

Korea Institute of Science and Technology Information

The Study for $B^0 \rightarrow \ell^{\pm} \tau^{\mp}$ Decays at Belle Experiment

Kyungho Kim

<u>khkim4@kisti.re.kr</u>

May 30th, 2022

Contents

Introductions

• Motivation & details

Process of the Analysis

- Precut with Full Event Interpretation (FEI)
 - Introduction of FEI
- Distribution of variables & Toolkit for MultiVariate Analysis (TMVA)
 - Introduction of TMVA and machine learning methods
- TMVA output result
 - Introduction of Punzi FoM
- $\circ \ p_\ell^*$ distribution and fit
- ToyMC study for fit validation

Summary & Plan

Introductions

Movitations & Details

Motivation and Details

Lepton flavor violation in $B^0 \rightarrow \ell^{\pm} \tau^{\mp}$

- Forbidden in the Standard Model
- Predicted to occur in 'beyond the Standard Model' theories
 - Neutrino oscillation
 - $\Gamma(B^0 \to e^+\tau^-) = |V_{td}| \times |V_{tb}| \times \Gamma(W \to e\nu_e) \times \Gamma(W \to \tau\nu_\tau) \times \Gamma(\nu \text{ oscillation})$ = 1.06 × 10⁻³ × $\Gamma(\nu \text{ oscillation})$
 - $B(B_s \rightarrow \ell^{\pm} \tau^{\mp})$ significant constraints of neutrino mixing : sensitivity of 10⁻⁹ [1]

Research for $B^0 \rightarrow \ell^{\pm} \tau^{\mp}$

- BaBar collaboration (2008) [2]
 - Using hadronic tagging method with $378 \times 10^{6} B \overline{B}$ pairs
 - $\Gamma(B^0 \to e^{\pm}\tau^{\mp}) < 2.8 \times 10^{-5}$
 - $\Gamma(B^0 \to \mu^{\pm} \tau^{\mp}) < 2.2 \times 10^{-5}$
- Belle collaboration (by Hulya Atmacan, 2021) [3]
 - $\,\circ\,\,$ Using hadronic tagging method(FR) with 771 $\times\,10^6\,B\bar{B}$ pairs
 - $\Gamma(B^0 \rightarrow e^{\pm} \tau^{\mp}) < 1.6 \times 10^{-5}$
 - $\Gamma(B^0 \to \mu^{\pm} \tau^{\mp}) < 1.5 \times 10^{-5}$
- $^\circ~$ My research : using semileptonic tagging method(FEI) with 771 $\times~10^6~B\bar{B}$ pairs

	B^0	\rightarrow	e-	τ^+
e lepton number	0	¥	1	0
au lepton number	0	¥	0	-1
	B^0	\rightarrow	μ^{-}	τ^+
μ lepton number	0	¥	1	0
T lantan number	0	+	0	1

Feynman diagram of $B^0 \rightarrow e^+ \tau^-$ with neutrino oscillation

Motivation and Details

Selection of decay mode

- $\,\circ\,$ Decay modes that τ to 1 lepton and 2 neutrinos : taking 35.2% of τ sub-decay
 - Expected to provide high purity and distinct kinematic signature with 2 leptons in final state
 - Considered mode
 - $B^0 \to e^+ \tau^- (\tau^- \to e^- \overline{\nu_e} \nu_\tau)$ (e-e mode), $B^0 \to e^+ \tau^- (\tau^- \to \mu^- \overline{\nu_\mu} \nu_\tau)$ (e- μ mode)
 - $B^0 \to \mu^+ \tau^- (\tau^- \to e^- \overline{\nu_e} \nu_\tau)$ (µ-e mode), $B^0 \to \mu^+ \tau^- (\tau^- \to \mu^- \overline{\nu_\mu} \nu_\tau)$ (µ-µ mode)

Amounts of samples for MC analysis

- Signal MC : 20M events (10 sets × 2M/set) for each mode (Belle)
- Background samples (Belle)
 - Generic MC: $e^+e^- \rightarrow B\overline{B}$ (10 stream)
 - Generic MC: $e^+e^- \rightarrow q\bar{q}$ (6 stream)
 - rareB : $b \rightarrow s, d$ & leptonic decays (50 stream)
 - ulv : $b \rightarrow u \ell v$ decays (20 stream)

Process of the Analysis

Full Event Interpretation

& Skim

How to Reconstruct Signal?

