \rightarrow K_S^0 \pi^+ \pi^0$		
$B^+ \to \overline{D}{}^0 D^0 K^+$	$B^0 \rightarrow D^- D^+ K_{ m S}^0$	$D_s^{*+} ightarrow D_s^+ \pi^0$		
$B^+ \to \overline{D}^{*0} D^0 K^+$	$B^0 \rightarrow D^{*-}D^+K^0_{\rm S}$		Ref [5], B2Tip (2019)	
$B^+ \to \overline{D}{}^0 D^{*0} K^+$	$B^0 \rightarrow D^- D^{*+} K_{ m S}^0$			
$B^+ \to \overline{D}^{*0} D^{*0} K^+$	$B^0 \rightarrow D^{*-}D^{*+}K^0_{\rm S}$		CT. FR for Belle / FE	I TOL REIIE II
$B^+ \rightarrow \overline{D}^{*0} \pi^+ \pi^0 \pi^0$	$B^0 \rightarrow D^{*-} \pi^+ \pi^0 \pi^0$			

Table 28. B^+ , B^0 , and D decay modes included in FEI. The modes listed in the lower part of the table were not considered in the Belle FR.

Full Event Interpretation (FEI)

※ Sphinx (latest release: release-06-00-00)

https://b2-master.belle2.org/software/sphinx/release-06-00-00/skim/doc/02-physics.html

Hadronic

B⁰ (31)

BØ channels:

0.	$B_{\rm had}^0$	$ ightarrow D^-\pi^+$	21. $B^0_{ m had} o D^+_s D^{-*}$	
1.	$B_{\rm had}^{0}$	$ ightarrow D^-\pi^+\pi^0$	22. $B^0_{ m had} ightarrow D_s^{+*} D^{-*}$	
2.	$B_{\rm had}^{0}$	$ ightarrow D^-\pi^+\pi^0\pi^0$	23. $B^0_{ m had} ightarrow J/\psi K^0_S$	
3.	$B_{\rm had}^{0}$	$ ightarrow D^-\pi^+\pi^+\pi^-$	24. $B^0_{ m had} ightarrow J/\psi K^+\pi^-$	
4.	$B_{\rm had}^0$	$\rightarrow D^-\pi^+\pi^+\pi^-\pi^0$	25. $B^0_{ m had} ightarrow J/\psi K^0_S \pi^+\pi^-$	
5.	$B_{\rm had}^0$	$ ightarrow \overline{D}^0 \pi^+ \pi^-$	26. $B^0_{ m had} o \Lambda^c p \pi^+ \pi^-$	
6.	$B_{\rm had}^{\rm flau}$	$ ightarrow D^- D^0 K^+$	27. $B^0_{ m had} o \overline{D}^0 p \overline{p}$	
7.	$B_{\rm had}^{0}$	$ ightarrow D^- D^{0*} K^+$	28. $B^0_{ m had} ightarrow D^- p ar p \pi^+$	
8.	$B_{\rm had}^{\rm flau}$	$ ightarrow D^{-*}D^0K^+$	29. $B^0_{ m had} o D^{-*} p ar p \pi^+$	
9.	$B_{\rm had}^0$	$ ightarrow D^{-*}D^{0*}K^+$	30. $B^0_{1-1} \rightarrow \overline{D}^0 p \overline{p} \pi^+ \pi^-$	
10.	$B_{\rm had}^0$	$ ightarrow D^- D^+ K^0_s$	24 \overline{D}^0 $\overline{D}^{0*} m \overline{n} - +$	
11.	$B_{\rm had}^0$	$ ightarrow D^{-*} D^+ ar{K^0_S}$	$51. D_{had} \rightarrow D^{-} pp \pi^{+} \pi$	
12.	$B_{\rm had}^0$	$ ightarrow D^- D^{+*} K^{ar 0}_S$		
13.	$B_{\rm had}^0$	$ ightarrow D^{-*} D^{+*} ar{K^0_S}$		
14.	$B_{\rm had}^0$	$ ightarrow D_s^+ D^-$		
15.	$B^0_{\rm had}$	$ ightarrow D^{-*}\pi^+$		
16.	$B_{\rm had}^0$	$ ightarrow D^{-*}\pi^+\pi^0$		
17.	$B^0_{\rm had}$	$ ightarrow D^{-*}\pi^+\pi^0\pi^0$		
18.	$B^0_{ m had}$	$ ightarrow D^{-*}\pi^+\pi^+\pi^-$		
19.	$B^0_{\rm had}$	$ ightarrow D^{-*}\pi^+\pi^+\pi^-\pi^0$		
20.	$B_{\rm had}^0$	$ ightarrow D_s^{+*} D^-$		

B⁺ (35)

B+ channels: 0. $B^+_{ m had} ightarrow \overline{D}^0 \pi^+$ 1. $B^+_{ m had} ightarrow \overline{D}^0 \pi^+ \pi^0$ 2. $B^+_{ m had} ightarrow \overline{D}^0 \pi^+ \pi^0 \pi^0$ 3. $B^+_{ m had} ightarrow \overline{D}^0 \pi^+ \pi^+ \pi^-$ 4. $B^+_{ m had} ightarrow \overline{D}^0 \pi^+ \pi^+ \pi^- \pi^0$ 5. $B^+_{\rm had} \to \overline{D}^0 D^+$ 6. $B^+_{\rm had} \rightarrow \overline{D}^0 D^+ K^0_{\scriptscriptstyle S}$ 7. $B^+_{ m had} ightarrow \overline{D}^{0*} D^+ K^0_{ m g}$ 8. $B^+_{ m had} ightarrow \overline{D}^0 D^{+*} K^0_S$ 9. $B^+_{ m had} ightarrow \overline{D}^{0*} D^{+*} K^0_{ m c}$ 10. $B^+_{ m had} ightarrow \overline{D}^0 D^0 K^+$ 11. $B^+_{ m had} ightarrow \overline{D}^{0*} D^0 K^+$ 12. $B^+_{ m had} o \overline{D}^0 D^{0*} K^+$ 13. $B^+_{ m had} o \overline{D}^{0*} D^{0*} K^+$ 14. $B^+_{ m had} ightarrow D^+_s \overline{D}^0$ 15. $B^+_{ m had} ightarrow \overline{D}^{0*} \pi^+$ 16. $B^+_{ m had} o \overline{D}^{0*} \pi^+ \pi^0$ 17. $B^+_{ m had} ightarrow \overline{D}{}^{0*} \pi^+ \pi^0 \pi^0$ 18. $B^+_{\rm had} ightarrow \overline{D}^{0*} \pi^+ \pi^+ \pi^-$ 19. $B^+_{ m had} ightarrow \overline{D}^{0*} \pi^+ \pi^+ \pi^- \pi^0$ 20. $B^+_{ m had} o D^{+*}_s \overline{D}^0$

 $\begin{array}{l} 21. \ B_{\rm had}^+ \to D_s^+ D^+ \\ 22. \ B_{\rm had}^+ \to \overline{D}^0 K^+ \\ 23. \ B_{\rm had}^+ \to D^- \pi^+ \pi^+ \\ 24. \ B_{\rm had}^+ \to D^- \pi^+ \pi^+ \pi^0 \\ 25. \ B_{\rm had}^+ \to J/\psi K^+ \\ 26. \ B_{\rm had}^+ \to J/\psi K^+ \pi^0 \\ 27. \ B_{\rm had}^+ \to J/\psi K^+ \pi^0 \\ 28. \ B_{\rm had}^+ \to J/\psi K_S^0 \pi^+ \\ 29. \ B_{\rm had}^+ \to \Lambda_c^- p \pi^+ \pi^0 \\ 30. \ B_{\rm had}^+ \to \Lambda_c^- p \pi^+ \pi^- \pi^+ \\ 31. \ B_{\rm had}^+ \to \overline{D}^0 p \bar{p} \pi^+ \\ 32. \ B_{\rm had}^+ \to D^+ p \bar{p} \pi^+ \pi^- \\ 33. \ B_{\rm had}^+ \to D^+ p \bar{p} \pi^+ \pi^- \\ 34. \ B_{\rm had}^+ \to \Lambda_c^- p \pi^+ \end{array}$

Semileptonic B⁰ (7)

BØ channels:

0. $B^0_{
m SL}
ightarrow D^- e^+$

1. $B^0_{
m SL}
ightarrow D^- \mu^+$

2. $B^0_{
m SL}
ightarrow D^{-*} e^+$

3. $B^0_{
m SL}
ightarrow D^{-*} \mu^+$

4. $B^0_{
m SL} o \overline{D}^0 \pi^- e^+$

5. $B^0_{
m SL}
ightarrow \overline{D}^0 \pi^- \mu^+$

6. $B^0_{
m SL} o \overline{D}^{0*} \pi^- e^+$

7. $B^0_{
m SL} o \overline{D}^{0*} \pi^- \mu^+$

B⁺ (7)

B+ channels: 0. $B^+_{
m SL}
ightarrow \overline{D}^0 e^+$ 1. $B^+_{
m SL} o \overline{D}^0 \mu^+$ 2. $B^+_{
m SL} o \overline{D}^{0*} e^+$ 3. $B^+_{
m SL} o \overline{D}^{0*} \mu^+$ 4. $B^+_{
m SL}
ightarrow D^- \pi^+ e^+$ 5. $B^+_{
m SL}
ightarrow D^- \pi^+ \mu^+$ 6. $B^+_{
m SL}
ightarrow D^{-*} \pi^+ e^+$ 7. $B^+_{
m SL}
ightarrow D^{-*} \pi^+ \mu^+$

Best Candidate Selection with FEI

B tag reconstruction / BCS with FEI

- Reconstruct B tag side first
- Best Candidate Selection (BCS) with FEI probability (FEI BDT output)
 - Choose the highest FEI probability as the Best Candidate
- Recommendation from the FEI expert
 - Recon. B tag side with FEI, BCS before signal reconstruction

WARNING: MY PERSONAL ^{(only vag} Scientific OPINION

... until we have *official* usage guidelines from the task force...

Recommended procedure

- 1. (measure a ratio if you can)
- 2. Start with FEI skim
- 3. Build your tag list *first*
 - a. Apply *standardized tag selections** [if you are using calibration, you <u>must</u> match its selections. If not, *it still may be a good idea*.]
 - Apply best tag selection via P_{tag} [this does not *solve* tag/sig entanglement, but I believe that it minimizes it]
- 4. Build signal side and combine with tags
 - a. Good tag definition must match calibration if using it [probably: isSignal!]
- 5. Always check for differential mismodeling in decayModeIDs...

