Dark photon search using $B \rightarrow KA'A', A' \rightarrow l^+l^-$ decay at Belle

Yongkyu Kim

List of Contents

- MC Study
- Control Sample Study
- Systematic Study

Theoretical Background

Multilepton signature of a hidden sect or in rare B decays. Phys. Rev. D 83,054005, B. Batell. et al.

Final States													
$B^+ \rightarrow K^+ e^+ e^- e^+ e^+$	$B^0 \rightarrow K^0 e^+ e^- e^+ e^+$	$B^+ \rightarrow K^{*+}e^+e^-e^+e^+$	$B^0 \rightarrow K^{*0}e^+e^-e^+e^+$										
$B^+ \rightarrow K^+ e^+ e^- \mu^+ \mu^+$	$B^0 ightarrow K^0 e^+ e^- \mu^+ \mu^+$	$B^+ ightarrow K^{*+} e^+ e^- \mu^+ \mu^+$	$B^0 ightarrow K^{*0} e^+ e^- \mu^+ \mu^+$										
$B^+ o K^+ \mu^+ \mu^- \mu^+ \mu^+$	$B^0 \to K^0 \mu^+ \mu^- \mu^+ \mu^+$	$B^+ \rightarrow K^{*+} \mu^+ \mu^- \mu^+ \mu^+$	$B^0 \rightarrow K^{*0} \mu^+ \mu^- \mu^+ \mu^+$										

Event Generation

- For Signal MC, for each final state decay and A' masses, 1M event generated.
- For A' masses, we generate 0.3 GeV ~1.8 GeV region with 0.1 GeV gap.
- Using EVTGEN and GEANT3
- PHSP used for $B \to KA'A'$, PHOTOS additionally added to $A' \to l\bar{l}$
- For Background MC, 10 streams of $B\overline{B}$, 6 streams of *continuum*, 50 streams of *rareB* and 20 streams of *ulv* was used to estimate backgrounds. Each stream corresponds to 772M $B\overline{B}$ pairs.

Particle selection

- dr < 2 cm, dz < 5 cm
- e^{\pm} : $\mathcal{L}_e > 0.9$, $\mathcal{L}_e > \mathcal{L}_{\mu}$, Bremstrahlung- γ recon $\angle_e^{\gamma} < 0.05$ rad
- μ^{\pm} : $\mathcal{L}_{\mu} > 0.9$, $\mathcal{L}_{e} < \mathcal{L}_{\mu}$
- K^{\pm} : $\mathcal{L}_{K/\pi} > 0.6$, $\mathcal{L}_{P/K} < 0.4$
- π^{\pm} : $\mathcal{L}_{K/\pi} < 0.4$, $\mathcal{L}_{P/\pi} < 0.4$
- γ : Endcap : 150 MeV Barrel : 50 MeV
- K_S^0 : *nisksfinder* standard cut.
- π^0 : 0.1 < M_{π} < 0.14 (GeV), P_{π} > 0.1 GeV

Particle Selection cont'd

- K^{*+} : $K^{*+} \to K_S^0 \pi^+, K^+ \pi^0, 0.8 < M_{K^{*+}} < 1.0 \text{ (GeV)}$
- K^{*0} : $K^{*0} \to K_S^0 \pi^0$, $K^+ \pi^-$, 0.8 < $M_{K^{*0}}$ < 1.0 (GeV)
- $A': A' \rightarrow e^+e^-, \mu^+\mu^-, \Delta M_{A'} < 0.1 \text{ GeV}$
- Best A' pair selection based on least $\Delta M_{A'}$
- When we select $A' \rightarrow l_{1,3}l_{2,4'}$ we call $A'_W \rightarrow l_{1,2}l_{4,3}$
- Best B selection based on least $|\Delta E|$.

st_dm

 R_2

 dm_sig

 Entries
 88028

 Mean
 0.02426

 RMS
 0.02553

Number of event/1M MC vs Dark photon masses in SignalMC

Saga-Yonsei Workshop

Number of event/1stream vs Dark photon masses in GenMC

This is number of background and its statistical error.