Inclusive vs. Exclusive B Studies

5/31/2022

Reconstructing B with Machine Learning

Training a Classifier for Final State Particle

FEI & skim

Final state particles : 4 charged particles (e, μ , π , K) and gamma

- Reconstructed with subdetector information
- Training variables
 - Charged particle (e, μ , π , K): track information from detectors + kinematic variables
 - Photon : deposited energy and shape information from calorimeters + kinematic variables
- Pre- and post-cut condition
 - To optimize computing resources
 - Before
 - 10 highest PID (e, μ)
 - 20 highest PID (π, K)
 - 40 highest energy (photon)
 - After: output > 0.01

Training a Classifier for Intermediate Particles

- Training for particles as a part of B_{tag}
- Particle type : π^0 , K_S^0 , J/ψ , D^0 , D^+ , D_S^+ , D^{0*} , D^{+*} , D_S^{+*}
- Training variable : kinematic variables + vertex variables + MVA probabilities of the daughters
 - Pre- and post-cut condition
 - Pre-cut (20 per particles)
 - P_{daughter} product (semileptonic or K-long included D)
 - Released energy (hadronic D*)
 - Mass differences (other particles)
 - Post-cut : probability of particle classifier
 - output > 0.01 (π^0 , K_S^0) or > 0.001 (others)

Training a Classifier for B Mesons

Final training for B mesons

- Training variables : kinematic variables + vertex variables + MVA probabilities of the daughters
- Not using any correlated variables with M_{bc} (hadronic) or $\cos\theta_{B,D^{(*)}\ell}$ (semileptonic)
- Pre- and post-cut condition
 - Pre-cut : P_{daughter} product (20 highest)
 - Post-cut : B candidates with 20 highest probabilities

Advantages with FEI

Advantages with FEI

FEI and Skim

FEI & skim

Skim conditions after FEI

- FEI probability: loose cut to check the distribution of other variables
 - dr, |dz|
 - Distance on (xy-plane or z-axis) between particle creation point and interaction point(IP)
 - $\circ~B^0$ and τ will be decayed near IP
 - PID cut: taking electron and muon with high probability
 - Momentum cut
 - p_{PL} cut
 - p_{sp} cut: threshold cut for skim

$\log_{10}(0)$	$\mathcal{O}_{tag} ig)$ of tagging)	dr (cm)			dz (cm)		
> -2		< 2		< 4			
Particle	PID for	e and μ	p _{PL} (GeV/	′c)	p _{SP} (GeV/c)		
е	eID > 0.9,	elD > μlD	<u>х 1 лг</u>		> 0.2		
μ	μID > 0.9,	μID > eID	> 1.45		> 0.6		

Distributions of Variables

Distributions of Variables

TMVA & Optimization

TMVA and Conditions

• ROOT-integrated project that provides a machine learning environment

Training condition

- $\,\circ\,$ Input variable : $\cos heta_{B,D^{(*)}\ell}$, E_{ECL} , m^2_{miss}
- Precut : in table
- Training sample
 - 2 streams of background samples
 - 1 sets of signal MC samples
 - All signal MCs are 10 sets.
 - Why 2 streams & 2M?
 - Sufficient amounts of samples to well-train methods

Variables	Precut	Etc.
$M_{\ell+\tau D}$	Not in $\begin{array}{c} 3.0 < M_{\ell+\tau D} < 3.2 \\ 3.6 < M_{\ell+\tau D} < 3.8 \end{array}$	
$\log O_{tag}$	$\log O_{tag} \ge -2$	
p_ℓ^*	$1.6 \leq p_\ell^* \leq 2.8$	Signal extraction variable
E _{ECL}	$E_{ECL} \leq 3$	
$\cos\theta_{B,D^{(*)}\ell}$	$-1 \le \cos \theta_{B,D^{(*)}\ell} \le 1$	TMVA Input variables
m_{miss}^2	$-5 \le m_{miss}^2 \le 20$	

