Studies of Electro Weak Penguin Process at Belle / Belle II

2022.1.21

S. Watanuki

(Yonsei University)

Introduction

- Flavor changing neutral current (FCNC) is possible only by loop diagram in SM.
 - Sensitive to new physics appearing in the loop.
- FCNC of B decay (b \rightarrow s/d) is comparably high BR thanks to V_{tb}~1.
- B factory (Belle, Belle II, BaBar) provides ideal environment to investigate the FCNC.

Example

2022/1/21

Topics

1. Search of LFV $B \rightarrow K \tau \ell \ (\ell = \mu, e)$

2. Study of $B \rightarrow \rho \gamma$

$LFV (B \longrightarrow K\tau\mu)$

Motivation (LFV)

Once LFU is violated, lepton flavor violation (LFV) is <u>no longer forbidden</u> in the model;

Unique Analysis Procedure at Belle

2022/1/21

1. Hadronic tag

※ For other methods, please see backup slides.

. Reconstruct tag side B with as many modes as possible.

1. Hadronic tag

※ For other methods, please see backup slides.

- 1. Reconstruct tag side B with as many modes as possible.
- Select K⁺ and μ in the rest of event for tag side B.

1. Hadronic tag

※ For other methods, please see backup slides.

- . Reconstruct tag side B with as many modes as possible.
- Select K⁺ and μ in the rest of event for tag side B.
- 3. The rest of event of $B^-K^+\mu$ system is τ .

Hadronic Tag Method

S. Watanuki @Saga-Yonsei Workshop 2022

2022/1/21

2 types of signal decay

Opposite Sign channel (OS)

Same Sign channel (SS)

- > 2 types of signal decay with charge combination of primary tracks.
 - As long as staying on model-independence, we must consider both channels.
- > The reconstruction strategy is same.
- However main BG types are different, thus cut strategies are also differently optimized.
- ➤ SS has huger size of BG, hardly separate signal/BG, etc...
 → Much more difficult channel [™]

S. Watanuki @Saga-Yonsei Workshop 2022

MVA training (BB)

1. Kinematic information

- Invariant mass of primary K and lepton (only for OS)
- Invariant mass of primary K and τ prong (only for SS)

2. <u>The decay topology</u>

- KSFW parameters
- B vertices position (dr, dz)
- The distance between primary K and lepton

3. Neutral remnant particle

- Number of extra ECL neutral clusters
- Energy deposit of extra ECL neutral cluster (E_{ECL})

4. Fake particle BG

- Signal probability of B_{tag}
- PID (or LID) of the particles

MVA outputs (BB)

MVA outputs (qq)

τ Mass after the Cuts

Fitting to Extract the Signal

<u>Signal</u>

2022/1/21

Crystal Ball + Gaussian

BG (BB+qq)

3rd order Chebychev polynomial

90% C.L.	OS_mu	SS_mu	OS_e	SS_e
BR U.L.	<1.2e-5	<1.8e-5	<1.4e-5	<1.8e-5

Only stats. error is assigned.

- > The results in previous page is based on MC.
- We always have to calibrate the Data/MC discrepancy in a data driven way.

⇒ Main control sample of this study is $B^+ \rightarrow D^-(\rightarrow K^+\pi^-\pi^-)\pi^+\pi^+$, which provides very similar kinematics as signal.

FBDT Data/MC Calibration

Source of Systematics

Sources	$OS_{\mu}\left(\times 10^{-5} ight)$	$SS_{\mu}\left(\times 10^{-5}\right)$	$OS_e \left(\times 10^{-5} \right)$	$SS_e\left(\times 10^{-5}\right)$			
Efficiency calibration							
FEI	0.0215	0.0637	0.0271	0.1104			
Tracking	0.0091	0.0270	0.0115	0.0468			
LID of primary lepton	0.0027	0.0082	0.0075	0.0306			
LID of τ prong μ	0.0002	0.0007	0.0011	0.0063			
LID of τ prong e	0.009	0.0016	0.0006	0.0031			
PID prim K	0.0006	0.0018	0.0008	0.0031			
PID $\tau \to \pi$	0.0003	0.0011	0.0004	0.0017			
PID $\tau \to \rho \to \pi$	0.0002	0 0002	0.0002	0.0005			
pi0 reconstruction	0.0037	010.05	0.0051	0.0117			
BB sup. and D-veto	0.1248	0.5	0.1061	0.7831			
qq sup.	0.0760	0.16°	0.0724	0.3783			
	Other	parameters					
$N_{B\overline{B}}$	0.0119	0.0353	0.0150	0.0611			
f_{+-}/f_{00}	0.0096	0.0284	J.0D 1	0.0492			
MC stats.	0.0087	0.0235	6	0.0485			
Linearity	0.0379	0.0551	$0.0 10^{-61}$	0.1077			
Fixed PDF shape							
Mean	0.0184	0.0160	0.0186	9.0177			
Width	0.0363	0.0971	0.0174	0.0499			
PDG τ mass	0.0208	0.0291	0.0040	0.0494			
Total	0.1599	0.5849	0.1358	0.8845			

2022/1/21

Radiative (py)

Motivation

- ➢ We are targeting <u>~365fb⁻¹</u> integrated luminosity in 2021c.
 - <u>Belle + Belle II</u> will reach more than 1/ab.
- This is enough to measure $B^{0(+)} \rightarrow \rho^{0(+)}\gamma$ with more than 5.6 σ (3.7 σ) assuming with Belle study sensitivity.
- ➤ The mode would be first step of b→d EWP transition at Belle II.