*[*Request for task force*: provide FEI skims at multiple working points with **official** tag reconstruction, selection, and BTS]

50

※ [Belle II Physics Week 2022, Spain, 2022.Dec.01: FEI Lecture] https://indico.belle2.org/event/7825/contributions/49619/attachments/19751/29288/FEI.pdf

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

51

Best tag selection (BTS)

Can be helpful to select the "best" tag candidate in each event

Typically: highest \mathscr{P}_{tag} in an event...

...*after* other selections.

※ [Belle II Physics Week 2022, Spain, 2022.Dec.01: FEI Lecture] <u>https://indico.belle2.org/event/7825/contributions/49619/attachments/19751/29288/FEI.pdf</u>

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

14

- BaBar
 - BCS
 - More than one B candidate is reconstructed in the same mode
 - Smallest $|\Delta E|$
 - B candidates are reconstructed in more than one mode
 - Highest
- Belle II (This Analysis Case)
 - BCS with FEI
 - Highest FEI probability (BDT output)

reconstructions with one or more π^0 . If more than one *B* candidate is reconstructed in the same mode, the reconstructed *B* with the smallest $|\Delta E|$ is selected. For each mode, the purity B_{pur} is the ratio of the number of events before signal selection in the fitted peak to the total number of events in the region $5.27 < m_{\rm ES} < 5.29$ GeV. Only events reconstructed in a mode with $B_{pur} > 0.12$ are selected, which results in the reconstruction of 147 distinct modes in the data sample. If *B* candidates are reconstructed in the mode with the highest B_{pur} is selected as the companion *B*.

Sub-decay modes

Software Version:

light-2210-devonrex

Strategy: Simpler (?) one first!

Reconstruction: current version

- $\Upsilon(4S) \rightarrow B_{tag}B_{sig}$
 - 01: $B_{sig} \rightarrow e^+ e^-$
 - 02: $B_{sig} \rightarrow e^+ \mu^-$
 - 03: $B_{sig} \rightarrow e^+ \pi^-$
 - 04: $B_{sig} \rightarrow \mu^+ \mu^-$
 - 05: $B_{sig} \rightarrow \mu^+ \pi^-$
 - 06: $B_{sig} \rightarrow \pi^+ \pi^-$

Name	τ decay modes
e^+e^-	$\tau \to e \nu_e \nu_\tau, \tau \to e \nu_e \nu_\tau$
$e^{\pm}\mu^{\mp}$	$\tau \to e \nu_e \nu_\tau, \tau \to \mu \nu_\mu \nu_\tau$
$e^{\pm}\pi^{\mp}$	$\tau \to e \nu_e \nu_\tau, \tau \to \pi \nu_\tau$
$\mu^+\mu^-$	$\tau \to \mu \nu_{\mu} \nu_{\tau}, \tau \to \mu \nu_{\mu} \nu_{\tau}$
$\mu^{\pm}\pi^{\mp}$	$\tau \to \mu \nu_{\mu} \nu_{\tau}, \tau \to \pi \nu_{\tau}$
$\pi^+\pi^-$	$\tau \to \pi \nu_{\tau}, \ \tau \to \pi \nu_{\tau}$

 $B^0 \rightarrow \tau^+ \tau^-$ sub-decay channels

Reconstruction: Add ρ (future?)

•
$$\Upsilon(4S) \rightarrow B_{tag}B_{sig}$$

- 01: $B_{sig} \rightarrow e^+ e^-$
- 02: $B_{sig} \rightarrow e^+ \mu^-$
- 03: $B_{sig} \rightarrow e^+ \pi^-$
- 04: $B_{sig} \rightarrow e^+ \rho^-$
- 05: $B_{sig} \rightarrow \mu^+ \mu^-$
- 06: $B_{sig} \rightarrow \mu^+ \pi^-$
- 07: $B_{sig} \rightarrow \mu^+ \rho^-$ • 08: $B \rightarrow \pi^+ \pi^-$
- 08: $B_{sig} \rightarrow \pi^+ \pi^-$ • 00: $P \rightarrow \pi^+ \pi^-$
- 09: $B_{sig} \rightarrow \pi^+ \rho^-$
- 10: $B_{sig} \rightarrow \rho^+ \rho^-$ • $\rho^+ \rightarrow \pi^0 \pi^+$ • $\pi^0 \rightarrow \gamma \gamma$

Final State Particle Selection

Signal Reconstruction: Final State Particles

Final State Particle Selection

Software Version: light-2210-devonrex

- All Charged Tracks
 - Impact Parameter
 - $|dz| < 4 \, cm$
 - *dr* < 2 *cm*
 - [Old] Ref: [4.2.1. Chaoyi's study] <u>https://docs.belle2.org/record/2801/</u>
 - [Old] Ref: [Early Phase III Recommendation] <u>https://confluence.desy.de/display/BI/Selection+Cuts+and+Modes+for+WG1+Early+Phase+III+Studies</u>
 - [Old] Ref: [Phase II Recommndation] <u>https://confluence.desy.de/display/BI/Phase+2+Best+Practices+for+Data</u>
 - [Old] Ref: [B2-006 B2note] <u>https://docs.belle2.org/record/2204</u>
 - For ROE, Looser cuts, in order to include V0 particles (?), Why?
 - Ref: Performance Webhome
 - https://confluence.desy.de/display/BI/Physics+Performance+Webhome
 - CDC variables
 - nCDCHits > 20
 - ThetaInCDCAppectance

Final State Particle Selection

Software Version: light-2210-devonrex

- electron
 - electronID_noSVD_noTOP > 0.9
- muon
 - muonID_noSVD > 0.9
- π⁺
 - binaryPID(211, 321) > 0.6
 ※ 211: π⁺, 321: K⁺
Software Version: light-2210-devonrex

Pages /... / Charged PID performance 🛛 🔒 🖓 2 Jira links

Hadron ID Performance

Torben Ferber posted on 21. Aug. 2019 07:44h - last edited by Marco Milesi on 28. Apr. 2022 15:44h

This page contains details about ongoing activities/tasks on hadron identification.

Guidelines

Recommended track selection for hadron ID performance studies:

- [abs(dr) < 2] and [abs(dz) < 4]
- nCDCHits > 20

% [Confluence: Hadron ID Performance] <u>https://confluence.desy.de/display/BI/Hadron+ID+Performance</u>

Software Version: light-2210-devonrex

ICHEP 2020

Recommended data/MC combinations

	MC13a	MC13b	MC13a_proc11	MC13b_proc11
proc10	yes	yes	no	no
proc11 + bucket 9/10/11/12 (off- resonance)	yes (default)	no	yes	yes (performance study)

MC13a_proc11 (run-independent with some updated payloads since the start of MC13a) status: BIIDP-2791 - MC13 run-independent MC corresponding to proc11 CLOSED

MC13b_proc11 (run-dependent with conditions based on proc11) status:

BIIDP-2695 - MC13 run-dependent MC corresponding to proc11 RESOLVED

The default sample for ICHEP physics is proc11 + bucket 9/10/11 and MC13a. MC13a_proc11 will not be ready in time for ICHEP for most analyses.

Recommendations and performance results

We do not provide recommendations for analysis-dependent selections for charged particles, but report the selections used to obtain performance (PID, tracking) results. We also provide studies how variations of selection parameters modify the performance results.

We provide recommendations for neutrals (photons and pi0).

	Selection used in performance study	Sensitivity of performance to changes of selection
Lepton ID	dr < 2 cm, dz < 5 cm	Should be robust against IP cuts, certainly OK to be tighter than these - TBA.
Hadron ID	dr < 2cm, dz < 4cm, nCDCHits > 20	
Tracking	∣dz∣ < 3cm, dr<1cm	 variation in IP cuts: TBA nCDCHits cut: TBA
Neutrals	pi0 Recommendations	

X [Confluence: Conference Readiness] https://confluence.desy.de/display/BI/Conference+readiness

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

Pages /... / Lepton ID Performance 🚡 🚽 🖓 1 Jira link

Recommendations for Lepton ID - release 6

Marco Milesi posted on 10. Oct. 2022 00:31h - last edited by Marco Milesi on 23. Dec. 2022 12:41h

- Status of the work
- Recommended light release for your analysis
- Where to get corrections?
- Corrections info
- Analysis-level LID BDT info
- Payloads with detector weights for track isolation score

PID method	Global/Binary	Electrons	Muons
Likelihood ratio	G	electronID_noSVD_noTOP	muonID_noSVD
Likelihood ratio	В	binaryElectronID_noSVD_noTOP_pi	binaryMuonID_noSVD_pi
BDT	G (multi-classification)	pidChargedBDTScore_e	pidChargedBDTScore_mu
BDT	B (binary classification)	pidPairChargedBDTScore_e_pi	pidPairChargedBDTScore_mu_pi

% [E-mail] [coll-members:8561] First version of lepton ID recommendations for Moriond2023

※ [Recommendations for Lepton ID - release 6]

https://confluence.desy.de/pages/viewpage.action?spaceKey=BI&title=Recommendations+for+Lepton+ID+-+release+6

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

Software Version: light-2210-devonrex

Performance Group Recommendation

"[coll-members:8514] PID recommedations for Moriond 2023"

Dear All,

we would like to clarify what are the recommended PID variables for release-06 and MC15 (Moriond 2023 data set).

1) electronID:

The recommended variables are the BDT based (pidChargedBDTScore), as they provide much lower fake rates than the likelihood based variables for equivalent efficiency.

Likelihood based variables are still ok to use and maintained by the PID group, but please note that a significant issue with the SVD electron likelihoods for high momentum particles in the MC has been discovered, see:

https://indico.belle2.org/event/8230/contributions/50028/attachments/19872/29453/2022.12.07-PP_kuno.pdf

The likelihood based variables that we recommend to use are:

electronID_noSVD_noTOP, binaryElectronID_noSVD_noTOP_pi

(unfortunately we could not catch the issue during the validation phase, as we used only a Ks sample, that gives only low momentum pions)

2) muonID:

For muons there is no clear preference between BDT and likelihood based variables (in some corners of the phase space the likelihood variables perform better), so please spend some time testing which ones are best for your analysis.

If you are using the likelihood based variables, please use:

muonID_noSVD, binaryMuonID_noSVD_pi

3) hadronID:

The default likelihood based variables (global or binary, depending on your needs) are recommended.