TMVA Methods

Training condition

- Method
 - BDT: Boosted Decision Tree (AdaBoost)
 - BDTG: Boosted Decision Tree (Gradient boost)
 - Decision tree: a set of sequential decision to classification
 - AdaBoost(Adaptive boosting): Weight to bad-classificated groups
 - Gradient boost: Gradual training with residual
 - LikelihoodPCA: Linear decomposition with likelihood
 - KNN: classification with the status of nearest neighbor
 - MLP: Multi-Layer Perceptron (neural network)
 - Fisher discriminants: Finding 1-dim. space to classify

Variables	Precut	Etc.
$M_{\ell+\tau D}$	Not in $\begin{array}{c} 3.0 < M_{\ell+\tau D} < 3.2 \\ 3.6 < M_{\ell+\tau D} < 3.8 \end{array}$	
$\log O_{tag}$	$\log O_{tag} \ge -2$	
p_ℓ^*	$1.6 \leq p_\ell^* \leq 2.8$	Signal extraction variable
E_{ECL}	$E_{ECL} \leq 3$	
$\cos\theta_{B,D^{(*)}\ell}$	$-1 \le \cos \theta_{B,D^{(*)}\ell} \le 1$	TMVA Input variables
m_{miss}^2	$-5 \le m_{miss}^2 \le 20$	

TMVA Distributions: e-τ

5/31/2022

TMVA Distributions: μ-τ

TMVA Distributions: e-τ

Method	MLP	BDTG	BDT	LPCA	KNN	Fisher
E _{sig} (E-5)	402.52	339.47	335.16	363.28	541.65	409.48
N _{bkg}	79.83	49.08	46.17	64.55	234.95	90.21
FoMP	38.58	39.91	40.23	38.1	32.19	37.23

5/31/2022

TMVA Distributions: μ-τ

Method	MLP	BDTG	BDT	LPCA	KNN	Fisher
E _{sig} (E-5)	329.26	407.32	333.96	322.23	515.08	445.54
N _{bkg}	48.49	78.28	48.75	48	214.1	111.35
FoMP	38.9	39.36	39.37	38.23	31.93	36.97

5/31/2022

Signal Extraction & Validation with ToyMC

p_ℓ^* Distribution

5/31/2022

Fit of p_ℓ^* Distribution

Types	е-т	μ-τ			
Signal	Convoluted function + Asymmetric gaussian + gaussian				
Background	Crystal Ball function + gaussian	Crystal Ball function			

ToyMC Study with Nsig

Fit validation with toyMC

• Fit 10,000 ensembles with 10,000 events from background PDF.

• N_{sig} is generated from signal PDF.

Problems with toyMC study

- Large variation \rightarrow Requiring more research
- No results with CL 90% at N < 20...

Plan for problems

- Histogram PDF fit of signal MC
- Using fit validation not toyMC but 1-stream set of backgrounds
 - 4 background sets are available.

ToyMC Study with Nsig

ToyMC Study with Nsig

Summary & Plan

Summary

- The study of forbidden decay mode $B^0 \rightarrow \ell^{\pm} \tau^{\mp}$ would be an answer of searching 'New Physics'.
- FEI and TMVA are used to optimize events and suppress backgrounds of Belle generic and special decays.
- $\circ\,$ The PDFs of signal and background are constructed by fit of distributions of p_ℓ^* from each l-tau decay modes
- ToyMC study is done with ensembles, and it remains additional study for variation of distributions.

Plan

- Histogram PDF fit and ToyMC analysis for validation of fit
 - Or, validation with 1-stream set of backgrounds
- Estimation of MC upper limit

References

[1] Xiao-Gang He, G. Valencia, Yili Wang, Lepton flavor violating τ and B decays and heavy neutrinos, Phys. Rev. D 70 (2004), 113011
 The benchmark for significant constraints from B decay is a sensitivity of 10⁻⁹ for

 $B(B_s \to \tau^{\pm} \ell^{\mp})$ and of 10^{-8} for $B(b \to s \tau^{\pm} \ell^{\mp})$.

