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Frontend Analog Circuits for Gas
Detectors




Background Knowledge

e Laplace transform
Transient properties of analog circuits are usually
expressed by differential equations. To solve the
differential equations easily, Laplace transtform 1s a
powertful tool.

e OP amps (Operational Amplifiers)
Amplitier circuits, adder circuits, differentiator,
Integrator...
various operational circuits can be composed of OP
amps.
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What is Laplace Transform?
In comparison with Fourier Transform

periodic wave in time domain non-periodic function in time domain
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e
Circuit Analysis with Laplace Transform

e Definition of Laplace transtorm

F(s) = /0 T et

e Differential 1s transtformed to s and integration 1s transformed to 1/s.

— Electronic circuit problems are solved by arithmetic operations (+
—X+)

e How to solve circuit problems:
1. A circuit (t-domain) 1s Laplace transformed to an s-domain circuit.
2. The obtained circuit 1s solved in the s-domain
using the Ohm’s law and Kirchhoft’s lows.
3. The obtained solution 1s inverse-Laplace transtormed to t-domain.

5
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Table of Laplace Transforms

e We don’t need to calculate the integration shown before by ourselves.
Instead, distributed tables are used to obtain Laplace transtorms.

e Pickups from the Laplace transform table.
Letft — Right : Laplace transform,
Left <= Right : Inverse Laplace transtform.

f(t) F(s)
I unit impulse function §(t) 1
unit step function u(t) 1/s
= e-*tu(t) 1/(s+a)

df(t)/dt sF(s) — f{0)
| fo)dt (1/s)F(s)
(’] Time shift ft-1) esTF(s)




- Laplace Transform of a Capacitor A

According to the Laplace transform table, differential is transformed as

P o 5B (5) - 0)
with which, capacitor’s v-1 relation in the time domain,
Ly ~du(t)
i(t)=C 7
is transformed to an s-domain equation:
1
I(s) =C(sV(s) —v(0)) = sCV(s) — Cv(0) SV (s) = EI(S) + @

where V(s) and I(s) are Laplace transforms of v(t) and 1(t). As a conclusion, a
capacitor C 1s expressed as a passive device with impedance 1/sC in the s-
domain circuit if the initial voltage v(t=0) is zero.

i(t) I(s)
2 > - >
1
| — sC'
v (t) —_ C < V(S ) In many cases, there is
i (O) no charge in the initial
- < state therefore v(0)=0.
S Then the battery can be

k removed. /
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Example:
Analysis of RC Low-Pass Filter by Laplace Transform

e A step function with a step of 1V 1s applied to the voltage input of the
RGC circuit below. Give the output voltage shape.

Vin R Vout V(:lt
[ — . (P2 |
AL P
Vin=u(t) . n
1V [e—
oV — >
t=0 t
~
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Example:
Analysis of RC Low-Pass Filter by Laplace Transform

Analogous to the resistor attenuator,

Win R Yout v Rs v
-—-—-—J-P g MMM —s — P2 | out — 15 . p Vin
IMEG " Ri+R,
) s-domain in-out property of the RC LPF is
t-domain t—0 pl perty
e 1 1
= Vout (5) = =58V (5) = -
sC
Vin(s) R Vout(s) 1 1
S —E e
S
domain — " RO
>-aomd 1= From the Laplace transform table,
1 1
_{7 F(s) — f(t): P u(t), o e~ " u(t)
Therefore we obtain;

Vour(t) = u(t) — e Rou(t) =1 — e 7O (t > 0)/
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ldeal OP amp
(OP amp: Operational Amplifier)

e Infinite amplification of differential input.

(input impedance )
input current= 0 —
P +

AV o0

input current= 0 —
(input impedance «)

AV X o
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AV =0
(Virtual Short)

no current btw. + and - inputs,
but they have a same vojtage
as a result of feedback.