The reweighted PID variables (pidWeightedProbabilityExpert, ...) can be used, but they require some care: check that the performance is better that the default variables and if needed re-train the weights in order to match your needs. You should use the Systematics Framework (ntuples) to make your own correction tables. If you need help, please get in touch with us.

The leptonID data/MC correction tables should become available in a very few days. For more details, please see this JIRA ticket: https://agira.desy.de/browse/BIIPERF-185

Best regards

Marco, Kenta, Ale

Performance Group Recommendation

Conclusions / recommendations

- ElectronID: pidChargedBDT or electronID_noSVD_noTOP;
 (very large data/MC discrepancies if you use e likelihoods from SVD)
- MuonID: pidChargedBDT or muonID_noSVD;
 (no clear preference between the two)
- HadronID: the binary likelihood ratios are perfectly fine as long as they don't involve electrons. The global likelihood ratios should be ok in most cases.
 The reweighted likelihood is also an option, but it's not guaranteed to be better than the standard and possibly needs retraining (which you can easily do).

As always:

- ✤ take a look to a data control sample as soon as possible;
- → if the data/MC correction factors are not far from 1, you are going to be ok;
- any problems/doubts/questions? Talk to us!

December 12th 2022

15

% [SL WG Meeting, 2022.Dec.13] <u>https://indico.belle2.org/event/8248/#7-introduction</u>


```
def FinalStateParticles(Path):
   # Charged Particles
    from stdCharged import stdE, stdMu, stdPi
   # Track cuts
   # Performance Group Recommendation
   # [Confluence: Conference Readiness => ICHEP 2020]
   # https://confluence.desy.de/display/BI/Conference+readiness
    trackCuts = '-4.0 < dz < 4.0'
    trackCuts += ' and dr < 2.0'
    trackCuts += ' and nCDCHits > 20'
    trackCuts += ' and thetaInCDCAcceptance'
   # (S)L WG (WG1) Group Recommendation
   # [2022.Dec.13 (S)L WG Introduction Slide]
   # https://indico.belle2.org/event/8248/#7-introduction
    eCut = trackCuts + ' and electronID_noSVD_noTOP > 0.9'
    muCut = trackCuts + ' and muonID_noSVD > 0.9'
    piCut = trackCuts + ' and binaryPID(211, 321) > 0.6' # 211: pi+, 321: K+
    ma.fillParticleList('e+:cut', eCut, path=Path)
    ma.fillParticleList('mu+:cut', muCut, path=Path)
    ma.fillParticleList('pi+:cut', piCut, path=Path)
```

Rest of Event (ROE)

Rest of Event (ROE)

Software Version: light-2210-devonrex

ROE Track

- ROE Good Tracks == 0
 - ROE Good Tracks
 - $|dz| < 4 \, cm$
 - *dr* < 2 *cm*
 - nCDCHits > 20
 - ThetaInCDCAppectance

ROE Clusters

- Currently applied
 - clusterNHits > 1.5
 - $\theta_{cluster}$ in CDCAcceptance $\approx 0.296706 < \text{theta} < 2.61799$
 - clusterE > [80, 30, 60] MeV (fwd, brr, bwd)
 - |clusterTiming| < 200 ns
 - |clusterTiming / ErrorTiming| > 2.0
 - minC2TDist > 20 cm

 ROE cuts, Ref: $B^0 → K^{*0} τ^+ τ^-$ by Stefano Moneta Indico Link (2022.Sep.13, 28th EWP meeting): <u>https://indico.belle2.org/event/7723/#2-b-ktautau-with-fei</u>

ROE cuts

ROE Mask name	Track Cuts	Cluster Cuts
Tracks TO	No cuts	No cuts
GoodTracks T1	 <i>dr</i> < 2 <i>cm</i> <i> dz </i> < 4 <i>cm</i> nCDCHits > 20 ThetaInCDCAppectance 	No cuts
Clusters_loc C1	No cuts	 clusterNHits > 1.5 $\theta_{cluster}$ in CDCAcceptance $\approx 0.296706 <$ theta < 2.61799 clusterE > [80, 30, 60]<i>MeV</i> (fwd, brr, bwd)
Clusters_loc_timing C2	No cuts	Cluster_loc + clusterTiming < 200 <i>ns</i>
Clusters_loc_timing_errtiming	C3 No cuts	Cluster_loc_timing + clusterTiming / ErrorTiming > 2.0
Clusters_distance C4 No cuts		Cluster_loc_timing_errtiming + minC2TDist > 20 cm
Cluters_splitoff	No cuts	Cluster_loc_timing + beamBackgroundProbabilityMVA > 0.1

 \times ROE cuts, Ref: $B^0 \rightarrow K^{*0} \tau^+ \tau^-$ reconstruction code by Stefano Moneta

- Code Link: <u>https://gitlab.desy.de/stefano.moneta/btokst_tau_tau/-/tree/main/reconstruction</u>
- Indico Link (2022.Sep.13, 28th EWP meeting): https://indico.belle2.org/event/7723/#2-b-ktautau-with-fei
- \times Ref: [Confluence Page] Neutral Performance, $E_{ECL}(E_{Extra})$ Selections
- Link: https://confluence.desy.de/display/BI/Neutrals+Performance

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

ROE cuts: Tracks Cuts

ROE cuts: Cluster Cuts

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

ROE cuts: Cluster Cuts

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

Pre-Selection for BDT input

Pre-Selection

- Signal MC study (main)
 - *E*^{extra}_{ECL} plot by **ROE cuts**
 - Pre-selection
 - Major variables: E_{ECL}^{extra} , M_{bc}^{tag} , ΔE^{tag} , \mathcal{N}_{tag} , M_{miss}^2

Belle pre-selection (BN-1390): Table 6.2

Pre-selection cuts and corresponding values for the signal and background rejection in percent. The cuts are applied successively.

Cut	Signal rejection in $\%$	Background rejection in $\%$
$E_{\rm ECL} < 1.2 \; {\rm GeV}$	2.65	58.23
$M_{ m bc}^{ m tag} > 5.27~{ m GeV}/c^2$	0.84	76.52
$ \Delta \widetilde{E}_{ ext{tag}} < 50 \; ext{MeV}$	14.26	47.29
$\mathcal{N}_{ ext{tag}} > 0.05$	34.78	72.08
$M_{\rm miss}^2 > 0.5 \; ({\rm GeV}/c^2)^2$	0.84	2.01
Total	46.47	98.59

Belle II pre-selection (exactly same cuts as Belle)

Pre-selection cuts and corresponding values for the signal and background rejection in percent. The cuts are applied successively.

Cut	Signal rejection in % Background rejection	
$E_{ECL}^{Extra} < 1.2 \text{ GeV}$	1.71 (99/5788)	44.01 (120849/274604)
$M_{bc}^{tag} > 5.27 \text{ GeV/c}^2$	0.67 (38/5689)	27.25 (41897/153755)
$\left \Delta E_{tag} ight < 50~{ m MeV}$	17.94 (1014/5651)	40.65 (45468/111858)
$\mathcal{N}_{tag} > 0.05$	19.58 (908/4637)	47.05 (31234/66390)
$M_{miss}^2 > 0.5 ({\rm GeV/c^2})^2$	7.88 (294/3729)	6.24 (2195/35156)
Total	40.65 (2353/5788)	88.00 (241643/274604)

Belle II pre-selection (exactly same cuts as Belle)

Pre-selection cuts and corresponding values for the signal and background rejection in percent. The cuts are applied successively.

Cut	Signal rejection in % Background rejection	
$E_{ECL}^{Extra} < 1.2 \; { m GeV}$	1.71 (99/5788)	44.01 (120849/274604)
$M_{bc}^{tag} > 5.27 \text{ GeV/c}^2$	0.67 (38/5689)	27.25 (41897/153755)
$\left \Delta E_{tag} ight < 50$ MeV	17.94 (1014/5651)	40.65 (45468/111858)
$\mathcal{N}_{tag} > 0.05$	19.58 (908/4637)	47.05 (31234/66390)
$M_{miss}^2 > 0.5 ({\rm GeV/c^2})^2$	7.88 (294/3729)	6.24 (2195/35156)
Total	40.65 (2353/5788)	88.00 (241643/274604)

Belle II pre-selection

Pre-selection cuts and corresponding values for the signal and background rejection in percent. The cuts are applied successively.

Cut	Signal rejection in %	Background rejection in %
$E_{ECL}^{Extra} < 1.2 \text{ GeV}$	1.71 (99/5788)	44.01 (120849/274604)
$M_{bc}^{tag} > 5.27 \text{ GeV/c}^2$	0.67 (38/5689)	27.25 (41897/153755)
-100 MeV $< \Delta E_{tag} < 50$ MeV	7.49 (423/5651)	26.13 (29228/111858)
$\mathcal{N}_{tag} > 0.05$	21.16 (1106/5228)	51.25 (42349/82630)
$M_{miss}^2 < 18$ (GeV/c²)²	3.76 (155/4122)	4.98 (2005/40281)
Total	31.46 (1821/5788)	86.06 (236328/274604)

Belle II pre-selection (exactly same cuts as Belle)

Pre-selection cuts and corresponding values for the signal and background rejection in percent. The cuts are applied successively.

Cut	Signal rejection in % Background rejection	
$E_{ECL}^{Extra} < 1.2 \; { m GeV}$	1.71 (99/5788)	44.01 (120849/274604)
$M_{bc}^{tag} > 5.27 \text{ GeV/c}^2$	0.67 (38/5689)	27.25 (41897/153755)
$\left \Delta E_{tag} ight < 50~{ m MeV}$	17.94 (1014/5651)	40.65 (45468/111858)
$\mathcal{N}_{tag} > 0.05$	19.58 (908/4637)	47.05 (31234/66390)
$M_{miss}^2 > 0.5 ({\rm GeV/c^2})^2$	7.88 (294/3729)	6.24 (2195/35156)
Total	40.65 (2353/5788)	88.00 (241643/274604)

Belle II pre-selection

Pre-selection cuts and corresponding values for the signal and background rejection in percent. The cuts are applied successively.