Most of case they are in O(1), 4μ decay have least backgroun ds.

N_{BKG} and its statistical error

Final State	$m_{A'}$	N _{Bkg}	σ_{Bkg}	Final State	$m_{A'}$	N _{Bkg}	σ_{Bkg}
$B^+ \to K^+ e^+ e^- e^+ e^-$	1.1	0.30	0.17	$B^{0} \rightarrow K^{0}e^{+}e^{-}e^{+}e^{-}$	1.1	0.32	0.19
$B^+ \\ \rightarrow K^+ e^+ e^- \mu^+ \mu^-$	1.1	1.20	0.35	$B^{0} \rightarrow K^{0}e^{+}e^{-}\mu^{+}\mu^{-}$	1.1	0.10	0.10
$B^+ \to K^+ \mu^+ \mu^- \mu^+ \mu^-$	1.1	0.30	0.17	$B^{0} \rightarrow K^{0} \mu^{+} \mu^{-} \mu^{+} \mu^{-}$	1.1	0.00	0.00
$B^+ \\ \rightarrow K^{*+}e^+e^-e^+e^-$	1.1	2.87	0.80	$B^{0} \rightarrow K^{*0}e^{+}e^{-}e^{+}e^{-}$	1.1	2.12	0.71
$B^+ \rightarrow K^{*+}e^+e^-\mu^+\mu^-$	1.1	3.67	0.88	$B^{0} \rightarrow K^{*0} e^{+} e^{-} \mu^{+} \mu^{-}$	1.1	1.92	0.46
$B^+ \to K^{*+} \mu^+ \mu^- \mu^+ \mu^-$	1.1	0.87	0.43	$B^{0} \rightarrow K^{*0} \mu^{+} \mu^{-} \mu^{+} \mu^{-}$	1.1	0.40	0.20

After cut, in most of mass region, $N_{BKG} \sim O(1)$, E.U.L of B.F $O(10^{-8}) \sim O(10^{-6})$

Control Sample Study

- To validate R_2 cut.
- Control sample study using $B \rightarrow D\overline{D}K$ was not successful
 - So many resonant state inside it.
- Control sample study now uses $B^+ \to J/\psi \phi K^+$, $J/\psi \to l^+ l^-$, $\phi \to K^+ K^-$
 - Modified M_{BC} was used to solve peak shift. $M_{BC} = M_{BC} E_{beam} + 5.29$
 - Data/MC comparing result was consistent with our expectation.
 - Fitting was used.

Control sample study Signal fit. SigMC/GenMC/Data

CB from SigMC + Argus

Control sample study result

$R_{PID,/WR_2}$	0.9585 ± 0.0392	R _{PID,/woR2}	0.9578 ± 0.0394
$N_{Sig,MC,/wR_2}$	225.3 ± 6.5	$N_{Sig,MC./woR_2}$	240.6 ± 6.7
$N_{Sig,MC,/wR_2} \times R_{trk}$	$216.0 \pm 6.2 \pm 8.8$	$N_{Sig,MC./woR_2} \times R_{trk}$	$230.4 \pm 6.4 \pm 9.5$
$N_{Sig,Data,/wR_2}$	171 ± 17	$N_{Sig,Data,/woR_2}$	178 ± 17
$\frac{N_{Sig,MC,/wR_2}}{N_{Sig,MC,/wR_2}}$	$0.9371 \pm 0.030 \pm 0.002$	$\frac{N_{Sig,DATA,/wR_2}}{N_{Sig,DATA,/wR_2}}$	0.9607 ± 0.093
$\frac{\frac{N_{Sig,Data,/wR_2}}{N_{Sig,Data,/wR_2}}}{\frac{N_{Sig,MC,/wR_2}}{N_{Sig,MC,/wR_2}}}$	$1.025 \pm 0.100 \pm 0.002$	$\frac{N_{Sig,Data,/wR_2}}{N_{Sig,MC,/wR_2}}$	0.7590 ± 0.1035

Comparison between $R_2 < 0.4$ cut and No R_2 cut. In compare to Data and MC they have almost same.