[2] B. Aubert et al. (BaBar Collaboration), <u>Searches for the decays $B^0 \rightarrow \ell^+ \tau^-$ and $B^+ \rightarrow \ell^+ \nu$ ($\ell = e, \mu$) using hadronic tag reconstruction, Phys.Rev.D 77 (2008), 091104</u>

[3] H. Atmacan et al. (Belle Collaboration), Search for $B^0 \to \tau^{\pm} \ell^{\mp} (\ell = e, \mu)$ with a hadronic tagging method at Belle, Phys.Rev.D 104 (2021) 9, L091105

[4] T. Keck et al., <u>The Full Event Interpretation - An Exclusive Tagging Algorithm for the Belle II Experiment</u>, Computing and Software for Big Science volume 3 (2019), 6

[5] A. Hoecker et al., <u>TMVA - Toolkit for Multivariate Data Analysis</u>, *arXiv:physics/0703039* (2007)

Thank you!

Backup

Belle (II) Data Flow Overview

Belle Detector

Data collected with Belle detector

- At KEKB asymmetric e⁺e⁻ collider : 3.5 GeV e⁺ & 8 GeV e⁻
 - CM energy = 10.58 GeV to make Y(4S), that decays to BB pair with 96% rate
- Total 711 fb⁻¹ of data (772M BB pairs) collected at Y(4S)
- Covering 17~150 degree of beam-parallel and 360 degree of beam-proportional direction

Combinatorics

Example with one event with 10 tracks

- Assuming 5 positively and 5 negatively charged
- Reconstruction of $D^+ \rightarrow K^- \pi^+ \pi^+$
 - $\binom{5}{2}\binom{5}{1} = 50$ possible combinations
- Reconstructing $B^0 \rightarrow D^+ (\rightarrow K^- \pi^+ \pi^+) \pi^-$
 - $\binom{4}{1} \times 50 = 200$ combinations
- Considered D meson decays
 - 15 for D⁰, 11 for D⁺

Particle	pre-cut				post-cut				
e^+	10	highest	e-ID	5	highest	σ	and	0.01	$< \sigma$
μ^-	10	highest	μ -ID	5	highest	σ	and	0.01	$< \sigma$
π^+	20	highest	$\pi\text{-ID}$	10	highest	σ	and	0.01	$< \sigma$
K^+	20	highest	K-ID	10	highest	σ	and	0.01	$< \sigma$
γ_{c}	40	highest	E	20	highest	σ	and	0.01	$< \sigma$
π^0	20	lowest	$ M - M_{\pi^0} $	10	highest	σ	and	0.01	$< \sigma$
${ m K_S^0}$	20	lowest	$ M - M_{K_{S}^{0}} $	10	highest	σ	and	0.01	$< \sigma$
${ m K}^0_{ m L}$	20	lowest	$ M - M_{\rm KL}^0 $	10	highest	σ	and	0.01	$< \sigma$
D^0 (had)	20	lowest	$ M - M_{\rm D}^{-1} $	10	highest	σ	and	0.001	$< \sigma$
D^0 (sem)	20	highest	$\prod_i \sigma_i$	10	highest	σ	and	0.001	$< \sigma$
D^0 (klong)	20	highest	$\prod_{i} \sigma_{i}$	10	highest	σ	and	0.001	$< \sigma$
D^+ (had)	20	lowest	$ M - M_{\rm D}^+ $	10	highest	σ	and	0.001	$< \sigma$
D^+ (sem)	20	highest	$\prod_i \sigma_i$	10	highest	σ	and	0.001	$< \sigma$
D^+ (klong)	20	highest	$\prod_i \sigma_i$	10	highest	σ	and	0.001	$< \sigma$
D^{+*} (had)	20	lowest	$ Q - Q_{D^{+*}} $	10	highest	σ	and	0.001	$< \sigma$
D^{+*} (sem)	20	lowest	$ Q - Q_{D^{+*}} $	10	highest	σ	and	0.001	$< \sigma$
D^{+*} (klong)	20	lowest	$ Q - Q_{D^{+*}} $	10	highest	σ	and	0.001	$< \sigma$
D_s^+ (had)	20	lowest	$ M - M_{D_{*}^{+}} $	10	highest	σ	and	0.001	$< \sigma$
D_s^+ (klong)	20	highest	$\prod_i \sigma_i$	10	highest	σ	and	0.001	$< \sigma$
D_s^{+*} (had)	20	lowest	$ Q - Q_{D_{r}^{+*}} $	10	highest	σ	and	0.001	$< \sigma$
D_s^{+*} (klong)	20	lowest	$ Q - Q_{D_{*}^{+*}} $	10	highest	σ	and	0.001	$< \sigma$
B^+ (had)	20	highest	$\prod_i \sigma_i$	20	highest	σ			
B^+ (sem)	20	highest	$\prod_{i} \sigma_{i}$	20	highest	σ			
B^+ (klong)	20	highest	$\prod_i \sigma_i$	20	highest	σ			
B^0 (had)	20	highest	$\prod_i \sigma_i$	20	highest	σ			
B^0 (sem)	20	highest	$\prod_i \sigma_i$	20	highest	σ			
B^0 (klong)	20	highest	$\prod_i \sigma_i$	20	highest	σ			

