

Module assembly R&D of the Dual-Readout Calorimeter for future e+e- colliders

Guk Cho (Yonsei Univ.)

On behalf of the Korea Dual-Readout Calorimeter Team

Saga-Yonsei Joint Workshop XVIII January 28, 2022

Outline

- 1. Introduction
- 2. Configuration
- 3. Process of Assembly
- 4. Readout System
- 5. Summary

1. Introduction

Dual-Readout Calorimeter

- I) The dual-readout calorimeter has been included in the conceptual design report of both FCC-ee and CEPC
- II) Non-gaussian electromagnetic fluctuations are a major factor that makes it difficult to measure the energy of hadron shower
- III) The dual-readout calorimeter offer high-quality energy measurement for both EM particles and hadrons simultaneously
- IV) Outstanding energy resolution can be achieved by measuring EM component and correcting hadron energy event by event

2. Goal of Test Beam

1) Measurement Goal

Module 1	Module 2
Shower depth	Position resolution
Time resolution (MCP-PMT)	Time resolution (SiPM)
Longitudinal shower profile	Lateral shower profile
Light attenuation length	EM energy resolution
	Uniformity study

North area at CERN

Jan. 28, 2022

2) R&D Goal

-

-

-

Readout test (MCP-PMT vs. SiPM)

Fiber type test (Shape/Cladding)

Time resolution (< 50ps)

3) Training goal

Training next-generation experts for DRC HW

 Timeline (Preliminary) 										e Today				
Date	Jan	Feb	Mar	Apr	M	ay	Jı	un	Jul	Aug	Sep	Oct	Nov	Dec
Module	Rebuildir	ng (fiber+Cu)	Attach readout / Test	Commis	ssioning	Shipp CE	ing to RN	Test I	Beam			Analysis	3	

2. Configuration

- The dual-readout calorimeter can be divided by 2 parts in building process
 - Copper plate i)
 - 61 plates are used to build a module
 - **Optical fibers** ii)
 - Čerenkov fibers: round shape and single cladding
 - Made by Mitsubishi, Japan
 - Scintillating fibers: round and square shape & single and double cladding

Module 2

9 towers

PMT & SiPM

- Made by Kuraray, Japan
- Module 1
 - 4 towers
 - Different shape & cladding for scintillating fibers
 - PMT & MCP-PMT

	Tower #1	Tower #2	Tower #3	Tower #4
Scintillation fibers	Round	Round	Round	Square
	/	/	/	/
	Single cladding	Double cladding	Single cladding	Single cladding
Cherenkov fibers	Round	Round	Round	Round
	/	/	/	/
	Single cladding	Single cladding	Single cladding	Single cladding
Readout detector (2*4 ch)	2 PMTs	2 PMTs	2 MCP-PMTs	2 PMTs

Module#2

Tower#1	Tower#2	Tower#3
Tower#4	Tower#5	Tower#6
Tower#7	Tower#8	Tower#9

Combination of fibers for Module#2

	Tower #1~4 and #6~9	Tower #5
intillation fibers	Round / Single cladding	Round / Single cladding
herenkov fibers	Round / Single cladding	Round / Single cladding
eadout detector (400+16 ch)	16 PMTs	400 SiPMs

3. Process of Assembly

3-1. Preparation3-2. Assembly3-3. Reflector

1) Clean up copper plates

 To build calorimeter, we have to disassemble and clean up all plates because they were used in 2016

• We tried to remove residual epoxy and dust using brush and acetone

Remove & classify the fibers

Clean up copper plates

2) Optical Fiber Treatment

 First, we measured 50 optical fibers that are randomly picked: polished, unpolished čerenkov and scintillating fibers respectively

• We also checked the quality of fibers and discriminated them to good or bad

Damage Test

 Then, we tested the damage when dealing with the fiber's surface using various materials: tweezer, ruler, fiber(Scint.), glove, sponge, PLA, 3D-printed holder, copper plate

- Polishing Test
 - Also performed polishing fibers using sandpapers & polishing film

9

Jan. 28, 2022

3) 3D-printed Tools

- The alignment supporters
 - We prepared tools to align fibers when assembling

- Because we changed the way to align fibers in module 2 assembly, the different-shaped supporter is used
- Painting supporter
 - It helps to paint the edge of scintillating fiber

- The process of assembly for module 1&2 is the same
- However, there are differences in alignment, taping, and painting scintillating fibers

	Module 1	Module 2
Alignment	C: 30mm S: 2mm	C: 2mm S: 0mm
Taping	Straight	Spiral
painting	After inserting fibers	Before inserting fibers

 However, there are differences in alignment, taping, and painting scintillating fibers

	Module 1	Module 2
Alignment	C: 30mm S: 2mm	C: 2mm S: 0mm
Taping	Straight	Spiral
painting	After inserting fibers	Before inserting fibers

alignment, taping, and painting scintillating fibers

	Module 1	Module 2
Alignment	C: 30mm S: 2mm	C: 2mm S: 0mm
Taping	Straight	Spiral
painting	After inserting fibers	Before inserting fibers

3-3. Reflector

1) Reflectors

• The characteristics of lights

		1
Scintillating light	Čerenkov light	•
Bright	Not bright	
Slow (~2 ns)	Fast (~0 ns)	•
Small (~3m)	Long (6~10m)	
	Scintillating light Bright Slow (~2 ns) Small (~3m)	Scintillating lightČerenkov lightBrightNot brightSlow (~2 ns)Fast (~0 ns)Small (~3m)Long (6~10m)