Control sample study result

	BF	Notes
BF_{PDG}	$(5.0 \pm 0.4) \times 10^{-5}$	BABR/CLE2
BF_{MC}	$(5.2) \times 10^{-5}$	DECAY.DEC
BF_{MC}	$(4.36 \pm 0.15 \pm 0.18) \times 10^{-5}$	
BF_{DATA}	$(4.36 \pm 0.44 \pm 0.18) \times 10^{-5}$	
$\frac{BF_{DATA}}{BF_{PDG}}$	(0.87 ± 0.12)	slight bigger than 1 σ from 1
$\frac{BF_{DATA}}{BF_{MC}}$	$(1.00 \pm 0.11 \pm 0.04)$	

Difference between Data and MC are consistent with expected result. Slight lower than PDG value.

Systematic study

- PID Correction is main source of systematic error.
- Systematics for tracking is relatively low (~0.7% in total) in compared to PID correction (~10%)

PID Correction ratio R vs Masses

R is around 0.85, and its error is around 10%.

The more muon event have less error.

1800

Expected Upper Limit of Branching Fraction using MC w.r.t $m_{A'}$, N_{Obs} (10⁻⁶)

77.1						_	TZ 1			0			2	Kplusmmmm	0	1	2	3	4	5
Kpluseeee	0	1	2	3	4	5	Kpluseemm	0	1	2	3	4	5	300	0.25827	0.48025	0.64102	0.83706	0.99161	1.1441
300	0.053908	0.1005	0.13488	0.17526	0.20987	0.24248	300	0.094063	0.17245	0.23757	0.3039	0.37344	0.43253	400	0.36312	0.6752	0.90124	1.1769	1.3942	1.6085
400	0.052318	0.096877	0.13212	0.16937	0.20705	0.23964	400	0.11267	0.20656	0.28456	0.364	0.4473	0.51808	500	0.37111	0.68038	0.0373	1 100	1 4734	1 7065
500	0.053257	0.099251	0.13336	0.17275	0.20775	0.2401	500	0.12476	0.23198	0.30964	0.40434	0.47899	0.55264	500	0.37111	0.00038	0.9313	1.199	1.4754	1.7005
600	0.051744	0.094567	0.13114	0.16728	0.20653	0.23932	600	0.12324	0.22879	0.31095	0.39935	0.48671	0.56315	600	0.37809	0.69316	0.95491	1.2215	1.501	1.7386
700	0.038764	0.077309	0.11782	0.15067	0.18659	0.22404	700	0.12234	0.22713	0.30869	0.39644	0.48316	0.55905	700	0.38526	0.7182	0.96394	1.2525	1.4998	1.7329
800	0.045028	0.082517	0.11896	0.15037	0.18975	0.22053	800	0.1149	0.20813	0.2928	0.37192	0.46313	0.53721	800	0.37667	0.70218	0.94245	1.2246	1.4664	1.6942
900	0.048086	0.089642	0 12031	0 15633	0 1872	0.21620	900	0.084142	0.16974	0.26021	0.33268	0.41147	0.4961	900	0.32715	0.59061	0.8367	1.0611	1.326	1.5388
1000	0.046301	0.086314	0.11585	0.15055	0.18025	0.21025	1000	0.078344	0 16144	0 2507	0.32192	0 39552	0.48099	1000	0.30426	0.55757	0.8038	1.0161	1.2821	1.4901
1100	0.040301	0.080314	0.11059	0.13033	0.17107	0.20820	1100	0.077615	0.15470	0.2501	0.30160	0.37361	0.40055	1100	0.28979	0.52961	0.73446	0.93681	1.1566	1.3403
100	0.044174	0.062349	0.11055	0.14301	0.17197	0.19809	100	0.071013	0.13473	0.20092	0.30109	0.37301	0.44033	1200	0.25747	0.47008	0.64491	0.82705	1 0022	1 1591
1200	0.040818	0.076093	0.10213	0.1327	0.15891	0.1836	1200	0.074128	0.14394	0.21493	0.27376	0.34279	0.40516	1200	0.25747	0.47998	0.04421	0.83705	1.0023	1.1581
1300	0.035659	0.064376	0.091199	0.11566	0.14453	0.16772	1300	0.066709	0.12954	0.19342	0.24637	0.30849	0.36461	1300	0.20948	0.38891	0.52856	0.67882	0.82731	0.95725
1400	0.024822	0.051149	0.079432	0.102	0.12532	0.15239	1400	0.070283	0.12688	0.17975	0.22795	0.28486	0.33058	1400	0.16702	0.31008	0.42143	0.54124	0.65963	0.76323
1500	0.020235	0.043054	0.070178	0.091562	0.1128	0.13476	1500	0.047935	0.0956	0.1457	0.18633	0.23074	0.27705	1500	0.13374	0.24932	0.33462	0.43479	0.52065	0.60155
1600	0.027991	0.052656	0.077321	0.098106	0.12416	0.14453	1600	0.043055	0.083605	0.12484	0.15901	0.1991	0.23532	1600	0.096624	0.17659	0.24489	0.31236	0.38566	0.44688
1700	0.031521	0.058761	0.078866	0.10247	0.12271	0.14178	1700	0.041599	0.076232	0.1099	0.13892	0.17529	0.20374	1700	0.060336	0 11530	0 17137	0.21802	0 27462	0 32221
1800	0.020064	0.055858	0.074971	0.007413	0 11665	0 13478	1800	0.031814	0.060545	0.089762	0.11411	0.14414	0.16849	1900	0.000000	0.11339	0.110061	0.15494	0.21402	0.02221
1000	0.029904	0.000000	0.014911	0.037415	0.11005	0.10410	1000	0.001014	0.000040	0.000102	0.11411	0.11111	0.10040	1800	0.036988	0.077192	0.12061	0.13484	0.18999	0.23204