Reconstruction

BELLE

BELLE II

- Event level
 - foxWolframR2 < 0.5
 - nTracks ≥ 3

BtoXgamma skim adopted

> Primary Photon

- 1.8 < E* < 2.8 GeV
- Cluster region == 2
- E9oE25>=0.95
- Cluster second moment <= 1.5
- Cluster # Hits ≥ 8

> Charged particles

- $PID_{\pi/K} > 0.6$ for π^+
- $PID_{K\!/\!\pi}>0.6$ for $K^{\scriptscriptstyle +}$
- dr < 0.5 cm
- |dz| < 2cm
- > **Neutral** π^{0} (for $\rho^{+} \rightarrow \pi^{+}\pi^{0}$ channel)
 - $M_{\pi^0} \in (119, 151) \text{ MeV/c}^2$
 - $E_{\gamma} > 50 \text{MeV}$
 - $-\cos\Delta\phi_{\gamma} > 0.58$
- $2022/1721 \cos \theta_{\gamma\gamma} > 0.50$

> Primary Photon

- 1.8 < E* < 2.8 GeV
- Cluster region == 2
- E9oE21>=0.95
- Cluster second moment <= 1.5
- Cluster # Hits ≥ 8

Charged particles

- $PID_{\pi/K} > 0.6$ for π^+
- $PID_{K\!/\!\pi} > 0.6$ for $K^{\scriptscriptstyle +}$
- dr < 0.5 cm
- |dz| < 2cm
- > Neutral π^0 (for $\rho^+ \rightarrow \pi^+ \pi^0$ channel)
 - $M_{\pi^0} \in (120, 145) \text{ MeV/c}^2$
 - $E_{\gamma} > 50 MeV$
 - $-\cos\Delta\phi_{\gamma} > 0.58$

S. Watanuki @Saga-Yonsei Workshop $\Omega_{SD} = 0.50$

π⁰/η veto (ρ+γ)

S. Watanuki @Saga-Yonsei Workshop 2022

qq suppression ($\rho^+\gamma$)

FBDT output for qq sup.

2022/1/21

S. Watanuki @Saga-Yonsei Workshop 2022

Performance Comparison with Belle 29

Cut Table (Charged)

30

Belle II	Signal	K*gamma	BB	qq	
No cut	204	424	2646	599173	0.263
Window	156	93	504	39979	0.773
Pi0 veto	134	79	215	8416	1.425
Eta veto	132	77	213	6711	1.563
qq sup.	58	25	65	136	3.442
Belle	Signal	K*gamma	BB	qq	
No cut	145	380	1474	200656	0.264
		300	1 7 7	299030	0.204
Window	114	75	220	22670	0.264
Window Pi0 veto	114 95	75 61	220 128	233030 22670 6785	0.264 0.750 1.130
Window Pi0 veto Eta veto	114 95 93	75 61 59	220 128 124	22670 6785 5710	0.204 0.750 1.130 1.202

➤ Luminosity is scaled to Belle full data set (<u>711/fb</u>) for fair comparison.
 ➤ "Window" means M_{bc}>5.27 and ΔE in (-0.2, 0.1).

Cut Table (Mixed)

Belle II	Signal	K*gamma	BB	qq	
No cut	206	709	1517	402674	0.324
Window	165	235	169	26498	1.003
Pi0 veto	142	201	113	5473	1.844
Eta veto	139	197	106	4267	2.026
qq sup.	51	59	22	72	3.571
Belle	Signal	K*gamma	BB	qq	
Belle No cut	Signal 188	K*gamma 721	BB 997	qq 218666	0.400
BelleNo cutWindow	Signal 188 150	K*gamma 721 208	BB 997 136	qq 218666 15782	0.400 1.176
BelleNo cutWindowPi0 veto	Signal 188 150 124	K*gamma 721 208 170	BB 9997 136 88	qq 218666 15782 4597	0.400 1.176 1.757
BelleNo cutWindowPi0 vetoEta veto	Signal 188 150 124 121	K*gamma 721 208 170 166	BB 9997 136 88 83	qq2186661578245973734	0.400 1.176 1.757 1.889

> On the other hand, mixed mode showed slightly worse significance.