At the front side of copper plate,

- Scintillating fiber: **block** the light
- Čerenkov fiber: reflect the light which gives the depth of light in the module

- The 1st trial
 - We tried to attach an aluminum mirror, which is adhered to 3D-printed holder
 - Reflectors impact on the height of module 1
- The 2nd trial
 - We changed the material as a reflector from the aluminum mirror to an aluminum foil
- Method
- 1) Remove cerenkov holders for module 1

3) Polishing fibers

MIRO

- Sandpaper: 400 grit -> 1000 grit -> 2000 grit ->
- polishing film: 9um -> 3um
 -> 1um

12

4. Readout System

4-1. Configuration4-2. PMT

4-1. Configuration

- All the towers for modules 1 & 2 will be attached to PMTs except for tower 3 of module 1 & tower 5 of module 2
- Tower 3 of module 1: MCP-PMT
- Tower 5 of module 2: SiPM

Hardener 1g : Resin 4g

Jan. 28, 2022

1) bundle case &

ероху

2) cutting bundles

5. Summary

- We are building 2 modules and planning to test at CERN
- The first important is the alignment of fibers during building modules
- The second is that inserted fibers on the copper plate is not escaped
 - We introduced the spiral taping method to prevent bulging fibers
- Now, the assembly is finished, polishing and reflector steps are on going

Back up

Dual-Readout Calorimeter

KyuyeongHwang's slide, 2021.01.22, Saga-Yonsei workshop

- Čerenkov and scintillating fibers which are implemented on copper plate can measure EM particles and hadronic particles at the same time
- f_{EM} can be measured by implemented two different type of fibers with different h/e responses in a calorimeter

Energy Resolution

KyuyeongHwang's slide, 2021.01.22, Saga-Yonsei workshop

EM Energy Resolution

- EM energy resolution is measured with different 8 energy points electron and scaled with $1/\sqrt{E}$.
- Stochastic & constant term of energy resolution can be obtained by linear fitting.

- Stochastic term for EM energy resolution is ~11%.
- Measured EM energy satisfies linearity within 1% level at both scintillation and Cerenkov channels.

Energy Resolution

KyuyeongHwang's slide, 2021.01.22, Saga-Yonsei workshop

Hadronic Energy Resolution

- Hadronic energy resolution is measured with 8 different energy single pion beams.
- Two chi values(0.221 and 0.291) are used for DR correction.

- Stochastic term for hadronic energy resolution is ~21%.
- Energy resolution differs with chi values.

Energy Resolution

KyuyeongHwang's slide, 2021.01.22, Saga-Yonsei workshop

Jet Energy Resolution

- Jet energy resolution is measured with 4 different energy u quar. (50, 70, 90, 110 GeV)
- Jet is reconstructed with anti-kt algorithm(R=0.8) and chi value for DR correction is 0.221.

- Missing energy from neutrino and neutron during simulatation makes resolution worse.
- Only events are used for jet energy resolution measurement whose Gen. lv. Jet has an energy over 90% of generated jet.

Fiber Specification

• Čerenkov fiber

Table 1				SK-40		
ltem	Specification					
item		Unit	Min.	Тур.	Max.	
	Core Material	-	Polymet	Polymethyl-Methacrylate Resin		
	Cladding Material	_	Fluorinated Polymer			
	Core Refractive Index – 1.49					
Optical Fiber	Refractive Index Profile	-	Step Index			
	Numerical Aperture	_	0.5			
	Core Diameter	μm	920	980	1,040	
	Cladding Diameter	μm	940	1,000	1,060	
Approximate	g/m	1				

Cross-section and Cladding Thickness

• Scintillating fiber

1) In some cases, cladding thickness T is 3% of D. 2) In some cases, cladding thickness T is 6% of D, To and Ti are both 3% of D.

Jan. 28, 2022

Reflector: Čerenkov holder

- We choose 3D-printed holder as a reflector
- And, tried to attach holders to čerenkov fibers
- But FAIL

Čerenkov holder

 At this method using čerenkov holders, we also worry about that there may be having a gap between holder and reflector

Reflector: Aluminum Foil

The material as a reflector is changed from aluminum mirror to aluminum foil

- Aluminum Foil
 - We choose aluminum foil as a reflector
 - Aluminum foil has advantages
 - 1) high reflectance: over ~90%
 - 2) availability: easy to get
 - 3) low cost
- Method and key point
 - The key point is how well it adheres to the fiber
 - Procedure (plan)
 - Cutting fibers at the front side using a grinder
 - Polishing fibers by hand
 - Attaching aluminum foil

Jan. 28, 2022

Reflector: Procedure

1) Procedure for čerenkov fibers of module 1

1) Remove cerenkov holders

Removed čerenkov holders

Manual grinder

- 3) Polishing fibers
 - Sandpaper: 400 grit -> 1000 grit -> 2000 grit ->
 - polishing film: 9um -> 3um -> 1um

Sandpaper

Polishing film

The alignment of Fibers

• Differences between module 1 and 2

1) The alignment of fibers

Taping Methods

- Differences between module 1 and 2
 - 2) Taping

Module 1

Module 2

Module Frame