They are in $O(10^{-6}) \sim O(10^{-8})$

Summary

- Controlsample study using $B^+ \rightarrow J/\psi \phi K^+$ is consistent with o ur expectation.
- Systematic study was done. Main source of systematic error was PID correction.
- Expected upper limit of Branching fraction is estimated

Backup

Particle selection cont'd

- Least $\Delta M_{A'}$ for A' pair selection.
- Least $|\Delta E|$ for best B selection.

Bremsstrahlung reconstruction

mbc:de mbc:de о ця 29 oqu ₩29 5.285 5.285 5.28 5.28 5.275 5.275 5.27 5.27 5.265 5.265 5.26 5.26 -0.15 -0.1

 $M_{bc} vs \Delta E$ before, after bremsstrahlung reconstruction

Effect on J/ψ , $\psi(2S)$ background veto

 $\angle_{e}^{\gamma} < 0.05 \, rad$ used bremsstrahlung reconstruction. Electron containing mode have Bremsstrahlung reconstruction process

 J/ψ veto : 2.8 < $m_{A'_w}$ < 3.15 GeV $\psi(2S)$ veto : 3.55 < $m_{A'_w}$ < 3.7 GeV Low mass veto $m_{A'}$ < 0.1 GeV, $m_{A'}$ < 0.1 GeV

Low mass/cc veto

$\Delta m_{A'}$ cut determination

Background is almost flat. Figure of merit punzi fluctuates hard due to lack of background. (O(1))Signal 95% cut applied to some points, And interpolated it with dark photon mass