Negative Feedback of OP amps

e Feedback of output to the negative input makes the
output voltage finite.

output has
current driving ability
o0 7 Vout
out —

-
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Basic OP amp circuit 1.
Inverting Amplifier circuit

current 1 .
(Kirchhoft’s law 1 ——\Wy

Yin R1 0 AMP
LD Ay ( AN
copy the voltage 4
(virtual short or
virtual ground)
R R
Ro
Vouwr =0 — IRy = ——=
t 2 Rl

Vi

(Ohm’s law for Ry)

(Ohm’s law for Ro)




s
Basic OP amp circuit 2.

Non-Inverting Amplifier circuit

Vin
P1 Y + Vout

— \ P2
copy Vin 2 /

(virtual short) Vi AAA J

R2
= current I
(Kirchhoft’s law I)
~

Vin 1s copied to the negative input by the virtual short
theory. Then, the resistor chain works as an attenuator
when you look it from the output of the OP amp.

Rl Vout Vout — (]- + @> V;,

V;ln —
Ri{ + Ro R4
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Example of Analog Frontend circuit for

Gas Detectors

R7
R Ay
Ay -
C1 I
11 I 7
I 2 C2 w2
I Y Re AP
AMP Ay
N - v
1 AMP
/ WA 3 RS X3
¥1 Ay :
o)
i o
<) PULSE =
¥/ 05000 o
00.4n04n9.9n10u 1
~
~ ~

™
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Example of Analog Frontend circuit for

Gas Detectors

Charge Amplifier
I—V) Pole-Zero Cancelation — ,--==============~ .
PRESIEEEREEEAS . ! R7 \
Ri (PZC) . - | My
| gmesnssning ., non-inverting ! .
o ¥ . amplifier |
1! : PN ~ ! 7
2 c2 %2
w |l N L
:
R2 ——O
1 \ Ay ﬁ
/ 3 RS X3
| X1 W <~
\,\\?7 o m§ 1o i T Z
H b ressssssscss | e S :
C e | | .&,g | Shaper
00.01?# 0409901001 | N i (Integrator)
: " <7 :
v Sesssssssssd ~

________

charge from detector
I =dQ/dy)

N - ———— = ——
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Example of Analog Frontend circuit for

Gas Detectors

Charge Amplifier
I—V) Pole-Zero Cancelation = ,e======== LN
e \\ ‘
. mooy o (PZC) . coo 8 A I
: A | T T ===y NONn-mvertng | o :
: cf ¥ | amplifier | I i
| I ¥ | oTTITIITIm ! AN
: 2 1 C2 1! X2 N I
: A L ok
1 . | i '
: Qp | R 1. L1 ° >_‘_4_O
1! Ny Yy 1! AMP L] ; I
: / : : 3 1 RS q ¥3 ;
< ' B W i‘\-_:f _____ 4
I - T -1 8; | - 1 ' '
C SL;L'SE : : Eg Shaper
009 0.1n 801041 I 1 (Integrator)
i - <~ I .
________ cut low ~ Seeoo frequency
charge from detector frequency
I =dQ/dt N -y constant shape!!

& impulse input _//g
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Signal Source

*1
N
Ho!
( PULEE
+ 0500u
00.1|n0.1n9.9n10u1
~

________

charge from detector
I =dQ/dt)

-

§;o i
(%) —_— D

R3
Ay

R4

My
c7
|
1=
X2
\ R6 AMP
/ !VV\(
AMP :
RS X3
Ay




Signal Source

e Signals from detectors are “charge” or “current pulse.”
e Instead of a real detector, you can generate test pulses by applying
voltage steps to a capacitor.

e Because cyclic pulses are composed of repetitive rising and falling edges,
positive and negative charges are alternately injected, which 1s different

from real detectors

Yout Co Yout
e G
10 Vo s v % o) < 1
— 0{n 540 1
CD s <> u(t) < -
)
~ ~ C o L
sC
Vi 1
IO(S) = Q IO(S) = SO - SCO = O()V()
o(t) = Qo(1) io(t) = CoVad()