Cut	Signal rejection in %	Background rejection in %
$E_{ECL}^{Extra} < 1.2 \; { m GeV}$	1.71 (99/5788)	44.01 (120849/274604)
$M_{bc}^{tag} > 5.27 \text{ GeV/c}^2$	0.67 (38/5689)	27.25 (41897/153755)
-100 MeV $< \Delta E_{tag} < 50$ MeV	SHOUD E	
$\mathcal{N}_{tag} > 0.05$	21.16 (1106/5228)	51.25 (42349/82630)
$M^2_{miss} < 18~({ m GeV/c^2})^2$	3.76 (155/4122)	4.98 (2005/40281)
Total	31.46 (1821/5788)	86.06 (236328/274604)

Pre-selection: E_{ECL}^{Extra} **plot**

• Major variables: E_{ECL}^{Extra} , M_{bc}^{tag} , ΔE^{tag} , \mathcal{N}_{tag} , M_{miss}^2

"Extra energy in ECL cluster"

Pre-selection: M_{bc}^{tag} **plot**

• Major variables: E_{ECL}^{Extra} , M_{bc}^{tag} , ΔE^{tag} , \mathcal{N}_{tag} , M_{miss}^2

"Tag-side M_{bc} "

Events with $M_{bc}^{tag} > 5.27 \text{ GeV/c}^2$ are selected. (E_{ECL}^{Extra} cut is applied.) Signal and background M_{bc}^{tag} distributions. Events with $M_{bc}^{tag} > 5.27 \text{ GeV/c}^2$ are selected. $(E_{ECL}^{Extra}$ cut is applied.)

Pre-selection: ΔE^{tag} plot

• Major variables: E_{ECL}^{Extra} , M_{bc}^{tag} , ΔE^{tag} , \mathcal{N}_{tag} , M_{miss}^2

"Tag-side ΔE "

Signal and background ΔE_{tag} distributions. Events with $|\Delta E_{tag}| < 50$ MeV are selected. $(E_{ECL}^{Extra}, M_{bc}^{tag}$ cuts are applied.) Signal and background ΔE_{tag} distributions. Events with $-100 \text{ MeV} < \Delta E_{tag} < 50 \text{ MeV}$ are selected. $(E_{ECL}^{Extra}, M_{bc}^{tag} \text{ cuts are applied.})$

Pre-selection: \mathcal{N}_{tag} **plot**

• Major variables: E_{ECL}^{Extra} , M_{bc}^{tag} , ΔE^{tag} , \mathcal{N}_{tag} , M_{miss}^2

"Tag-side (FEI) Signal Probability"

Signal and background \mathcal{N}_{tag} distributions. Events with $\mathcal{N}_{tag} > 0.05$ are selected. $(E_{ECL}^{Extra}, M_{bc}^{tag}, \Delta E^{tag}$ cuts are applied.) Signal and background \mathcal{N}_{tag} distributions. Events with $\mathcal{N}_{tag} > 0.05$ are selected. $(E_{ECL}^{Extra}, M_{bc}^{tag}, \Delta E^{tag}$ cuts are applied.)

Pre-selection: M_{miss}^2 **plot**

• Major variables: E_{ECL}^{Extra} , M_{bc}^{tag} , ΔE^{tag} , \mathcal{N}_{tag} , M_{miss}^2

"Missing Mass Squared"

MVA Test

MVA Test

- Testing is ongoing. Something is ongoing.
- Subsequent slides are not that meaningful... Just test results

BDT Input Variables: Continuum Suppression

#	Variables	#	Variabl
1	"R2"	16	"KSFWVa
2	"thrustBm"	17	"KSFWVa
3	"thrustOm"	18	"KSFWVa
4	"cosTBTO"	19	"KSFWVa
5	"cosTBz"	20	"KSFWVa
6	"KSFWVariables(et)"	21	"KSFWVa
7	"KSFWVariables(mm2)"	22	"CleoCon
8	"KSFWVariables(hso00)"	23	"CleoCon
9	"KSFWVariables(hso02)"	24	"CleoCon
10	"KSFWVariables(hso04)"	25	"CleoCon
11	"KSFWVariables(hso10)"	26	"CleoCon
12	"KSFWVariables(hso12)"	27	"CleoCon
13	"KSFWVariables(hso14)"	28	"CleoCon
14	"KSFWVariables(hso20)"	29	"CleoCon
15	"KSFWVariables(hso22)"	30	"CleoCon

#	Variables
16	"KSFWVariables(hso24)"
17	"KSFWVariables(hoo0)"
18	"KSFWVariables(hoo1)"
19	"KSFWVariables(hoo2)"
20	"KSFWVariables(hoo3)"
21	"KSFWVariables(hoo4)"
22	"CleoConeCS(1)"
23	"CleoConeCS(2)"
24	"CleoConeCS(3)"
25	"CleoConeCS(4)"
26	"CleoConeCS(5)"
27	"CleoConeCS(6)"
28	"CleoConeCS(7)"
29	"CleoConeCS(8)"
30	"CleoConeCS(9)"

BDT Tool Test

- Testing Code with a small amount of MC sample
 - BASF2 Internal MVA FBDT
 - Thomas Keck's External MVA FBDT

Multiple BDT Test

A Simple Test: "Single BDT" vs. "Two BDTs"

Purpose: To practice comparing BDT strategies

- Training
 - BDT_(cg, s): Train BDT with "Cont. + Gen. vs. Sig." samples
 - BDT_(c, s): Train BDT with "Cont. vs. Sig." samples
 - BDT_(g,s): Train BDT with "Gen. vs. Sig." samples
- Testing
 - Test with "Cont. + Gen. + Sig." sample
 - $BDT_{(cg,s)}(cgs) \equiv BDT_0$
 - $BDT_{(c,s)}(cgs) \equiv BDT_1$
 - $BDT_{(g,s)}(cgs) \equiv BDT_2$
- Compare BDTs
 - " BDT_0 " vs. " $BDT_1 \oplus BDT_2$ "

Results: BDT1 & BDT2 – ROC

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

BDT Input Variables: BN-1390 (Belle, $B^0 ightarrow au^+ au^-$)

 $\cos heta_{
m hel,0}$

Angle between daughter 0 and the recon-

structed momentum of B_{sig}

Table 6.5.: Input variables of the neural nets.

 $\mathbb{X} B^0 \rightarrow \tau^+ \tau^-$, BN-1390, M. Ziegler (2016)

Lab. frame

 $B_{\rm sig}$ rest frame

Summary / Plan

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

Summary / Plan

- Summary
 - My personal perspective on Physics and Parameters is introduced.
 - Motivation detail is given, especially BSM ideas.
 - General Analysis Procedure / Strategy is explained.
 - Analysis status is reported briefly.
- What should I be or do?
 - Be patient
 - Getting familiar with Analysis Tools
 - Make result step by step
 - Learn actual tool usage: Please Help!
- Specific Plan
 - Test with MC14
 - Edit Pre-selection / BCS with FEI probability / Final state Particle Identification
 - BDT study: Continuum / Generic vs. Signal
 - Using characteristics of π
 - Consider the effect of $B^0 \rightarrow K_L^0 \tau^+ \tau^-$ (the main source of fake signal)
 - Design Fitter / Fitter Validation / Choose Control Sample
 - Signal Extraction
 - •
 - MC15
 - Ask WG1 DP Liaison to generate Signal MC

To-do list

- BCS with FEI
 - "Before" Signal B meson reconstruction
 - Conservative way
 - Excluding Signal Reconstruction Dependency
- Code Architecture
 - Comprehensive Code
 - Reusability
 - etc.
- Continuum Suppression
 - MVA FBDT
 - Test with MC14
- Generic vs. Signal
 - MVA FBDT
 - Choose Signal Distinguishing Variables
 - Test with MC14
- Choose Control Sample
- MC15
 - CS / Generic

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

143/142
Backup

Backup

Backup

Backup

- Previous Talks
- References
- Tool Advertisement
 - Jupyterlab
- Concepts
 - Particle Physics Experiments
 - Event number / Luminosity Concept
 - Belle / Belle II Center of Mass Energy
 - *B*-meson Flight Mean Distance
 - B counting Method
- Analysis
 - BDT benchmark
 - (FEI-Skimmed) MC Sample Info.
 - (FEI) Skim Level Selection

Previous Talks

Previous talks

2021

- 2021.09.14. 25th EWP Meeting
 - https://indico.belle2.org/event/5190/#5-b0-tautau
- 2021.11.06. KB2GM at Jeonnam
 - https://yhep-indico.yonsei.ac.kr/event/425/#22-b-tau-tau
- 2021.12.02. Leptonic Subgroup Meeting
 - https://indico.belle2.org/event/5728/#3-b0-to-tau-tau-analysis-statu

2022

- 2022.01.20. WG1 pre-session, 41st B2GM
 - https://indico.belle2.org/event/6017/#20-b0-to-tau-tau
- 2022.05.31. WG1 pre-session, 42nd B2GM
 - https://indico.belle2.org/event/6930/#sc-2-14-b-tau-tau
- 2022.Aug.04. Leptonic subgroup meeting
 - https://indico.belle2.org/event/7366/#7-b-to-tau-tau-preselection
- 2022.Oct.05. WG1 pre-session, 43rd B2GM
 - https://indico.belle2.org/event/7826/#sc-1-29-b-tau-tau
- 2022.12.16. KB2GM at Gyeryong
 - https://yhep-indico.yonsei.ac.kr/event/493/timetable/#12-b-tau-tau-decay

References

- Belle note
 - [BN1390]: $B^0 \to \tau^+ \tau^-$, BN-1390, M. Ziegler (2016)
 - https://belle.kek.jp/secured/belle_note/gn1390/bn1390_v0.8.pdf
- HDM
 - [H2000] Heather E. Logan, Ulrich Nierste, Nuclear Physics B (2000)
 - " $B_{s,d} \rightarrow \ell^+ \ell^-$ in a two-Higgs-doublet model"
 - https://doi.org/10.1016/S0550-3213(00)00417-X
- Leptoquark
 - [S2016] Suchismita Sahoo and Rukmani Mohanta, PRD (2016)
 - "Lepton flavor violating B meson decays via a scalar leptoquark"
 - https://doi.org/10.1103/PhysRevD.93.114001
 - [S2015] Suchismita Sahoo and Rukmani Mohanta, PRD (2015)
 - "Scalar leptoquarks and the rare B meson decays"
 - https://doi.org/10.1103/PhysRevD.91.094019
 - [R2014] Rukmani Mohanta, PRD (2014)
 - "Effect of scalar leptoquarks on the rare decays of Bs meson"
 - https://doi.org/10.1103/PhysRevD.89.014020
- Blackbody Radiation Images
 - http://hyperphysics.phy-astr.gsu.edu/hbase/mod6.html
 - http://ne.phys.kyushu-u.ac.jp/seminar/MicroWorld1 E/Part3 E/P34 E/Planck formula E.htm