Final States	$0.6~{ m GeV}$	$1.1 \mathrm{GeV}$	$1.6 \mathrm{GeV}$	Final States	$0.6~{ m GeV}$	$1.1 \mathrm{GeV}$	$1.6~{\rm GeV}$
$K^0 e^+ e^- e^+ e^-$	0.062	0.068	0.078	$K^+e^+e^-e^+e^-$	0.060	0.068	0.080
$K^0 e^+ e^- \mu^+ \mu^-$	0.056	0.064	0.074	$K^+e^+e^-\mu^+\mu^-$	0.054	0.062	0.074
$K^{0}\mu^{+}\mu^{-}\mu^{+}\mu^{-}$	0.016	0.020	0.030	$K^+\mu^+\mu^-\mu^+\mu^-$	0.014	0.020	0.030
$K^{*0}e^+e^-e^+e^-$	0.062	0.068	0.078	$K^{*+}e^{+}e^{-}e^{+}e^{-}$	0.064	0.068	0.078
$K^{*0}e^+e^-\mu^+\mu^-$	0.058	0.064	0.076	$K^{*+}e^{+}e^{-}\mu^{+}\mu^{-}$	0.056	0.062	0.072
$K^{*0}\mu^+\mu^-\mu^+\mu^-$	0.016	0.024	0.030	$K^{*+}\mu^+\mu^-\mu^+\mu^-$	0.020	0.028	0.030

PID Correction

	Mass	K	+	K	0	K	× +	<i>K</i> * ⁰			
	(GeV)	R	σ_R	R	σ_R	R	σ_R	R	σ_R		
e ⁺ e ⁻ e ⁺ e ⁻	0.6	0.8751	0.1004	0.8553	0.1004	0.8402	0.1026	0.8483	0.1041		
	1.1	0.8849	0.1021	0.8628	0.1018	0.8519	0.1042	0.8609	0.1059		
	1.6	0.9049	0.0983	0.8765	0.0978	0.8757	0.1009	0.8844	0.1024		
$e^+e^-\mu^+\mu^-$	0.6	0.8750	0.0896	0.8526	0.0895	0.8434	0.0908	0.8509	0.0925		
	1.1	0.8673	0.0928	0.8427	0.0931	0.8375	0.0943	0.8422	0.0965		
	1.6	0.8777	0.0918	0.8520	0.0906	0.8553	0.0918	0.8637	0.0935		
$\mu^+\mu^-\mu^+\mu^-$	0.6	0.8949	0.0825	0.8663	0.0811	0.8699	0.0824	0.8741	0.0848		
	1.1	0.8661	0.0881	0.8357	0.0882	0.8385	0.0892	0.8396	0.0906		
	1.6	0.8568	0.0912	0.8352	0.0895	0.8395	0.0901	0.8596	0.0881		

Table. PID correction ratio(
$$R = \frac{\epsilon_{DATA}}{\epsilon_{MC}}$$
) and its uncertainty2022-01-21Saga-Yonsei Workshop