Charge Amplifier

Charge Amplifier
I—=V)
Pt . R7
R Ay
I W c7
! ct [l
! [ s
: P C2 %2
| e i D i
! R2
1 : \ m A/MP ;
: / 3 RS X3
: X1 4 W 5
\ ~7 o
H A S==mmmm—===- & (il
( PULSE vg
¥/ 05000 o
0010010 9.9 10u 1
~
g N




4 ™
Charge Amplifier

e Convert the mnput charge to voltage. (i; determines the gain
and the time constant CG1R 1 defines the recovery time.

| % combined C = 1pF
: L, 1
: .impedance . |
currnet Iin/ Z K X\ R, =100M(
lin g 3 \
[P1 — % o
. (] ¢ \ R,=10MO™~_
X1 Vout — _IznZ .'35_‘ \P\ —1MO
tl;ransfer ! :
unction
V S 1 R o V(VOUT)
7'1'(5) = L() — _R1 ” — 1 0 2u 4u e 6u 8u 10u
I (s) sC, 1+ sCR,
1 1 1 1 y 1
= - 1 < ———CeXp|-——1 e =
¢ ., L C, C\R, Py

K C\R, /
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Pole-Zero Cancellation (PZC)

Pole-Zero Cancelation

Ri (PZ.C) ik
Ay .
¢l :
[ I
13 o .
1 \ RE AMP
AMP m -
A R v ERREDN
L AMP
/ Ay - . g
X1 ! 1 JVV\, ~
~ ; ! 4 5
I iy 0
i . 0:§ !
( PULSE : »
¥/ 05000 . LT
004n04n 990 10u1 : :
" <7 |
e — ~
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Pole-Zero Cancellation (PZC)

e By setting the time constant same as the previous stage T, 1.e. GiR;
= (9Ro, the pole of T and zero of T are canceled. This is called
pole-zero cancellation (PZC).

pmmmmmmm e -, combined

§ C2 - attenuator consists of
: [ . Impedance
: || ! /1 and Zo
: /.
in . R2 SR Vout
[P . AN ' {P2_|

________________

" combined
gy I
cé ' impedance

\ L
Sl
T (5) — Vout(s) _ Z2 _ R3 = R3 L+ SC2R2
= Vin(s)  Z1+ Zs 1 Ryt R3 14 sCa(Ry||Rs)
R2||— + RB
5C2

- /
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Pole-Zero Cancellation (PZC)

e By setting the time constant same as the previous stage T, 1.e. GiR;
= (9Ro, the pole of T and zero of Ty are canceled. This 1s called
pole-zero cancellation (PZC).

e

R1 \
c1 ' 1me
I ! ~Cong; JRS——
i ] ’ ant c2

___________ __/, ! I I

! 1
|Iin > o Vin ' R2 | Wout
P1 . Wout 1 d
> 7] Fo—! At (P ]

%1 \\ ______________ W 4

cancellation <L

Z€CTO0
T (8) . R / T (8) B R % 1+ sCoRs
! - 1+ sClRl 2 N RQ + Rg 1+ 802<R2||R3)

pole Y




s
Pole-Zero Cancellation (PZC)

e If pole and zero are not matched... e Pole and zero are properly matched.

L 0.175

0.03 |
! 0.15
I 0.125

0.02 K
0.1
0.075

0.01 f
[ 0.05
- . . . 0.025

W
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Non-Inverting Amplifier

(already explained)

e DC attenuation by T is recovered by setting R5/R4 = Ro/Rs3.