Because of twice larger size of qq background?

– though, the condition of qq seems be same for charged mode. 2022/1/21 S. Watanuki @Saga-Yonsei Workshop 2022

Fitting Strategy

X Signal enhanced

 Same as Belle strategy (see my <u>BAM</u> talk).
 <u>Updates from BAM</u>

Functional PDFs have been adopted as much as possible.

	Signal	K*gamma	Rare	qq
Mbc	CBall		CBall+	Argus
		3D	Argus	
deltaE	CBall	histogram	2 nd poly.	3 nd poly.
Mkpi	CBall		Histogram	CBall

S. Watanuki @Saga-Yonsei Workshop 2022

Toy-MC Study

- > 1k Toy-MC study is performed to check **possible bias** and **estimate sensitivity**.
- > Floating parameters: N_{sig} , N_{qq} , shapes of qq except Mkpi.
 - Shape parameters of qq for Mkpi(0) are all fixed for fitting stability.
 - The fixed parameters will be calibrated by off-resonance.

Pull and Sensitivities to BR

Assuming 657M BB	Charged		Neutral	
My Belle II Study	57.5 ± 14.1	~24% (stat.)	58.1 ± 12.7	~22% (stat.)
My Belle Study	58.4 ± 17.1	~29% (stat.)	72.2 ± 15.3	~21% (stat.)
Taniguchi-san's BR x 10 ⁷ (with 657M BB)	$(8.7^{+2.9+0.9}_{-2.7-1.1})$	~33% (stat.) ~13% (syst.)	$(7.8^{+1.7+0.9}_{-1.6-1.0})$	~21% (stat.) ~13% (syst.)

Sensitivity to Isospin Asymmetry

Estimated with 1070/fb ~ Belle (711/fb) + Belle II (360/fb) assuming <u>Belle II environment</u>.

≻ Toy-MC is based on Belle II study.

- though Belle environment showed almost same sensitivity.
- Finally simultaneous fitting between Belle and Belle II will be performed.

► 1/ab seems to be enough to measure A_I=30% (W.A.) with 2.6σ. 2022/1/21 S. Watanuki @Saga-Yonsei Workshop 2022

Summary

<u>LFV B→Kτµ Search</u>

- > There are several unique methods in Belle.
- > Hadronic tag would provide basic (robust) sensitivity to BR.
- > The U.L. will be much improved according to MC study.
- ➢ Box open will come soon!

<u>Rediscovery and $A_{\underline{I}}$ of $B \rightarrow \rho \gamma$ </u>

- ➤ This is the major mode of b→d EWP process; the first step of such a mode at Belle II.
- > Belle II currently showed similar sensitivity as Belle.
 - There should be some room to improve, assuming Belle II potential.
- Even with near future statistics of Belle II, combined dataset Belle + Belle II will provide significant results of BR and isospin asymmetry.

- 1. Reconstruct D⁰ meson.
- . Select K⁺, μ and a τ prong in the rest of event for tag side D⁰.

- 1. Reconstruct D⁰ meson.
- 2. Select K⁺, μ and a τ prong in the rest of event for tag side D⁰.
- 3. Sum 4-momenta over the rest of visible particles \rightarrow X in tag side.

- 1. Reconstruct D⁰ meson.
- 2. Select K⁺, μ and a τ prong in the rest of event for tag side D⁰.
- 3. Sum 4-momenta over the rest of visible particles \rightarrow X in tag side.
- 4. Calculate τ mass as a rest of X⁻D⁰K⁺ μ system.

3. Inclusive

1. Select K⁺, μ and a τ prong candidates.

3. Inclusive

- 1. Select K⁺, μ and a τ prong candidates.
- 2. Sum 4-momenta over the rest of visible particles \rightarrow tag side B⁻.

3. Inclusive

- 1. Select K⁺, μ and a τ prong candidates.
- 2. Sum 4-momenta over the rest of visible particles \rightarrow tag side B⁻.
- Calculate τ mass as a rest of B⁻K⁺μ system

Breakdown of BB after Cuts

Charged

	N _{evt}	Frac.
Xsdgamma	157	16.60%
Xsugamma	153	16.20%
pi+pi0pi0	114	12%
rho+eta	48	5.07%
K''*+gamma	47	4.96%
rho+pi0	41	4.33%
rho+D0	35	3.70%
K_2*+gamma	29	3.06%
K_2*0gamma	22	2.32%

Mixed

	N _{evt}	Frac.
Xsdgamma	147	24.10%
Xsugamma	77	12.60%
K''*+gamma	39	6.40%
K'*+gamma	23	3.78%
K_2*+gamma	22	3.61%
K_1+gamma	15	2.46%
K_2*0gamma	15	2.46%
rho+D0	14	2.30%
rho+rho0	13	2.13%

<u>~70%</u>

<u>~60%</u>

Used Functional PDFs