K0eeee	0	1	2	3	4	5	K0eemm	0	1	2	3	4	5	K0mmmm	0	1	2	3
300	0.15686	0.29167	0.38932	0.50838	0.60224	0.69485	300	0.29801	0.55413	0.73964	0.96583	1.1442	1.3201	300	0.90272	1.6786	2.2405	2.9257
400	0.1541	0.28653	0.38246	0.49942	0.59163	0.68261	400	0.35852	0.66664	0.88981	1.1619	1.3765	1.5881	400	1.2459	2.3166	3.0922	4.0379
500	0.1537	0.2858	0.38147	0.49814	0.59011	0.68085	500	0.37022	0.69017	0.92632	1.2036	1.4413	1.6652	500	1.326	2.4656	3.291	4.2975
600	0.158	0.29379	0.39214	0.51207	0.60661	0.69989	600	0.37915	0.7039	0.95667	1.2286	1.4974	1.7326	600	1.3972	2.598	3.4677	4.5282
700	0.15462	0.28751	0.38376	0.50112	0.59364	0.68493	700	0.38456	0.7169	0.9622	1.2502	1.4971	1.7297	700	1.341	2.4936	3.3284	4.3463
800	0.14181	0.26328	0.35783	0.45955	0.56008	0.64804	800	0.33932	0.6154	0.88069	1.1136	1.402	1.6287	800	1.2805	2.381	3.178	4.15
900	0.13602	0.25253	0.34321	0.44078	0.5372	0.62157	900	0.3116	0.58237	0.84859	1.0755	1.3599	1.5822	900	1.2717	2.3646	3.1562	4.1214
1000	0.13232	0.24565	0.33387	0.42878	0.52258	0.60465	1000	0.34501	0.63053	0.87441	1.1153	1.377	1.5956	1000	1.236	2.2982	3.0676	4.0057
1100	0.12537	0.23215	0.31662	0.40587	0.49618	0.57428	1100	0.3328	0.62041	0.83269	1.082	1.2956	1.4969	1100	1.0696	1.9888	2.6546	3.4664
1200	0.11988	0.22198	0.30274	0.38808	0.47443	0.5491	1200	0.29479	0.54728	0.74381	0.95526	1.1642	1.3471	1200	0.91116	1.6942	2.2614	2.953
1300	0.11317	0.20682	0.28682	0.36584	0.45169	0.52339	1300	0.26509	0.49215	0.66888	0.85903	1.0469	1.2114	1300	0.72329	1.3449	1.7952	2.3442
1400	0.11153	0.20706	0.28141	0.36141	0.44047	0.50965	1400	0.25071	0.46618	0.62225	0.81255	0.96257	1.1106	1400	0.58428	1.0864	1.4501	1.8936
1500	0.1151	0.21403	0.28567	0.37304	0.44192	0.50987	1500	0.20709	0.37847	0.52486	0.66946	0.82657	0.95778	1500	0.44415	0.82586	1.1023	1.4395
1600	0.11059	0.20615	0.27669	0.35952	0.43051	0.49741	1600	0.1821	0.33807	0.45947	0.59009	0.71918	0.83212	1600	0.3514	0.65341	0.87216	1.1389
1700	0.10558	0.19602	0.26641	0.34214	0.41699	0.48247	1700	0.15096	0.27252	0.38607	0.4896	0.61184	0.71003	1700	0.26452	0.49186	0.65653	0.85731
1800	0.1078	0.20095	0.26971	0.35045	0.41965	0.48486	1800	0.13116	0.23678	0.33544	0.4254	0.5316	0.61691	1800	0.19496	0.36345	0.48781	0.63383