R7
R1 . .
A non-imvertang Zi\m
o amplifier |
4TRSS ETESSSES ~ 7
11 2 2 II’ ¥ \I
I b
AMP ! —AAA :
\ R2 - / I , — O
1 fv\{\, : AMP : J
/ 3 : RS i X3
¥ C WA ~

~
I

I
1
PULSE o
C 0 500u Fé
I
1

00.1n0.1n9.9n 10u1

~
ok ~
Ty(s) = Yol®) g Mo
Vin(s) Ry
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Shaping Amplifier (Shaper)

e

I R7
R : Ay
Ay | o
c1 ! [l
[l : 1
LI C2 X2 :
AMP i ™ :‘\;3\; o
N 6
R2 . ——o0
i D A e | >
/ 3 RS | X3
X1 : Ay : '\\ g
~ m; TR AR
I &
( PLSE &,g Shaper
. u
0040010990 101 (Integrator)
~
~ v
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Shaping Amplifier (Shaper)

e Low-Pass Filter (LPF) property or integration property. The time
constant G7R7 defines the shaping time.

e To make a “critical state,” where the signal tail is just before vibration,

equalize T9 and T4 poles by designing as G7R7=Co(Ro | | R3) .

________________

¢ R7 \
:’ WA— o
: . . combined impedance Z,
! [l :
Impedance Z\ | j F _____ W
vin AR \AMP wg Inverting amplifier
N y e —*2]  composed of
X3 /1 and Z»
~
Rill—
SRR /91 B e WS SR
V;n(S) Zl R6 R6 Ri 4+ 807 R6 14 SC7R7
7




Shaping Amplifier (Shaper)

e Low-Pass Filter (LPF) property or integration property. The time
constant G7R7 defines the shaping time.

e To make a “critical state,” where the signal tail is just before vibration,

equalize T9 and T4 poles by designing as G7R7=Co(Ro | | R3) .

¥ ¢ Cc2 \ . I// R Y
! | \< same time-constanty A |
¥in : R2 : vout E c7 :
[P - : Ay 2] : | ,:
___________ _,'/ E % 10 \ @
Al "3
~
Ty(s) = —— 22 Ty(s) = — =1
Ro + R 1—|—SCQ(R2HR3) Rs 1+ sC- R~

pole \avoid vibrating state / pole

by equalizing poles
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Synthesized Transfer Function

T(s) = 1,($)T,(5)T,($)T5(s)T, (s)

Rl
1+ sCR,

R, 1+ sC,R,
R, +R; 1+5C,(R, IR,)
R, 1 R,

R
 [—
R4

R, 1
R, 1+ sC,R,

R
= OR where CR, =C.,R,, —>=—,C,(R,IIR,)=C.R
O 1R6 (1+SC7R7)2 1™ 2% R3 R4 2( 2 3) 7447
R 1 o 1
< QR te 7 x e’ < 5 is used here.
R\ CiR, (s+a)
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1

+
! %1
( PULSE
0 -500u

001n01ANn9.Sn10u1

~

SPICE Simulation

™

Sometimes peak-hold

R7 . o e .
circuit is applied to
& : :
7 wait A/D conversion.
[l
- o 100pF l
I I W2 Re AP X4
SU0pF M N V3 D1 Vout
AN —— P f e ? — Gl
20k 2 RS X3 D
3 vy <= AMP ~r
o) e
Digkn o L
32 B2
~ ~
~
75 \
50—
= \
e
L 25
[®]
&
o
E o T VVIW(V2)
ICJT)J P S V(V1)
= —— V1 (Charge Amp)
= ‘// A  §
=° /sz (PZC + non-inverting Amp)
ol
(e] 4u 8u 12u 16u 20u
TIME (s)
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Consideration to minimize the circuit

'Two currents should be completely proportional.

This 13 because Va is proportional to Vg and
Va and V3 are respectively proportional to Is and Is
due to Ohom’s law.

Then.... Iﬁ Wy

00.1n0.1n9.9n 10u1

™
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Consideration to minimize the circuit

The following circuit should work as same as the previous one,
with only the amplification difference.

R Ry
e ~| =
C, C

R: R 7

o 9 -
L fu o8

Group Homework Problem:

Please calculate the transfer function of this circuit

to show that the above sentence is true.