How to install

Install on the KEKCC server (※ "jupyter-server" version problem occur) \$ pip3 install user jupyterlab

```
Install on the KEKCC server
$ pip3 install --user 'jupyter-server<2.0.1'
$ pip3 install --user jupyterlab</pre>
```

How to Run

```
$ jupyter lab --port={port number} --no-browser
※ port number: even numbers are recommended
example) $ jupyter lab --port=24816 --no-browser
```

Alias ".bashrc"

```
# Jupyter (notebook, lab)
alias jpnb16384='jupyter notebook --port=16384 --no-browser'
alias jplab16384='jupyter lab --port=16384 --no-browser'
```


Jupyter Lab

"jupyer_server" version

Version Check

- \$ jupyter --version
- Latest Version (2022.Dec.14.(WED)): 2.0.1
- Downgraded version
 - 1.23.3

Particle Physics Experiments

<u>% https://www.youtube.com/watch?v=y-ieIrNAnmw&t=912s</u>

Event Number / Luminosity Concept

- LHCb
- рр
- RF frequency: 400 MHz (40? MHz)
 - 2.5 ns
- Bunch spacing
 - 50 ns / 25 ns
 - It was 50 ns
 - In the past, it was too many events per beam crossing if 25 ns.
 - Tech improved, 25 ns can be handled.
 - Thus, currently 25 ns.
- 25 ns, 40 MHz
- 100 us (30 km / c)
 - Actual value:
- 40 MHz x 100 us = 4000 bunches
- Actual, # of bunches: 2808
- ineleastic pp: 60 mb
- ~60000 event per 1 revolution (2808 bunch crossing)
- 20 event per 1 rev per 1 bunch

- Belle II
- ee
- RF frequency: 500 MHz
 - 2 ns
- Bunch Spacing (4~6 ns)
 - 4 ns: 2500 bunches
 - 6 ns 1666 bunches
 - cf. Belle 1584 bunches
- 10 us (3 km / c)
 - Actual value:
- 2500 bunches (designed)
 - Actual value: 2376 (current? actual?)
 - X where can I find this info. This info. only exist in sphinx..
- Bhabha: 125 nb
- 1 event per 1 revolution (2376 bunch crossing)
- 1/2376 event per 1 rev per 1 bunch

With revolution frequency f and number of bunches n_b the luminosity L becomes:

$$L = \mathsf{K} \cdot N_1 N_2 \cdot f \cdot n_b \int_{-\infty}^{\infty} \rho_x(x) \rho_y(y) \rho_s(s-s_0) \cdot \rho_x(x) \rho_y(y) \rho_s(s+s_0)$$

In principle: should know all distributions ρ and ρ , but Gaussian distributions are usually a good approximation, tails can be ignored

$$\text{transverse}: \quad \rho(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma_x^2}\right) \qquad \quad \rho(y) = \frac{1}{\sigma_y \sqrt{2\pi}} \exp\left(-\frac{y^2}{2\sigma_y^2}\right)$$

※ [211015, 211126 Lab Meeting]

% [CERN, Luminosity Lecture] https://cas.web.cern.ch/sites/default/files/lectures/constanta-2018/l1.pdf

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

Belle / Belle II Center of Mass Energy

The reasons why we use asymmetric beam energy

- To get benefit to measure time-dependent CP. Extending flight time.
- Vertex separation by utilizing difference of flight distance(?)
- Please explain it again..
- < Why the asymmetricity is decreased >
- To increase luminosity (current \uparrow)
- High energy positron can be stored better in the damping ring.
- Vertex detection technique should be improved.

X How to increase luminosity

- current \uparrow
- cross section ↑ (by pencil beam, beam diameter(beta function related))

Belle & Belle II beam energy

If the beam energy of the electron beam is chosen as E_{-} and the center of mass energy of the colliding beams equals the mass of the $\Upsilon(4S)$ meson, calculate the energy of the positron beam, E_{+} , in the laboratory frame. Momenta perpendicular to the beam direction are zero [1].

- (a) For Belle case, $E_{-} = 8 \text{ GeV}$
- (b) For Belle II case, $E_{-} = 7 \text{ GeV}$

 $\begin{array}{cccc} \langle \Upsilon(4S) \operatorname{Rest mass frame(CM)} \rangle & \langle \operatorname{Lab frame} \rangle & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

$$p_{\Upsilon} = p_{-} - p_{+} = E_{-} - E_{+} \qquad E_{-}^{2} = m_{-}^{2} + p_{-}^{2} \implies p_{-} = E_{-} \quad (\because p_{-} \gg m_{-})$$
$$E_{+}^{2} = m_{+}^{2} + p_{+}^{2} \implies p_{+} = E_{+} \quad (\because p_{+} \gg m_{+})$$

$$\beta_{\Upsilon} = \frac{p_{\Upsilon}}{E_{\Upsilon}} = \frac{E_{-} - E_{+}}{E_{-} + E_{+}} \quad \Rightarrow \quad 1 - \beta_{\Upsilon}^{2} = 1 - \frac{(E_{-} - E_{+})^{2}}{(E_{-} + E_{+})^{2}} = \frac{4E_{-}E_{+}}{(E_{-} + E_{+})^{2}} \quad \Rightarrow \quad \gamma_{\Upsilon}^{2} = \frac{(E_{-} + E_{+})^{2}}{4E_{-}E_{+}}$$
$$\left(\gamma = \frac{1}{\sqrt{1 - \beta^{2}}} \quad \Rightarrow \quad 1 - \beta_{\Upsilon}^{2} = \frac{1}{\gamma^{2}}\right)$$

Belle & Belle II beam energy

	eta_{Υ}	γ_{Υ}
Belle I	$\frac{8-3.5}{8+3.5} = 0.39$	1.086
Belle II	$\frac{7-4}{7+4} = 0.27$	1.036

$$E_{+} = \frac{1}{4E_{-}} \frac{(E_{-} + E_{+})^{2}}{\gamma^{2}} = \frac{1}{4E_{-}} \frac{E_{\Upsilon}^{2}}{\gamma^{2}} = \frac{1}{4E_{-}} E_{\Upsilon}'^{2} = \frac{1}{4E_{-}} M_{\Upsilon}^{2}$$

(a) For Belle case, $E_{-} = 8 \text{ GeV}$ $\therefore E_{+} = 3.5 \text{ GeV}$ (b) For Belle II case, $E_{-} = 7 \text{ GeV}$ $\therefore E_{+} = 4 \text{ GeV}$

References

References

[1] <u>http://electron6.phys.utk.edu/PhysicsProblems/Mechanics/8-Relativity/relcoll.html</u>

B-meson Flight Mean Distance

A neutral B meson flight mean distance

Estimate(calculate) the mean distance of nuetral B meson.

Lifetimes of the nuetral B mesons are $\tau'_B = 1.52 \ ps$ (The prime denote the B meson rest frame.) [3] (Of course, you can find the lifetime values on the Wikipedia.) [4]

(To make this problem simpler, let's assume momenta perpendicular to the beam direction are zero.) (a) For Belle case, $E_{-} = 8$ GeV, $E_{+} = 3.5$ GeV

(b) For Belle II case, $E_{-} = 7 \text{ GeV}, E_{+} = 4 \text{ GeV}$

 $M_{B_0} = M_{\bar{B}_0} = 5.28 \ GeV := M_B$ $E'_{B^0} = E'_{\bar{B}^0} = M_{\Upsilon}/2 = 5.289 \ GeV := E'_B$ $p'_{B^0} = p'_{\bar{B}^0} = (E'_B{}^2 - M_B^2)^{1/2} = 0.33 \ GeV := p'_B$

 $\therefore \beta'_B = \frac{p'_B}{E'_B} = 0.063$

A neutral B meson flight mean distance

A neutral B meson flight mean distance

$$E_{B} = \gamma_{\Upsilon} E'_{B} + \gamma_{\Upsilon} \beta_{\Upsilon} p'_{B} cos(\theta') \qquad p_{B} = (E_{B}^{2} - M_{B}^{2})^{1/2}$$
$$= \gamma_{\Upsilon} E'_{B} + \gamma_{\Upsilon} \beta_{\Upsilon} \beta'_{B} E'_{B} cos(\theta') \qquad \beta_{B} = \frac{p_{B}}{E_{B}} \qquad \gamma_{B} = \frac{1}{\sqrt{1 - \beta_{B}^{2}}}$$

This term is much smaller than 1.

 $\approx \gamma_{\Upsilon} E'_B$

	β_{Υ}	$\gamma \gamma$	β'_B	$\beta_{\Upsilon}\beta'_B$	E_B	p_B	β_B	γ_B	$\beta_B \gamma_B$
Belle I	$\frac{8-3.5}{8+3.5} = 0.39$	1.086	0.063	0.024	5.74	2.25	0.39	1.086	0.42
Belle II	$\frac{7-4}{7+4} = 0.27$	1.036	0.063	0.017	5.47	1.43	0.26	1.036	0.27

$$\therefore d_B = \tau_B v_B$$

= $(\gamma_B \tau'_B)(\beta_B c)$
=
$$\begin{cases} 194 \ \mu m, \ for \ Belle \ I \\ 124 \ \mu m, \ for \ Belle \ II \end{cases}$$

cf) For extreme case 1, $\cos(\theta')=1$

$$= \gamma_{\Upsilon} E'_B (1 + \beta_{\Upsilon} \beta'_B cos(\theta'))$$

 p_B is calculated with $p_B = (E_B^2 - M_B^2)^{1/2}$

	E_B	p_B	β_B	γ_B	d_B
Belle I	5.88	2.58	0.44	1.113	2.23
Belle II	5.56	1.75	0.32	1.053	1.52

 p_B is calculated with $p_B = \gamma_{\Upsilon} \beta_{\Upsilon} E'_B + \gamma_{\Upsilon} p'_B cos(\theta')$

	E_B	p_B	β_B	γ_B	d_B
Belle I	5.88	2.60	0.44	1.115	2.25
Belle II	5.56	1.82	0.32	1.057	1.57

Backup

Parameters	Value
Energy $(\text{GeV})(e^+/e^-)$	4.0/7.0
$eta\gamma$	0.28
Current (A)	3.60/2.62
$\beta_y^* (\text{mm})$	0.27/0.41
$Luminosity(10^{34} cm^{-2} s^{-1})$	80
Integrated luminosity (ab^{-1})	50
Crossing angle (mrad)	83
Perimeter of ring (km)	3

 Table 2.1: Parameters about SuperKEKB accelerator.