 $\mathbf{5}$

3.9988

5.5189

5.8737

6.1891

5.9405

5.6721

5.6331

5.475

4.7379

4.0362

3.2042.5882

1.9674

1.5566

1.1718

0.87693

4

3.4659

4.7834

5.0909

5.3642

5.1488

4.9162

4.8823

4.7453

4.1064

3.4983

2.777

2.2433

1.7052

1.3492

1.01560.75899

77 . 1						_	TT						_							
Kstarpluseeee	0	1	2	3	4	5	Kstarpluseemm	0	1	2	3	4	5	Kstarplusmmmm	0	1	2	3	4	5
300	0.1058	0.19514	0.28247	0.35734	0.45116	0.52452	300	0.18486	0.36867	0.56189	0.71855	0.88983	1.0684	300	0.78402	1.4663	1.9715	2.5423	3.0803	3.5625
400	0.081914	0.16775	0.25947	0.33305	0.41006	0.49737	400	0.20465	0.42437	0.66041	0.84874	1.0421	1.2693	400	1.1066	2.0576	2.7465	3.5864	4.2486	4,9019
500	0.083506	0.16996	0.26132	0.33501	0.41311	0.49956	500	0.2292	0.45711	0.69667	0.8909	1.1033	1.3247	500	1.1244	2.103	2.8276	3.6462	4.4178	5.1094
600	0.11186	0.20224	0.28714	0.36354	0.45592	0.52933	600	0.26125	0.49962	0.74202	0.94402	1.1891	1.3952	600	1 1431	2 0823	2 9073	3 6975	4 5822	5 3177
700	0.10948	0.19754	0.28026	0.3547	0.44472	0.51624	700	0.21357	0.44607	0.7029	0.9043	1.1071	1.3585	700	1 1211	2.0025	2.8010	3 6352	4 4045	5 094
800	0.09286	0.17504	0.25815	0.3278	0.41508	0.48334	800	0.20089	0.41884	0.66962	0.86526	1.0596	1.2985	800	1 1//8	2.0301	2.015	3 7103	4 3054	5 0712
900	0.10166	0.18607	0.259	0.32972	0.40839	0.47336	900	0.17747	0.37956	0.62181	0.81612	1.0066	1.197	000	1.1440	1 0338	2.0414	3 3706	3 0020	4 6060
1000	0.07167	0.14502	0.22339	0.28584	0.3529	0.42667	1000	0.18955	0.39633	0.63141	0.81481	0.99697	1.2284	1000	1.04	1.9556	2.3012	3.3700 3.4105	3.9929 4.0508	4.0009
1100	0.058728	0.12337	0.19826	0.25738	0.31532	0.38233	1100	0.22214	0.41873	0.61754	0.78414	0.99295	1.1562	1000	0.00070	1.9010	2.0100	0.4190 0.9790	4.0506 9.4406	2.0759
1200	0.05674	0.1179	0.18864	0.24354	0.29807	0.3666	1200	0.15113	0.31518	0.50508	0.65421	0.80136	0.97834	1100	0.00370	1.0470	2.2113	2.0132	5.4400 9.9947	3.9732
1300	0.046034	0.099283	0.16318	0.21471	0.26521	0.31571	1300	0.15389	0.30692	0.46777	0.59819	0.74078	0.88946	1200	0.71525	1.3278	1.6047	2.3177	2.8247	3.2083
1/00	0.044643	0.095109	0 15503	0.20/13	0.25201	0 20088	1400	0 15967	0.28710	0 49179	0.53500	0.67717	0 78897	1300	0.58962	1.0992	1.4753	1.9169	2.2954	2.6521
1400	0.044045	0.095109	0.10095	0.20413	0.25201	0.29900	1400	0.15207	0.28719	0.42172	0.55509	0.07717	0.10021	1400	0.45735	0.85041	1.1351	1.4822	1.7559	2.0259
1500	0.053214	0.10613	0.16175	0.20684	0.25615	0.30756	1500	0.11239	0.22229	0.33592	0.42906	0.53338	0.63708	1500	0.32252	0.60123	0.80696	1.0485	1.2556	1.4507
1600	0.060633	0.11111	0.16018	0.20249	0.2555	0.29696	1600	0.10633	0.19602	0.28471	0.3598	0.45453	0.52911	1600	0.22943	0.4277	0.57405	0.74588	0.89317	1.032
1700	0.056601	0.10372	0.14953	0.18902	0.23851	0.27721	1700	0.091119	0.16442	0.23326	0.29563	0.37015	0.42968	1700	0.15311	0.28635	0.38501	0.49647	0.60154	0.69571
1800	0.052106	0.095486	0.13766	0.17401	0.21957	0.2552	1800	0.066446	0.12418	0.18095	0.22933	0.28997	0.33739	1800	0.099706	0.18279	0.25182	0.32213	0.39584	0.45848