You can also use the same capacitor and resister parameters as the original circuit
to draw a graph that shows time dependence of the output voltage. Y




z-transform for digital filtering




Analog signal to digital signal

/N
1) f27T)

f{0
J

6 T 2T 3T4—TST>

@ Sampling
o(t-T)

/Pf< 2T)o(t-27T)
fl0)3(0) | . - T » ‘\/ / f(3°T)o(t- S{QT)S( 4T)
> » / =

T" I - ] "{5T)8(t-5T)

0T2T3TQ—TST’\'{
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Laplace transform of the Sampled signal

When the signal {{t) is sampled with the period T,
the obtained sampled signal f¥(t) 1s

£t = f(0)5(t) + f(T)6(t —T) + f(2T)6(t — 2T) + f(3T)6(t — 3T) + - - -
If the signal is Laplace-transformed,

F*(s) = f(0) + f(D)e T + f(2T)e 2T + f(3T)e T + ...
because of the following Laplace transform pairs.

d(t) & 1

t — t — kT < multiplication of e %7




: Example

filt)

}

F(s)

period T =1 [s]
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Z-transform

Look at the Laplace transform again.
F*(s) = f(0) + f(T)e™" + f2T)e " + f(3T)e ™" + -

It we replace e=1 by z1,

F*(s) = FO) ™)+ F(D)(e ) + F@() + F@) ™) + -

Here, z-! denotes “one period (1) elay” Therefore,
z~1 = T [s] delay
= (z7 1% — 2T [s] delay
= (z71)? = 3T [s] delay
= (z71)* = 4T [s] delay

So, the discrete signal array { f{0), f('1), f{2T), {{3T), ... } 1s transformed to

F(z) = kz:%f(kﬂ(z‘l)k

p—\

/




z-transform Examples
(Al




z-transform table A

Laplace transtorm
z-transtorm (for comparison)

- --

% = { 0 (k ;A 0)
[ 1 (k>0 1 1
“’f‘{ 0 (k< 0) [ 1 u(t) 3
1 1
ekaT T eOéTZ—l eo‘tu(t)

S —




. in/out correlation of digital system h

Let me denote x(kT), i.e. k-th data, as

Lo — 5 ) ( Y — 0
r1 = 4 y1 = 5)
Lo = —2 Yo = 4
r3 =8 ¢ > digital system > g = 2
Ty =9 For example, Yys =38
one sample period ( T'[s] ) delay
/ \

(zx = 0 for k < 0) Yk = Tk—1 "~
‘difference equation”
Y (2), z-transform of yy, is calculated as

Y(z)=wyo+uyz " 4y2z t+ysz O+
=2 1 +x02 a2 ez 4 00
=2 Nag+xz td a2 +--0) =271 Zxkz_k
k=0

= 271X (2)
multiplication of 27! works as one sample delay! /




One-sample delay circuit h

In digital circuits, one-sample delay is established by a D-type flip-flop (DFF).
A cascade of DFF 1s called a shift-register.

Q1 T Q2 T Q3j
D—bp Q1 ' Q2 D Q3

FF1 FF 2 FF3

Q2

. L Figures from
Q3 https://bit.ly/3KvbCqg2

t /



https://bit.ly/3KvbCq2

e
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One-sample delay circuit

In digital circuits, one-sample delay is established by a D-type flip-flop (DFF).
A cascade of DFF 1s called a shift-register.