FastBDT : Classification Algorithm of FEI

Requirements for FEI classification algorithm

- Fast during fitting and application
- Robust enough to be trained in an automated environment
- Can be reliably used by non-experts

<u>FastBDT</u> : BDT with speed-optimized and cache-friendly implementations for multivariate classification

- Most time-cost part : calculation of cumulative probability histograms (CPH) to find the best-cut at each node of the tree
- Trial to reduce run time
 - Storing data as an array of structs
 - Computing cumulative probability histograms (CPH) of nodes in the same layer of the tree simultaneously
 - BDT cut decisions optimized based on equal frequency bins

array of structs	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	x₃ y₃ z₃ $x_4 y_4 z_4$	x₅ y₅ z₅ $x_6 y_6 z_6$
struct of arrays	$x_1 \mathbf{x_2} \mathbf{x_3} x_4 \mathbf{x_5} x_6$	<i>y</i> ₁ y ₂ y ₃ <i>y</i> ₄ y ₅ <i>y</i> ₆	$z_1 \ \mathbf{z_2} \ \mathbf{z_3} \ z_4 \ \mathbf{z_5} \ z_6$
<pre>int a = 0; int b = 0;</pre>	i	int a[] = {0,0};	
<pre>for(int i=0; i<1e if(rand()%2 == 0 else</pre>	9; ++i) { 1) a++; b++;	<pre>for(int i=0; i<10 a[rand()%2]++;</pre>	e9; ++i) {
} cout< <a<<" "<<b<<<="" td=""><td>endl;</td><td>} cout<<a[0]<<" "<<="" td=""><td><a[1] <<="" endl;<="" td=""></a[1]></td></a[0]<<"></td></a<<">	endl;	} cout< <a[0]<<" "<<="" td=""><td><a[1] <<="" endl;<="" td=""></a[1]></td></a[0]<<">	<a[1] <<="" endl;<="" td=""></a[1]>
a) Straight-forward imple Execution time 10.1 sec	ementation – (b) If statement replace sution time 6.9 sec	ed by array lookup – Exe-

Array of structs and example of optimized code modification

Concepts of equal-frequency binning

Benchmark of FastBDT and Others for FEI

Benchmarks of reconstruction using $D^0 \rightarrow K^- \pi^+ \pi^0$

• Fitting time measured about 28 features and 355,000 events

• Inference time measured about 28 features and 3,900,000 events

	Method	Fitting time in s	Inference time in s	AUC ROC	WeightFile size in KB
do nothing during	Trivial	0.2	4.9	0.066	2
the fitting phase	Stoch	astic Grad	lient Boos	ted Decision	Tree
	FastBDT	3.7	6.9	0.435	58
	$\texttt{SKLearn} ext{-BDT}$	32.1	7.8	0.429	69
	XGBoost	18.0	11.4	0.415	34
	TMVA-BDT	19.8	16.5	0.297	101
		Artifici	al Neural	Network	
	SKLearn-NN	27.6	7.2	0.401	32
	Tensorflow	201.9	9.4	0.399	30
	NeuroBayes	112.3	75.4	0.377	182
	FANN	50.6	7.1	0.316 ± 0.061	21
	TMVA-NN	510.6	16.8	0.156	53

FEI Tagging Performance with MC

Maximum tag-side efficiency of FEI and other reconstruction algorithm

- FR (Full Reconstruction) at Belle I, with NeuroBayes module
- SER (Semi-Exclusive-Reconstruction) at BaBar, with neural network

Tag	FR	SER	FEI Belle	FEI Belle II
Hadronic B ⁺	0.28%	0.4%	0.76%	0.66%
SL B ⁺	0.31%	0.3%	1.80%	1.45%
Hadronic B ⁰	0.18%	0.2%	0.46%	0.38%
SL B ⁰	0.34%	0.6%	2.04%	1.94%