Kstar0eeee	0	1	2	3	4	5	Kstar0eemm	0	1	2	3	4	5	Kstar0mmmm	0	1	2	3	4	5
300	0.055387	0.11834	0.19326	0.25302	0.3116	0.37177	300	0.16942	0.32088	0.4749	0.60239	0.76326	0.8899	300	0.69305	1.2887	1.7201	2.2462	2.6609	3.07
400	0.060857	0.12688	0.20286	0.26212	0.32099	0.39298	400	0.20315	0.38475	0.56943	0.72231	0.9152	1.067	400	0.96409	1.7927	2.3928	3.1246	3.7015	4.2706
500	0.052225	0.1127	0.18573	0.24463	0.30235	0.36007	500	0.12898	0.28832	0.46174	0.64492	0.80534	0.96359	500	1.0111	1.8801	2.5094	3.2769	3.8819	4.4788
600	0.061078	0.12786	0.20563	0.26671	0.32657	0.39701	600	0.12903	0.29032	0.46385	0.65406	0.81868	0.9822	600	1.0296	1.9145	2.5555	3.337	3.9531	4.561
700	0.056443	0.1196	0.1942	0.25301	0.31142	0.37339	700	0.12525	0.28346	0.45156	0.64274	0.80425	0.96575	700	1.0772	2.003	2.6736	3.4913	4.1359	4.7718
800	0.05275	0.11181	0.18202	0.23737	0.29235	0.34993	800	0.12038	0.27547	0.43598	0.62795	0.78737	0.9468	800	0.9652	1.7993	2.415	3.1379	3.7575	4.3414
900	0.051208	0.10846	0.17567	0.22901	0.28164	0.33818	900	0.11318	0.26337	0.41568	0.60501	0.7605	0.91598	900	0.93979	1.7519	2.3514	3.0553	3.6586	4.2271
1000	0.037251	0.085577	0.13558	0.19465	0.24398	0.29331	1000	0.10961	0.25241	0.40024	0.57824	0.72707	0.87389	1000	0.90949	1.6911	2.2573	2.9476	3.4919	4.0288
1100	0.036241	0.083255	0.1319	0.18936	0.23736	0.28535	1100	0.08994	0.21567	0.3359	0.5066	0.64243	0.77642	1100	0.76141	1.4194	1.9051	2.4754	2.9642	3.4248
1200	0.041493	0.088322	0.14434	0.1885	0.23236	0.27741	1200	0.098842	0.22094	0.35384	0.49421	0.61714	0.73841	1200	0.62719	1.1692	1.5693	2.039	2.4417	2.8211
1300	0.033541	0.074909	0.12075	0.16715	0.20851	0.24932	1300	0.10077	0.21531	0.35159	0.46033	0.5669	0.67637	1300	0.45699	0.83519	1.1582	1.4773	1.824	2.1136
1400	0.033311	0.072966	0.11844	0.16074	0.19986	0.23846	1400	0.060575	0.14526	0.22623	0.3412	0.43268	0.52292	1400	0.37279	0.6813	0.94483	1.2051	1.4879	1.7241
1500	0.037883	0.079007	0.12661	0.16399	0.20088	0.24524	1500	0.063762	0.1424	0.22954	0.31775	0.39639	0.47396	1500	0.66884	1.2468	1.6735	2.1744	2.6038	3.0084
1600	0.039111	0.080592	0.12515	0.16071	0.19745	0.24012	1600	0.058327	0.12426	0.20372	0.2667	0.32925	0.3918	1600	0.49824	0.90252	1.2696	1.6127	2.0083	2.3295
1700	0.035393	0.073943	0.11678	0.15059	0.18396	0.22611	1700	0.045647	0.098901	0.16322	0.21475	0.26593	0.31676	1700	0.3706	0.69263	1.0093	1.2791	1.6173	1.8818
1800	0.032007	0.066751	0.10697	0.13855	0.16972	0.2072	1800	0.03792	0.081137	0.13356	0.1751	0.21637	0.25707	1800	0.13165	0.26039	0.3935	0.5026	0.62479	0.74626