Figure 3.1: A role of vertex detector for Belle II. Difference of distance between $B^0\overline{B}^0$ vertices is measured. Red points represent hit position in layers of the vertex detector. Intersect points of obtained lines are regarded as decay point of particles.

Backup

3.2.2 High spacial resolution

Vertex resolution

Because $\beta\gamma$ of Belle II is 0.28, average distance of B^0 flight would be roughly $c \times 1.5$ ps $\times 0.28 \sim 130 \ \mu\text{m}$. So if we would like to measure that lifetime, we need a vertex detector whose vertex resolution is sufficiently less than O(100 μm).

References

References

[1] <u>http://electron6.phys.utk.edu/PhysicsProblems/Mechanics/8-Relativity/relcoll.html</u>

[2] Thomson M.-Modern Particle Physics-Cambridge University Press (2013) problem 14.12

[3] Thomson M.-Modern Particle Physics-Cambridge University Press (2013) problem 14.13

[4] <u>https://en.wikipedia.org/wiki/B_meson</u>

[5] Nobuhiro Shimizu Aihara/Yokoyama lab. "Development of the Silicon Vertex Detector for Belle II experiment(2014.01)"

B Counting Method

3.6.2.1 B-counting in BABAR

For the $\Upsilon(4S)$ running periods, the number of $B\overline{B}$ events in BABAR was computed by subtracting the number of hadronic events due to continuum interactions from the total number of the events in the on-resonance data set:

$$N_{B\overline{B}} = (N_H - N_\mu \cdot R_{off} \cdot \kappa) / \epsilon_{B\overline{B}}$$
(3.6.1)

where

- $-N_H$ is the number of events satisfying the hadronic event selection in the on-resonance data;
- $-N_{\mu}$ is the number of events satisfying muon pair selection criteria in the on-resonance data;
- R_{off} is the ratio of selected hadronic events to selected muon pair events in the off-resonance (continuum) data;
- $\kappa \equiv \frac{\epsilon'_{\mu} \cdot \sigma'_{\mu}}{\epsilon_{\mu} \cdot \sigma_{\mu}} \cdot \sum_{i} \frac{\epsilon_{i} \cdot \sigma_{i}}{\epsilon'_{i} \cdot \sigma'_{i}} \text{ corrects for the changes in continuum production cross section } (\sigma) and efficiency for satisfying the selection criteria (ϵ) between on and off-resonance center-of-mass energies. Off-resonance quantities are denoted by a prime. The subscript μ refers to muon pair events; the various contributions to the continuum hadronic cross section, primarily <math display="inline">e^+e^- \to q\bar{q}$, are denoted by the subscript \$i\$. Since the muon pair and \$q\bar{q}\$ cross sections vary similarly with \$\sqrt{s}\$ (0.7\%) difference between on- and off-resonance), \$\kappa\$ has a value close to 1. The quantity $N_{\mu} \cdot R_{off} \cdot \kappa$ is then the number of continuum hadronic events in the on-resonance dataset.$
- $-\epsilon_{B\overline{B}} = 0.940$ is the efficiency for produced $B\overline{B}$ events to satisfy the hadronic event selection, calculated under the assumption that

$$\mathcal{B}(\Upsilon(4S) \to B^+B^-) = \mathcal{B}(\Upsilon(4S) \to B^0\overline{B}{}^0) = 0.5.$$
(3.6.2)

Variations in the amount of non- $B\overline{B}$ decays of the $\Upsilon(4S)$, and in the branching ratios of B^+B^- and $B^0\overline{B}^0$, are included in the systematic error, but are not significant.

3.6.2.2 B-counting in Belle

The final Belle $\Upsilon(4S)$ dataset contains $(771.6 \pm 10.6) \times 10^6$ $B\overline{B}$ events. As in the BABAR B-counting scheme, this number is obtained by a subtraction of off-resonance hadronic contributions, as measured by the number of events in the previously described HadronBJ skim, from the total number of on-resonance hadronic events. In the Belle case, this is calculated as:

$$N_{B\overline{B}} = \frac{N_{on} - r(\epsilon_{q\overline{q}})\alpha N_{q\overline{q}}^{off}}{\epsilon_{B\overline{B}}} \tag{3.6.3}$$

where

- $-N_{on}$ is the number of events satisfying the hadronic event selection in the on-resonance data;
- $-r(\epsilon_{q\bar{q}})$ is the ratio of efficiency for $q\bar{q}$ events off-resonance to the efficiency for those on-resonance;
- $-\alpha$ is the ratio of the number of Bhabha (e^+e^-) events or μ -pair events observed on-resonance to those observed off-resonance. This is described in more detail below;
- $-N_{q\bar{q}}^{off}$ is the number of events satisfying the hadronic event selection in the off-resonance data;
- $-\epsilon_{B\overline{B}}$ is the efficiency of the $\Upsilon(4S) \to B\overline{B}$ event selection criteria for on-resonance data.

[The Physics of the B factories: p55~56]
 A. J. Bevan et al., Eur. Phys. J. C 74, 3026 (2014)

4.2 Derivation of the *B* Counting Formula

Suppose we wish to calculate the number of B mesons in a sample of on-peak data of luminosity \mathcal{L} , using an off-peak data sample of luminosity \mathcal{L}' . For simplicity, off-peak quantities are primed, and hadronic, mu-pair, $B\overline{B}$ and continuum quantities have the subscripts H, μ , B and X respectively. The numbers produced of each quantity (as opposed to those counted by the B Counting selectors) have the superscript "0".

In a sample of on-peak data, the number of $B\overline{B}$ events is equal to the total number of hadronic events (N_H^0) less the number of non- $B\overline{B}$ hadronic events (N_X^0) .

$$N_B^0 = N_H^0 - N_X^0 \tag{4.4}$$

The number of on-peak continuum events can be found by scaling (by luminosity) an off-peak sample (in which all events are non- $B\overline{B}$). The small decrease in energy from on-peak to off-peak data-taking changes all continuum production rates slightly, but almost all of these events scale in similar ways with luminosity.

For any particular type of event, the number counted is equal to the number produced multiplied by the efficiency (ε). So for example,

$$N_{\mu} = \varepsilon_{\mu} N_{\mu}^{0} = \varepsilon_{\mu} \sigma_{\mu} \mathcal{L} \qquad (4.5)$$

and

$$N'_{\mu} = \varepsilon'_{\mu} N'^{0}_{\mu} = \varepsilon'_{\mu} \sigma'_{\mu} \mathcal{L}'.$$

$$(4.6)$$

For off-peak data, there is no $\Upsilon(4S)$ production, so we can assume that all hadrons are from continuum events (and hence the symbols N'_H and N'_X are equivalent):

$$N'_{H} = N'_{X} = \varepsilon'_{X} N'^{0}_{X} = \varepsilon'_{X} \sigma'_{X} \mathcal{L}'.$$

$$(4.7)$$

We define:

$$\kappa \equiv \frac{\varepsilon'_{\mu}\sigma'_{\mu}}{\varepsilon_{\mu}\sigma_{\mu}} \cdot \frac{\varepsilon_X\sigma_X}{\varepsilon'_X\sigma'_X} \tag{4.8}$$

$$\equiv \kappa_{\mu} \cdot \kappa_X$$
. (4.9)

X McGregor 2008 [Chapter 4. B Counting]:

G. D. McGregor. "B Counting at BABAR" 0812.1954.

B counting method: **BABAR** - detail

We combine (4.6), (4.7) and (4.8) to give:

$$\frac{N'_X}{N'_{\mu}}\kappa = \frac{\varepsilon'_X\sigma'_X\mathcal{L}'}{\varepsilon'_{\mu}\sigma'_{\mu}\mathcal{L}'}\kappa = \frac{\varepsilon_X\sigma_X}{\varepsilon_{\mu}\sigma_{\mu}}.$$
(4.10)

The hadronic events in the on-peak sample consist of continuum and $B\overline{B}$ events:

$$N_H^0 = N_X^0 + N_B^0 \tag{4.11}$$

and the number of *counted* hadronic events is

$$N_H = \varepsilon_X N_X^0 + \varepsilon_B N_B^0. \tag{4.12}$$

Hence from (4.10), we can write

$$\varepsilon_B N_B^0 = N_H - \varepsilon_X N_X^0 \tag{4.13}$$

$$= N_H - \varepsilon_X \sigma_X \mathcal{L} \tag{4.14}$$

$$= N_H - \frac{N'_H}{N'_{\mu}} \cdot \kappa \cdot \varepsilon_{\mu} \sigma_{\mu} \cdot \frac{N_{\mu}}{\varepsilon_{\mu} \sigma_{\mu}}$$
(4.15)

$$= N_H - N_\mu \cdot \frac{N'_H}{N'_\mu} \cdot \kappa. \tag{4.16}$$

Hence, the number of $B\overline{B}$ mesons produced in the on-peak sample is given by:

$$N_B^0 = \frac{1}{\varepsilon_B} (N_H - N_\mu \cdot R_{off} \cdot \kappa), \qquad (4.17)$$

where

$$R_{off} \equiv \frac{N'_X}{N'_{\mu}}.$$
(4.18)

In general, κ is close to unity. The exact values and uncertainties of κ_{μ} and κ_{X} are discussed in detail later.

X McGregor 2008 [Chapter 4. B Counting]:

G. D. McGregor. "B Counting at BABAR" 0812.1954.

Belle Physics Cross Sections Table

Physics Cross Sections Table

알 수 없는 사용자 (asifmoh) posted on 02. 6월. 2016 14:09h - last edited by Sam Cunliffe on 24. 9월. 2020 16:24h

Preliminary!

At 10.5738 GeV, all "Process" and "Cross section" cuts applied in the nominal CM frame (smearing applied for KKMC), all "Visible fraction" cuts applied in the nominal Belle II lab frame. "Visible fraction" is based on generator truth information using primary stable particles only. CDC acceptance is 17-150deg, ECL acceptance is 12.4-155.1deg in the lab frame. ee->qqbar contains the QED and QCD corrections from KKMC (par(53)=1)!