FEI Performance Check

Distribution of the kinematic variable of B_{tag} at Belle II MC

• 180M BB pair signal and 1ab⁻¹ scaled backgrounds from BB, e⁺e⁻ to qq pair and $\tau^+\tau^-$

Application : Hadronic FEI Performance $(B \rightarrow X \ell \nu)$

Used data & MC samples : 34.6 fb⁻¹ data, samples of 100 fb⁻¹ generic BB decay and 100 fb⁻¹ generic qq decay

Application : SL B⁰ FEI Performance $(B^0 \rightarrow \ell^{\pm} \tau^{\mp})$

Amounts of sample

Туре	Signal	bb	qq	Rare <i>B</i>	ulv
Amounts (million)	20	754	2350	5.66	5.47

• FEI output cut : logOtag > -2 (FEI output > 0.01)

Decay mode	e - e	$e-\mu$	$\mu - e$	$\mu - \mu$
# of signal	639195	409620	567436	368965
generic bb	167558.3	84725.3	151721.1	91767.2
generic qq	45065.2	9030.5	19905.5	14111.7
rare $B\bar{B}$ decay	865.6	263.2	546.4	411.5
$b \rightarrow u \ell \nu$	5136.8	3064.3	4139.8	2856.4

Amounts of the signal and background events after FEI and best candidate selection

Performance Check : Full Reconstruction

Reconstruction with Full Reconstruction

- Applied with 771.6M $B\overline{B}$ pair event samples
- 2.1M B^{\pm} and 1.4M B^{0} remained as maximum efficiency case (0.28% for B^{\pm} and 0.18% for B^{0})

FR Purity-efficiency plot for B⁺ mesons

From https://arxiv.org/abs/1102.3876

Performance Check : Full Event Interpretation

Reconstruction with Full Event Interpretation

- 180M BB pair signal
- $1ab^{-1}$ (1.4 times to FR luminosity) scaled backgrounds from BB, e⁺e⁻ to qq pair and $\tau^+\tau^-$

FEI Purity vs. efficiency distribution

From https://publikationen.bibliothek.kit.edu/1000078149

Application: $B^0 \rightarrow \ell^{\pm} \tau^{\mp}$ Signal Mode

The properties of the signal

- au decay should include invisible particles (neutrino)
- Lack of signal mode for B reconstruction: needs more information for quality control

4% signal tagging efficiency & background suppression

Studying this modes now for new physics study (lepton flavor violation research)

From https://www.kps.or.kr/conference/event/content/program/search_result_abstract_poster.php?id=4254&tid=503

TMVA Distributions: ROC Curve

BRIEF Estimation of MC Upper Limit

Estimating signal yields from background PDF • The amounts of backgrounds in the signal region ($2.2 < p_{\ell}^* < 2.5$)

	e-τ	μ-τ
MC event	16.7	20.00
PDF region	17.34	20.95

Calculation of the branching faction

•
$$\Gamma(B^0 \to \ell^{\pm} \tau^{\mp}) = \frac{N_{obs} - N_{bkg}^{exp}}{\epsilon_{sig}^{\ell - \tau} \times N_{B\overline{B}}}$$

$$\epsilon_{sig}^{\ell-\tau} = \epsilon_{sig}^{\ell-e} \times \Gamma(\tau \to e\nu\nu) + \epsilon_{sig}^{\ell-\mu} \times \Gamma(\tau \to \mu\nu\nu)$$
$$= \epsilon_{sig}^{\ell-e} \times 0.1782 + \epsilon_{sig}^{\ell-\mu} \times 0.1739$$

• N_{obs} and N_{bkg}^{exp} : summation of sub-mode ($\ell - e, \ell - \mu$ mode)

• By calculating MC upper limit of branching fraction, the upper limit of $[N_{obs} - N_{bkg}^{exp}]$ is calculated by POLE

	е-т	μ-τ
ϵ_{sig}	7.66E-4	7.27E-4
N _{obs}	17	20
N_{bkg}^{exp}	17.34	20.95
POLE range $[N_{obs} - N_{bkg}^{exp}]$	0 - 7.89	0 – 7.82
MC UL	1.36E-5	1.43E-5