CLK

? |

Ql#

CLK

Q24

1]

CLK

FF1

FF2

Q3j
Q3

Q34

FF 3

z-transform of the shift-registe

— Y (2)




- Difference equation

The operation of the filter is described by a difference equation that

relates y« as a function of the present input sample xx and any number of
past input and output samples

Recursion formula

q m
Y = Z Lizyg_; + Z Kiyr—i
i=0 i=1




e

Recursion formula

A simple 1st-order Difference equation

Y = Loxk + K1yk—1

xk_. OEREETS
[

@ adder
D multiplier

Z_l

delay

™~




" Digital Networks h

System function

Difference equation q
1
q m Y(z) Z Lzz
_ =0
= = 1+ Z Kiz™"
=1
\/ Feed-forward path
| LO
| L1
| L2 [ \
ajk ;@ :21—.—>Z1_‘_ ........... >Z'1.._ ................ > Z1 ;@ =yk
]
. \

@ T m delays
* IIR FILTER

ﬂ+
Feed-back path

Figures by L. Musa @ GERy
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Digital Networks

Difference equation

System function

q m
Yk = Z Lixp—i + Z KiYr—i H(z) = X(2)
i=0 i=1

If all Ki’s are 0

Non-recursive

—V\y

P

N\

» Z1 @ » +

:yk.

FIR FILTER

Figures by L. Musa @ GERy




" Example of FIR filter:

Moving Average Filter (MAF)

L > 1 o L. > zl@—> Yk




4 . . . R
Baseline correction using MVA

After Tail Cancellation Filter After Baseline Correction 11
| | ; | — ....................... ................. O ............. Aflxed ............
threshold can

‘% now be
applled safely

Y

din«,J’—L{ z! }‘"{ z1 H z1 H z H Z-1 H 71 H 71 H Z1 H 71
on 1 t ¢+ ¢+ *r ¢t ¢t t %

Unsigned 11-bit FIR system "

51
G Figures by L. Musa @ CERy




Tail Cancellation Filter

e Functions

= signal (ion) tail suppression T l
= pulse narrowing = improves cluster separation

" gain equalization

compensates undershoot

e Architecture

= 3rd grder IIR filter = Filter %
= 18-bit fixed point 2’sC arithmetic

= single channel configuration = 6 coefficients / channel

Narrows the pulse

11 bits word 18 bits o 18 bits . 11 bits
order wor
: extension 7 | IR filter 7 rounding 7
2’sC 2’sC 2’sC 2’sC

-1 -1

Y4

Y4
Hp=lLlz1112211 1321
1 Kiz 11 k2-11 k321

18-bit fixed poin

Beijing, January 2008 Luciano Musa



Summary

e An example of frontend analog circuits composed of
OP amps was shown. Its analysis method was presented
using the Laplace transform.

e z-transtorm was explained, which 1s useful for analysis
of digital circuits. FIR and IIR filters were shown.

e Homework problem : see pages 34 and 3.
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Parameters

R, 1 1
Peak vimaz = QR1—7 — is obtained at t = C7R7, which is called “peaking time.”
RG C7R7 €

Shaping time is ~ 1.04 C7 R~ .
Integral of the pulse gives / v(t)dt = Qng.
0 6

Peak and Integral are both proportional to the injection charge Q.

75

50—

25 ; .
Peaking Time

VIV (V2)
VvV1)

| V1 (Charge Amp)
25 -/ e

TRANSIENT RESPONSES (V)
: T

non-mverting Amp)

>
NS
o
N
@)
-+

-50
o 4u 8u 12u 16u 20u

k TIME (s) /




s
Definition of Shaping Time

Shaping time is defined as the o of gaussian- TN

shape pulse. FWHM is known to be 2v21n2 ~ 2.35
times larger than o. C

For non-gaussian pulse, therefore, FWHM/ & pyry

2.35 can be used as shaping time instead. /

FWHM = 2.45 C; R~ v

o.ST =1.04 C7R7 % ST/PT depends on shaping type.

75

2*ITFWHM =2.35 X'ST,

R VOVINV(V2)
| VI (Charge Amp)

25 ‘K FYFAN . . A
/V 2 (4G 7 non-mverting Amp)

TRANSIENT RESPONSES (V)

-50
o 4u 8u 12u 16u 20u

k TIME (s)