Process	Cross Section [nb]	Visible fraction	Trigger Rate [Hz]	Generator/Reference
$ee ightarrow \mu \mu (\gamma)$	$1.148\pm0.005~(\text{full angle})$	both charged in ECL (p>0.5GeV): 0.76 both charged in CDC (p>0.5GeV): 0.72 gamma (E > 0.5GeV) in ECL, no charged in CDC: < 0.01 gamma (E > 0.5GeV): 0.40 gamma (E > 0.5GeV) untagged: 0.49 gamma (E > 0.5GeV) tagged: 0.21	-	ККМС
$ee \rightarrow \tau \tau(\gamma)$	$0.919\pm0.003~(\text{full angle})$	-	-	ККМС
$ee ightarrow ee(\gamma)$ (Bhabha)	125 ± 1 (MC statistics) (15- 165deg) 201 ± 1 (MC statistics) (12- 168deg) 294 ± 2 (MC statistics) (10- 170deg)	(10-170)deg: both charged in ECL (p>0.5GeV): 0.252 both charged in CDC (p>0.5GeV): 0.151 gamma (E > 0.5GeV) in ECL, no charged in CDC: 0.016 gamma (E > 0.5GeV): 0.205 gamma (E > 0.5GeV) untagged: 0.172 gamma (E > 0.5GeV) tagged: 0.091 (15-165)deg: both charged in ECL (p>0.5GeV): 0.594 both charged in CDC (p>0.5GeV): 0.357 gamma (E > 0.5GeV) in ECL, no charged in CDC: 0.025 gamma (E > 0.5GeV): 0.2143 gamma (E > 0.5GeV) untagged: 0.395 gamma (E > 0.5GeV) tagged: 0.216	-	BABAYAGA.NLO
$ee \rightarrow \gamma \gamma(\gamma)$	3.89 ± 0.02 (MC statistics) (15- 165deg) 4.96 ± 0.02 (MC statistics) (10-	at least 2 g in ECL (E>0.5 GeV): 0.662 1 g in ECL (E > 0.5GeV), no more g in ECL (E > 0.1GeV): 0.129	-	BABAYAGA.NLO
	170deg)	※ [Physics Cros	s Sections	Table]
	i .	https://conflue	nce desv de	o/display/BI/Phy

https://confluence.desy.de/display/BI/Physics+Cross+Sections+Table

Belle Physics Cross Sections Table

÷

$ee ightarrow u ar u(\gamma)$	1.605 (NLO without QCD, full angle) (used in production) 1.034 (massless Born, full angle)		-	ККМС
$ee ightarrow dar{d}\left(\gamma ight)$	0.401 (NLO without QCD, full angle) (used in production) 0.258 (massless Born, full angle)	-	-	ККМС
$ee ightarrow sar{s}(\gamma)$	0.383 (NLO without QCD, full angle) (used in production) 0.258 (massless Born, full angle)	-	-	ККМС
$ee \rightarrow u\bar{u}(\gamma)/d\bar{d}(\gamma)/s\bar{s}(\gamma)$	2.389 (NLO, full angle) 1.55 (massless Born, full angle)	-	-	ККМС
$ee ightarrow car{c}(\gamma)$	1.329 (NLO without QCD, full angle) (used in production) 1.034 (massless Born, full angle)	-	-	ККМС
$ee ightarrow \Upsilon(4S) ightarrow Bar{B}$	1.100 (used in production)	-	-	
$ee ightarrow \Upsilon(4S) ightarrow B^+B^-$	0.5654 (used in production)			
$ee ightarrow \Upsilon(4S) ightarrow B^0 ar{B}^0$	0.5346 (used in production)			

The $e^+e^- \rightarrow b\overline{b}$ production cross-section at the $\Upsilon(4S)$ ($\Upsilon(5S)$) resonance is about <u>1.1 nb</u> (0.3 nb). At the Z resonance (SLC, LEP) all species of *b*-flavored hadrons could be studied for the first time. The $e^+e^- \rightarrow b\overline{b}$ production cross-section at the Z resonance is about 6.6 nb.

X [PDG, p814] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

In practice, the exact properties of the colliding beams, such as the transverse profiles, are not known precisely and it is not possible to accurately calculate the instantaneous luminosity. For this reason, cross section measurements are almost always made with reference to a process where the cross section is already known. Hence, a cross section measurement is performed by counting the number of events of interest N, and the number of observed events for the reference process N_{ref} , such that the measured cross section is given by

$$\sigma = \sigma_{\rm ref} \frac{N}{N_{\rm ref}}.$$

References

- [The Physics of the B factories: p55~56] A. J. Bevan et al., Eur. Phys. J. C 74, 3026 (2014)
- McGregor 2008 [Chapter 4. B Counting]: G. D. McGregor. "B Counting at BABAR" 0812.1954.
- [Physics Cross Sections Table] <u>https://confluence.desy.de/display/BI/Physics+Cross+Sections+Table</u>
- [PDG] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
- [Modern Particle Physics, Mark Thomson, p27]
Propagation of Uncertainty

Function	Variance	Standard Deviation
f = aA	$\sigma_f^2 = a^2 \sigma_A^2$	$\sigma_f = a \sigma_A$
f = aA + bB	$\sigma_f^2 = a^2 \sigma_A^2 + b^2 \sigma_B^2 + 2ab\sigma_{AB}$	$\sigma_f = \sqrt{a^2 \sigma_A^2 + b^2 \sigma_B^2 + 2 a b \sigma_{AB}}$
f = aA - bB	$\sigma_f^2 = a^2 \sigma_A^2 + b^2 \sigma_B^2 - 2ab\sigma_{AB}$	$\sigma_f = \sqrt{a^2 \sigma_A^2 + b^2 \sigma_B^2 - 2 a b \sigma_{AB}}$
f = A - B,	$\sigma_f^2 = \sigma_A^2 + \sigma_B^2 - 2\sigma_{AB}$	$\sigma_f = \sqrt{\sigma_A^2 + \sigma_B^2 - 2\sigma_{AB}}$
f = aA - aA,	$\sigma_f^2 = 2a^2\sigma_A^2(1- ho_A)$	$\sigma_f=\sqrt{2}\left a ight \sigma_A(1- ho_A)^{1/2}$
f = AB	$\sigma_{f}^{2}\approx f^{2}\left[\left(\frac{\sigma_{A}}{A}\right)^{2}+\left(\frac{\sigma_{B}}{B}\right)^{2}+2\frac{\sigma_{AB}}{AB}\right]^{[9][10]}$	$\sigma_{f}pprox \left f ight \sqrt{\left(rac{\sigma_{A}}{A} ight)^{2}+\left(rac{\sigma_{B}}{B} ight)^{2}+2rac{\sigma_{AB}}{AB}}$
$f = rac{A}{B}$	$\sigma_{f}^{2}\approx f^{2}\left[\left(\frac{\sigma_{A}}{A}\right)^{2}+\left(\frac{\sigma_{B}}{B}\right)^{2}-2\frac{\sigma_{AB}}{AB}\right]^{[11]}$	$\sigma_{f}pprox \left f ight \sqrt{\left(rac{\sigma_{A}}{A} ight)^{2}+\left(rac{\sigma_{B}}{B} ight)^{2}-2rac{\sigma_{AB}}{AB}}$
$f = aA^b$	$\sigma_{f}^{2}pprox \left(abA^{b-1}\sigma_{A} ight)^{2}=\left(rac{fb\sigma_{A}}{A} ight)^{2}$	$\left \sigma_{f}pprox\left abA^{b-1}\sigma_{A} ight =\left rac{fb\sigma_{A}}{A} ight $
$f = a \ln(bA)$	$\sigma_{f}^{2}pprox \left(arac{\sigma_{A}}{A} ight)^{2}$ [12]	$\sigma_f pprox \left a rac{\sigma_A}{A} ight $
$f = a \log_{10}(bA)$	$\sigma_f^2 pprox \left(a rac{\sigma_A}{A \ln(10)} ight)^2$ [12]	$\sigma_f pprox \left a rac{\sigma_A}{A \ln(10)} ight $
$f=ae^{bA}$	$\sigma_f^2 pprox f^2 (b\sigma_A)^{2}$ [13]	$\sigma_{f}pprox f \left (b\sigma_{A}) ight $
$f = a^{bA}$	$\sigma_f^2 pprox f^2 (b \ln(a) \sigma_A)^2$	$\sigma_f pprox f \left (b \ln(a) \sigma_A) ight $
$f = a \sin(bA)$	$\sigma_f^2 pprox [ab\cos(bA)\sigma_A]^2$	$\sigma_f pprox ab\cos(bA)\sigma_A $
$f = a\cos(bA)$	$\sigma_f^2 pprox [ab\sin(bA)\sigma_A]^2$	$\sigma_f pprox ab\sin(bA)\sigma_A $
$f = a \tan(bA)$	$\sigma_{f}^{2}pprox\left[ab\sec^{2}(bA)\sigma_{A} ight]^{2}$	$\sigma_f pprox \left ab \sec^2(bA) \sigma_A ight $
$f = A^B$	$\sigma_f^2 pprox f^2 \left[\left(rac{B}{A} \sigma_A ight)^2 + \left(\ln(A) \sigma_B ight)^2 + 2 rac{B \ln(A)}{A} \sigma_{AB} ight]$	$\sigma_f pprox f \sqrt{\left(rac{B}{A}\sigma_A ight)^2 + \left(\ln(A)\sigma_B ight)^2 + 2rac{B\ln(A)}{A}\sigma_{AB}}$
$f=\sqrt{aA^2\pm bB^2}$	$\sigma_f^2 pprox \left(rac{A}{f} ight)^2 a^2 \sigma_A^2 + \left(rac{B}{f} ight)^2 b^2 \sigma_B^2 \pm 2abrac{AB}{f^2}\sigma_{AB}$	$\sigma_f pprox \sqrt{\left(rac{A}{f} ight)^2 a^2 \sigma_A^2 + \left(rac{B}{f} ight)^2 b^2 \sigma_B^2 \pm 2abrac{AB}{f^2}\sigma_{AB}}$

% https://en.wikipedia.org/wiki/Propagation_of_uncertainty#cite_note-11

B Counting

B Counting

BDT Benchmark

BDT input variables: Belle (\mathcal{N}_{sig})

	Variable	Short description
Lab. frame	$p_{\mathrm{T},i}$	Transverse momentum of $B_{\rm sig}$ daughters
	E_i	Energy of $B_{\rm sig}$ daughters
	$\cos heta_i$	Polar angle of $B_{\rm sig}$ daughters
	$\cos heta_{0 \triangleleft 1}$	Angle between B_{sig} daughters
	A_{01}	Momentum asymmetry of B_{sig} daughters
	$M(B_{ m sig})$	Reconstructed mass of $B_{\rm sig}$
	p_{T}	Reconstructed transverse momentum of $B_{\rm sig}$
	$M^2_{ m miss}$	Squared missing mass of the event
	$ ec{p}_{ ext{miss}} $	Absolute value of the missing momentum in
		the event
	$ ec{p}_{\mathrm{T,miss}} $	Absolute value of the transverse component
	-	of the missing momentum in the event
	$d_{ m IP}$	Distance of $B_{\rm sig}$ vertex and IP
	$\Sigma(d_{ m IP})$	Significance of $d_{\rm IP}$
$B_{\rm sig}$ rest frame	$ \vec{p}_i^* $	Absolute value of the momentum of B_{sig}
0	1- 11	daughters
	$\cos heta_{0 < 1}^*$	Angle between $B_{\rm sig}$ daughters
	$\cos \theta^*_{\pi < \pi}$	Angle between τ and $B_{\rm sig}$ daughter with π
	144	hypothesis
	$\cos heta_{ m hel,0}$	Angle between daughter 0 and the recon-
		structed momentum of $B_{\rm sig}$

Table 6.5.: Input variables of the neural nets.

 $\mathbb{X}B^0 \rightarrow \tau^+ \tau^-$, BN-1390, M. Ziegler (2016)

BDT overview

- BDT based on XGBoost trained on 1ab⁻¹ of skimmed bkg events and 50M skimmed signal events
- Samples split 50/50 for training/testing. Background randomly sampled to get $n_{bkg} = 5 \times n_{sig}$

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

Signal selection

• Train XGBoost **BDT** to discriminate signal against all backgrounds \rightarrow distinguish $\tau\tau$ decay topologies during the training

For <u>BDT>0.95</u> :

ε = 9.4 10^{- 5} ~800 BBbar events for 1/ab

 "Improved" scenario assumed for <u>snowmass</u> projections (x3 signal efficiency with same bkg as Belle)

- To be updated
 - Training with new preselection (see slide 9)
 - Change variable inputs list (D-veto)

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim

7

BDT input variables: Belle II (Continuum Suppression)

Solution ►

1	#!/usr/bin/env python3
2	
3	<pre>import basf2_mva</pre>
4	
5	general_options = basf2_mva.GeneralOptions()
6	general_options.m_datafiles = basf2_mva.vector("ContinuumSuppression.root")
7	general_options.m_treename = "tree"
8	general_options.m_identifier = "MVAFastBDT.root" # outputted weightfile
9	general_options.m_variables = basf2_mva.vector(
10	"R2",
11	"thrustBm",
12	"thrustOm",
13	"cosTBTO",
14	"cosTBz",
15	"KSFWVariables(et)",
16	"KSFWVariables(mm2)",
17	"KSFWVariables(hso00)",
18	"KSFWVariables(hso02)",
19	"KSFWVariables(hso04)",
20	"KSFWVariables(hso10)",
21	"KSFWVariables(hso12)",
22	"KSFWVariables(hso14)",
23	"KSFWVariables(hso20)",
24	"KSFWVariables(hso22)",
25	"KSFWariables(hso24)",
26	"KSFWVariables(hoo0)",
27	"KSFWVariables(hool)",
28	"KSFWVariables(hoo2)",
29	"KSFWVariables(hood)",
30	"KSFWVarlab (es(noo4)",
31	"Cleoconecs(1)",
32	UCleoConeCS(2) ,
33	"CleeConeCS(3)",
25	"ClosConeCS(4)",
30	"CleoConeCS(5)"
27	
38	"Cleaconecs(2)"
30	"CleoConeCS(0)"
40	
41	<pre>general options.m target variable = "isContinuumEvent"</pre>
42	fastbdt options = basf2 mva.FastBDTOptions()
43	
44	basf2 mva.teacher(general options, fastbdt options)

※ [Sphinx manual (light-2207-bengal): 3.4.10. Continuum Suppression (CS)] Link: <u>https://b2-master.belle2.org/software/sphinx/light-2207-bengal/online_book/basf2/cs.html</u>

(FEI-Skimmed) MC Sample Information

MC Sample / Skimmed MC Sample Information

MC Sample Information

- #69, Signal at $\Upsilon(4S)$, Mode: B0 \rightarrow tau tau, Nickname: Bd_tautau [1]
- Number of events: 20×10⁶ [1]
- Ratio without/with background: 0.20 / 0.80 [1]
- Btag decay type: **generic** [1]
- Bsig decay type: tau+ tau- [1]
- Campaign: MC14ri_a [2]
- Location: /belle/MC/release-05-02-00/DB00001330/MC14ri_a/prod00021450/s00/e1003/4S/r00000/ 1120600000/mdst/sub00 [2]

Skimmed MC Sample Information

- Beam background type: **BGx1** [2]
- The Signal MC is generated with basf2 version release-05-02-11 [2].
- MC Signal mode: B0 → tau tau [2, 3]
- MC Signal Code: 1120600000 [2, 3]
- Skim Type: feiHadronicB0 / feiSLB0 [2, 3]
- Location: /belle/user/shdelamo/skim_Bd_tautau_21450_1120600000 [2]
- Location: /belle/group/physics/SLME/skim_Bd_tautau_21450_1120600000 [2, 3]

Additional information

- The skim was done before the MC14 data deletion accident [2].
- MC Sample: No longer exist [2]
- Skimmed MC Sample: Exist

[References]

- [1] [MC Samples WG1] https://confluence.desy.de/display/BI/MC+Samples+WG1
- [2] [JIRA ticket for Signal MC] https://agira.desy.de/browse/BIIDP-4785
- [3] [WG1 Skimming Advice and Resources] <u>https://confluence.desy.de/display/BI/WG1+Skimming+Advice+and+Resources</u>

MC Sample / Skimmed MC Sample Information

MC Sample Information

- #69, Signal at $\Upsilon(4S)$, Mode: B0 \rightarrow tau tau, Nickname: Bd_tautau [1]
- Number of events: 20×10⁶ [1]
- Ratio without/with background: 0.20 / 0.80 [1]
- Btag decay type: generic [1]
- Bsig decay type: tau+ tau- [1]
- Campaign: MC14ri_a [2]
- Location: /belle/MC/release-05-02-00/DB00001330/MC14ri_a/prod00021450/s00/e1003/4S/r00000/ 1120600000/mdst/sub00 [2]

Skimmed MC Sample Information

- Beam background type: **BGx1** [2]
- The Signal MC is generated with basf2 version release-05-02-11 [2].
- MC Signal mode: B0 → tau tau [2, 3]
- MC Signal Code: 1120600000 [2, 3]
- Skim Type: feiHadronicB0 / feiSLB0 [2, 3]
- Location: /belle/user/shdelamo/skim_Bd_tautau_21450_1120600000 [2]
- Location: /belle/group/physics/SLME/skim_Bd_tautau_21450_1120600000 [2, 3]
- Additional information
 - The skim was done before the MC14 data deletion accident [2].
 - MC Sample: No longer exist [2]
 - Skimmed MC Sample: Exist

[References]

- [1] [MC Samples WG1] <u>https://confluence.desy.de/display/BI/MC+Samples+WG1</u>
- [2] [JIRA ticket for Signal MC] https://agira.desy.de/browse/BIIDP-4785
- [3] [WG1 Skimming Advice and Resources] <u>https://confluence.desy.de/display/BI/WG1+Skimming+Advice+and+Resources</u>

 $\mathsf{BGx0} / \mathsf{BGx1} \to 4 \times 10^6 \text{ (4M)} / 16 \times 10^6 \text{ (16M)}$

(FEI) Skim Level Selection

static fei_precuts(path) [source]

Skim pre-cuts are applied before running the FEI, to reduce computation time. This setup function is run by all FEI skims, so they all have the save event-level pre-cuts:

- $n_{
 m cleaned\ tracks} \geq 3$
- $m{\cdot} n_{
 m cleaned\ ECL\ clusters} \geq 3$
- Visible energy of event (CMS frame) > 4 GeV
- + $2~{
 m GeV} < E_{
 m cleaned\ tracks\ \&\ clusters\ in\ ECL} < 7~{
 m GeV}$

We define "cleaned" tracks and clusters as:

• Cleaned tracks (pi+:FEI_cleaned): $d_0 < 0.5 \text{ cm}$, $|z_0| < 2 \text{ cm}$, and $p_T > 0.1 \text{ GeV}^*$ Cleaned ECL clusters (gamma:FEI_cleaned): $0.296706 < \theta < 2.61799$, and E > 0.1 GeV $\Rightarrow 17^\circ < \theta < 150^\circ$

X From Sphinx manual, basf2 version: 05-02-18: "17.2.1. Physics skims - Full event interpretation skims"

(cf. basf2 version which was used to skim: 05-02-11)

X https://b2-master.belle2.org/software/sphinx/release-05-02-18/skim/doc/02-physics.html#module-skim.fei

class skim.fei.feiHadronicB0(*, OutputFileName=None, additionalDataDescription=None, udstOutput=True, validation=False) [source]

Note

- Skim description: FEI-tagged neutral B's decaying hadronically.
- Skim name: feiHadronicB0
- Skim LFN code: 11180100
- Category: physics, Full Event Interpretation
- Authors: Racha Cheaib, Hannah Wakeling, Phil Grace
- Contact: Shanette De La Motte

This skim includes a selection on the HLT flag hlt_hadron .

Tag side B cuts:

- + $M_{
 m bc} > 5.24~{
 m GeV}$
- $|\Delta E| < 0.2 \ {
 m GeV}$
- $signal \ probability > 0.001$ (omitted for decay mode 23)

All available FEI B^0 hadronic tags are reconstructed. From Thomas Keck's thesis, "the channel $B^0 \to \overline{D}^0 \pi^0$ was used by the FR, but is not yet used in the FEI due to unexpected technical restrictions in the KFitter algorithm".

※ From Sphinx manual, basf2 version: 05-02-18: "17.2.1. Physics skims - Full event interpretation skims" (cf. basf2 version which was used to skim: 05-02-11)

X https://b2-master.belle2.org/software/sphinx/release-05-02-18/skim/doc/02-physics.html#module-skim.fei

Dec.27. 2022, Belle II Data Analysis, Cheolhun Kim